DOI: 10.1111/cgf.14549

Eurographics Conference on Visualization (EuroVis) 2022 Volume 41 (2022), Number 3
R. Borgo, G. E. Marai, and T. Schreck

(Guest Editors)

Neural Flow Map Reconstruction

S. Sahoo, Y. Lu & M. Berger
Vanderbilt University

Ground Truth Neural Flow Map TTHRESH Shepard Interpolation

Figure 1: We show a comparison of our method, Neural Flow Map, with existing time-varying vector field data reduction schemes for
compression (TTHRESH) and scattered data interpolation (Shepard Interpolation). We show a volume rendering of the FTLE for the Tornado
dataset for the recovered time-varying vector fields found by each method. Our proposed approach optimizes a neural network to recover
Sflow map samples, leading to strong generalization in the flow map, and consequently, faithful recovery of derived quantities such as FTLE.

Abstract

In this paper we present a reconstruction technique for the reduction of unsteady flow data based on neural representations of
time-varying vector fields. Our approach is motivated by the large amount of data typically generated in numerical simulations,
and in turn the types of data that domain scientists can generate in situ that are compact, yet useful, for post hoc analysis.
One type of data commonly acquired during simulation are samples of the flow map, where a single sample is the result of
integrating the underlying vector field for a specified time duration. In our work, we treat a collection of flow map samples for a
single dataset as a meaningful, compact, and yet incomplete, representation of unsteady flow, and our central objective is to find
a representation that enables us to best recover arbitrary flow map samples. To this end, we introduce a technique for learning
implicit neural representations of time-varying vector fields that are specifically optimized to reproduce flow map samples
sparsely covering the spatiotemporal domain of the data. We show that, despite aggressive data reduction, our optimization
problem — learning a function-space neural network to reproduce flow map samples under a fixed integration scheme — leads to
representations that demonstrate strong generalization, both in the field itself, and using the field to approximate the flow map.
Through quantitative and qualitative analysis across different datasets we show that our approach is an improvement across
a variety of data reduction methods, and across a variety of measures ranging from improved vector fields, flow maps, and
features derived from the flow map.

CCS Concepts
e Computing methodologies — Neural networks; Reconstruction; * Human-centered computing — Scientific visualization;

1. Introduction analysis. In the ideal scenario where scientists have access to all of

o . o the time slices saved during the simulation, scientists usually use
In the field of scientific computing, scientists lrlsuauy genf.:rate enor- particle advection to derive various quantities such as pathlines, the
mous amounts of data from large scale numerical simulations. Such finite-time Lyapunov exponent (FTLE) [Hal01], and Lagrangian

simulations are often run in networked high performance comput- coherent structure (LCS) [Hal00, HY00] to help make sense of
ing (HPC) environments where disk storage and memory capacity

is abundant. Traditionally, during the simulation run, time slices
(simulation state) are periodically saved out to disk for post hoc

the data. However in practice, scientists have limited access to the
vector field data since most visualization systems are run on local

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

delivered by

-G EUROGRAPHICS
= DIGITAL LIBRARY

www.eg.org diglib.eg.org

https://doi.org/10.1111/cgf.14549

392 S. Sahoo, Y. Lu & M. Berger / Neural Flow Map Reconstruction

workstation. Consequently, when transferring data from the HPC
to local workstations, the network bandwidth, limited memory and
storage space collectively act as a bottleneck to data access.

To mitigate this problem, numerous methods have been de-
veloped to reduce the size of time-varying data, e.g. compres-
sion methods[BRLP19] and superresolution techniques [GYH*20],
with some methods specifically targeting vector field data [HW19].
These methods can alleviate the burden of network bandwidth lim-
itations for more efficient data I/O transfer, e.g. transferring com-
pressed/subsampled data from an HPC device to a local work-
station. However, these techniques are designed to work with an
Eulerian-based form of data and do not take into consideration how
the vector fields are actually used in practice. On the other hand,
Agranovsky et. al. [ACG™14], showed that Lagrangian flow map
representations - where particles are integrated in-situ and only the
start and the end positions of the particles are saved - gives a more
accurate and efficient storage for performing post hoc analysis as
compared to using discretized vector field time slices. Thus, devel-
oping techniques that can make use of these representation is an
attractive option. Deep learning based techniques have proven to
be a promising method for vector field superresolution [GYH*20],
flow map superresolution [JGG20], compression [LJLB21] and a
variety of other tasks. In this work, we wish to leverage these opti-
mization based deep learning techniques along with a Lagrangian-
based form of data to support a more accurate post hoc Lagrangian
transport analysis.

To this end, we propose a novel method for representing and
recovering unsteady flow that enables substantial data reduction
in time-varying vector fields. Our approach takes on a hybrid
Eulerian-Lagrangian viewpoint. Our representation of unsteady
flow is Eulerian, in that we leverage implicit neural representa-
tions [SMB*20] to model time-varying vector fields. These are
coordinate-based neural networks which, in our scenario, take as
input spatiotemporal coordinates, and output vectors. The man-
ner in which we optimize these representations, however, is La-
grangian. Our method assumes that a small set of flow map sam-
ples from the underlying field have been provided, and we optimize
our implicit neural representation to best reproduce these flow map
samples. This necessitates an optimization scheme that can per-
form integration with respect to our Eulerian representation. We
show how this integration-based optimization can lead to neural
flow-based representations that, both, faithfully recover the origi-
nal time-varying vector field, as well as its flow map, when pro-
vided with just a sparse set of flow map samples. We show superior
performance in comparison to Eulerian, and Lagrangian, unsteady
flow data reduction approaches. Further, the Lagrangian-based op-
timization view of our method results in the faithful representation
of derived unsteady flow quantities, such as FTLE, as demonstrated
in Fig. 1. Additionally, our coordinate-based neural representation
removes the need to maintain grid representations, allowing one to
compute these quantities in a random-access manner.

Our main contributions can be summarized as follows:

1. We introduce a novel approach to learn a vector field represen-
tation only using samples from a flow map.

2. We study how different factors concerned with flow field inte-
gration affect the training process.

3. We evaluate our approach on a range of vector field datasets
and demonstrate superior results compared to existing methods,
both quantitatively and qualitatively.

2. Related Work

Our approach is closely related to existing works on data reduc-
tion for unsteady flow. Here we discuss the most pertinent works
on compression, superresolution, and interpolation, in addition to
recent work on learning over differential equations.

Compression-based data reduction. Given that 3D unsteady
flow is often in an Eulerian representation, e.g. a time-varying
vector field, a common method for data reduction is lossy com-
pression. Although volumetric compression of scalar fields has
a long history within scientific visualization [Mur93, GWGS02],
with numerous approaches specifically targeting time-varying
data [SWO03, Ma03, JEG11], exploiting the redundancy between
(1) space, (2) time, and (3) vector components presents challenges
for effective reduction. One common strategy is to flatten the data
as a 1D function, and approximate the function through differ-
ent fits, e.g. B-splines [LSE*11] or more adaptive fitting [DC16].
Highly-compressive representations can also be obtained by treat-
ing the data as a tensor, e.g. a 5-tensor for space, time, and vector
component, and performing a tensor-based decomposition of the
data [SGM™*11, ABK16]. TTHRESH [BRLP19] is a notable tensor
compression method that exploits the fast decay in transform coef-
ficients, achieved via adaptively thresholding and quantizing these
coefficients for significant compression gains. Recent work con-
siders fitting implicit neural representations [SMB*20, TSM*20]
to time-varying volumetric scalar fields [LJLB21], with compres-
sion achieved by controlling the network size, and weight quan-
tization. These existing methods seek a direct compression of the
data, whereas our work decouples the compressive representation,
e.g. neural represention of a time-varying vector field, from the pro-
vided data, e.g. samples of flow map.

Superresolution methods for data reduction. Another com-
mon form of data reduction for vector fields is superresolu-
tion, where the objective is to upsample a low-resolution vec-
tor field to a high-resolution vector field. Different formulations
have been considered, wherein downsampling is restricted to the
spatial domain [GYH"20, SB21], as well as the spatiotemporal
domain [HW19, HZCW21]. Deep learning-based superresolution
schemes [DLHT15, DLT16] based on convolutional neural net-
works are commonly employed in these scenarios, where the as-
sumption is that patterns in downsampled data can be exploited to
appropriately resolve details in the upsampled data. Most relevant
to our method is the approach of Jakob et al. [JGG20], where the
focus is on flow map superresolution. In all such methods, there
exists a reliance on training data — paired low-resolution and high-
resolution vector field, or flow map, examples. As such, at inference
time, if there exists a domain mismatch between train and test data
then superresolution methods are less effective. Our approach does
not rely on a collection of vector field examples, but rather, assumes
just a single dataset. We show that we can obtain superior perfor-
mance over superresolution schemes by shifting the focus on what
data we collect, and optimize. Closely related to superresolution are
works that aim to reconstruct the vector field from a sparse set of

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

S. Sahoo, Y. Lu & M. Berger / Neural Flow Map Reconstruction 393

scattered data. Prior works [SFT*22, EMY*20, YWS™*21] achieve
flow field reconstruction by directly optimizing for the velocity vec-
tors. Han et al. [HTZ*19] and Gu et al. [GHCW21] reconstruct
vector fields from a set of representative streamlines. The work
done by Han et al. [HSJ21] has similar goals to ours; however their
approach uses a neural network that predicts flow maps directly. In
our approach, we learn a function-space representation of the flow
field. Further, we explicitly impose an integration scheme to ensure
a more stable and guided optimization process.

Lagrangian methods for interpolation. Lagrangian represen-
tations of unsteady flow are a popular scheme for data reduction,
due to their compact representation for post hoc analysis. One com-
mon type of representation is Lagrangian coherent structure (LCS),
obtained as ridges in the largest finite time Lyapunov exponent
(FTLE) [Hal00, HY00]. LCS is commonly used to identify geomet-
ric structures, as well as stable and unstable manifolds. Techniques
like FTLE and LCS provide a powerful framework to the user for
visualizing and analyzing the flow behavior of an unsteady vec-
tor field. Fundamental to these techniques are the computation of
integral curves, as a means of obtaining flow map samples. How-
ever, since the computation of integral curves can be expensive,
in the literature fast computation of integral curves, and efficient
sampling of flow map has received significant attention. Burton et
al. [BR10] introduced a fast FTLE computation by concatenating
multiple flow maps. Garth et al. [GGTHO7] introduced an incre-
mental smooth approximation of flow map computation for fast
FTLE computation. Similarly, Sadlo et. al [SP07] introduced an
adaptive mesh refinement technique wherein seeding is avoided
from regions where no ridges are present. Sadlo et al. [SRP11]
introduced grid advection for efficient FTLE computation. Rapp
et al. [RPD19] introduced a sampling strategy where the samples
exhibit blue noise property and thus gives a better domain cover-
age as compared to random sampling. In the literature, post hoc
Lagrangian reconstruction has also received signficant attention.
Hlawatsch et al. [HSW10] introduced a technique for fast com-
putation of integral curves by utilizing short integral curves in a
hierarchical manner to construct longer curves.

The computation of FTLE and LCS relies on access to the un-
derlying field’s flow map, in order to numerically estimate the
Cauchy-Green tensor in FTLE [SLMO05a]. The underlying time-
varying vector field is a natural representation from which to derive
the flow map, but for large-scale numerical simulations, this might
not be feasible to collect and store. On the other hand, the compu-
tation of flow map samples in situ, and post hoc storage, is more
economical [ACG*14]. Hence, numerous methods for flow map
interpolation have been developed, e.g. moving least squares inter-
polation [AGJ11] of densely-sampled integral curves, interpolation
based on smoothed particle hydrodynamics [COJ14], barycentric
interpolation [ACG™14], as well as varying duration and variable
placement interpolation scheme [SCB]. The error in interpolation
has been further studied [CBJ16, HBJG16], establishing a relation-
ship between errors in interpolation with numerical integration of
flow fields. In our approach, rather than impose an interpolant,
we use coordinate-based neural networks whose derived integral
curves fit to given flow map samples.

Neural differential equations. Our approach is closely

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

related to work on neural ordinary differential equations
(ODE) [CRBD18]. Indeed, the computation of the flow map is one
of solving an ODE-based initial-value problem, and we utilize the
adjoint sensitivity method [Pon87] for memory-efficient optimiza-
tion. Nevertheless, the main distinction in our approach is that we
do not solve an ODE in the learned representation space of a neural
network [CRBD18, RCD19], but rather, directly in the spatiotem-
poral domain. Adjoint methods for scalable optimization have also
seen recent adoption within differentiable direct volume render-
ing [WW21]. Viewed more broadly, our approach is similar in spirit
to neural radiance fields (NERF) [MST*20, LGZL*20], in that we
are attempting to recover field-based data from an otherwise un-
observed process — for NERF this corresponds to density/radiance
fields from volume-rendered images, while our method aims to re-
cover unsteady flow fields from flow map samples.

3. Approach

We describe our approach in this section, organized by the type of
data our approach assumes, a description of our neural field repre-
sentation, and details on our approach for optimization.

3.1. Data Reduction: Flow Map

There are, fundamentally, two different ways in which to repre-
sent unsteady flow data: Eulerian representations, and Lagrangian
representations. Within the context of fluid dynamics, the Eulerian
representation of flow describes the time-variant instantaneous ve-
locity of fluid particles at fixed spatial locations in the domain.
Typically, an Eulerian specification of unsteady flow manifests as a
time-varying vector field, which maps a given spatial position and
(nonnegative) time value to a vector:

v:R? xRsg — RY, 1)

and we assume d € {2,3}. In practice, we are given a sampling
of v, usually sampled on a regular grid with spatial resolution
(sx X sy X 57) and T time steps. As previously discussed, for the pur-
poses of data reduction, Eulerian representations are typically (1)
compressed, or (2) downsampled, and then upsampled on-demand
via superresolution methods.

In contrast, in this work we use the Lagrangian representation
of flow as a form of data reduction. The Lagrangian viewpoint de-
scribes the underlying motion of flow as a set of massless particles
in the domain that travel through space and time. The mathemat-
ical object that represents how a particle is transported under the
flow field, starting at a given spatial position, time step, and for a
given duration, is known as the flow map. The flow map can be
constructed by, first, defining how a particle x(¢) traveling in the
domain is advected by the flow field, governed by the following
ordinary differential equation:

KO _vix().0), x(0) = p. @

where the initial condition on the right-hand side specifies the parti-
cle’s initial position p at time #y. Secondly, the particle’s advection
for a duration & can then be found via integration:

to+0

@} (p) =x(10) + v(x(t),1)dt. 3)

o
0]

394 S. Sahoo, Y. Lu & M. Berger / Neural Flow Map Reconstruction

Samples from the ground-truth
flow map

Integrating the neural
representation of the
time-varying vector field, our H
objective is to reproduce the
ground-truth flow map output

o
0t " P —

*ae’

ot
. .
A coordinate-based neural *,
network produces a vector, Ea
given a space-time location aud
Q -.

Figure 2: We show an overview of our approach. Our method as-
sumes samples of a flow map for optimization (top), namely the
starting point, start time, and end point, being the result of inte-
gration. Given a single sample of a flow map (bottom), our method
aims to learn a neural representation of a time-varying vector field
that, upon integration, can recover the output of the flow map. The
brightness of integral curves encodes time.

VIRl e

The flow map ® is an important mathematical object for the anal-
ysis and visualization of unsteady flow phenomena, e.g. for extract-
ing Lagrangian coherent structure [HYO00] and for the visual anal-
ysis of attracting and repulsive behaviors [RGG19]. Prior work on
data reduction typically takes a collection of integral curves, each
curve being densely sampled in time, from which to then interpo-
late the flow map at arbitrary points in space-time. In contrast, in
our work we do not perform such a dense sample; rather, we as-
sume substantially less information for each item in our dataset:
(1) an initial position p, (2) the starting time of advection ¢, and (3)
the result of applying the flow map CI)§+5 (p). For simplicity, in our
work we assume that the duration § is fixed as a constant, though
this restriction can easily be relaxed. All told, our method assumes
the following dataset as input:

T= {(phtl ¢l1+6())

namely, we assume 7 total flow map samples from ®. As an ex-
ample, in Fig. 2(top) this corresponds to the start and end points of
integral curves.

(o @ P 00) @

Algorithm 1 Pseudocode for memory-efficient backpropagation
under explicit Euler integration

1: Input: spatial position p , time #; , duration J, integration step
size €

2: Form a time-dependent particle X(z) under the neural vector
field through solving Eq. 6 under explict Euler integration

3: Initialize position gradient a = %

4: Initialize weight gradient % =0

5: fort = (fp+0—¢€) totg in increments of € do

6: Integrate weight gradlent B = Z—é saT%

7: Integrate position gradient a =a — eal %&)I)

8: end for

9: Return %

3.2. Neural Flow Map

The objective for our approach is to learn a model of unsteady flow
that provides us with the following:

1. The model provides for an effective Eulerian representation of
flow, e.g. it is a good approximation of the ground-truth vector
field v.

2. The model provides for an effective Lagrangian representation
of flow, e.g. it allows us to reproduce the given dataset of flow
map samples, 7, whilst generalizing to arbitrary samples of the
flow map.

To this end, our model takes on an Eulerian refer-
ence frame, namely, we utilize neural representations of
fields [SMB*20, TSM*20], in particular those that are time-
varying [LJLB21, XHKK21]. In our problem, this amounts to a
neural network that takes as input a spatiotemporal location, and
outputs a vector. We denote this as a function, f, parameterized
by a set of weights 6 € R”, such that fo: RY x R>o — RY. The
function fy is a multi-layer perceptron with sinusoidal activation
functions; we defer architecture details to Sec. 5.1. Ideally, we
would like fy to be as close as possible to v.

The manner in which we optimize for fg, however, takes on a
Lagrangian frame of reference, please see Fig. 2 for an overview.
Specifically, for a given spatial position p, time 7y and duration 9,
we define our neural flow map as follows:

~ S - -
() =%(0) + [fo(X().0)dr, ®)

to

where a particle %(r) is governed by the following ODE:

X(t
di()

= fo(X(t),1), X(to) =p- (6)

Given samples of our flow map 7, we wish to find a neural rep-
resentation of the time-varying vector field that minimizes the fol-
lowing equation:

1 +5 2
T, Y 197°m) —dllz, ™
(pt.q) €T
e.g. the output of the neural flow map is a good approximation of

the actual flow map output q = CI)?LS (p), where “good” is measured

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

S. Sahoo, Y. Lu & M. Berger/ Neural Flow Map Reconstruction 395

in terms of their squared Euclidean distance, though in principle
any differentiable loss function could be used. Note that our neural
representation fg can be evaluated at arbitrary points in space and
time. This obviates the need to interpolate from a sampled vector
field, and further, permits us to optimize over a set of flow map
samples 7 whose positions and times originate at arbitrary loca-
tions.

In practice, to approximate the neural flow map in Eq. 5, it is
necessary to select a numerical integration scheme. For simplicity,
we use an explicit Euler integrator with sufficiently small step size
to mitigate global truncation error. Thus, we can write a particle
advected under our neural field representation fy as follows:

X(r+¢€) = X(t)+e- folt), (8)

for an appropriately-defined step size €.

3.3. Efficient Backpropagation

An immediate computational problem arises from naively optimiz-
ing Eq. 7 under standard reverse-mode automatic differentiation.
Namely, in order to compute gradients of the loss with respect to
weights 0, we must record all activations produced by the neural
network fy, for each step taken in our integration scheme (Eq. 8).
For large-scale datasets, and batch-based optimization, this scheme
quickly overwhelms the amount of memory necessary to perform
backpropagation.

To address this challenge, we take advantage of the adjoint sen-
sitivity method for ODE:s, as proposed in Chen et al. [CRBD18]. In
our setting, we are primarily concerned with efficiently computing
the gradient over all examples from Eq. 7, which we express as:

1

i, Y, VeL(E(+3).9), ©)

(Pt ET

where L is the loss for a single flow map sample as in Eq. 7, and
(1 +8) = ®/*3(p). We can formulate a memory-efficient gradi-
ent computation via “continuous backpropagation”, considering the

following for € > 0:
dL dL dX(t +e€)

=350 " aire) R0
that is, the derivative of the loss with respect to the particle’s po-
sition at time ¢ can be computed based on the flow map spatial
Jacobian at the subsequent time step, ¢ + €. It is straightforward to
show [CRBD18] that this condition, as well as Eq. 6 leads to the
following backward ODE, starting from the end of integration:

da(t) _ 9fo(X(1),1)
dt =—a()’ eai(t) ’

where the second term is the Jacobian of the neural vector field.
By integrating forward to the full duration 8, we obtain a(s + 3)
which serves as our initial condition in this ODE, and consequently,
can solve for a through numerical integration. Introducing an au-
tonomous ODE by prescribing differential equations on © and ¢:

(10)

an

do dt
-0 Z=1 12
o % T 12)

and using the same reasoning above in Eq. 11, we have a second

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

Ground Truth Neural Vector Field Neural Flow Map

77 |
/)

Training Data

1 W TR
ﬁ»%/@j n

Inference

Figure 3: We show the ability of our method to reproduce inte-
gral curves given a sparse set of flow map samples (top-left). The
top row shows all integral curves within a particular time range
from which flow map samples for training were derived, the middle
row demonstrates generalization on withheld space-time seeds for
integration, and the bottom row shows the FTLE. We find that opti-
mization of the flow map (right) better captures swirling features in
this Heated Cylinder dataset compared to directly fitting to vectors
(middle).

ODE to find our primary quantity of interest, the gradient of the
loss:

In principle, the gradient computation can be applied to any nu-
merical integration scheme. In our case, for explicit Euler integra-
tion, the formulation leads to a straightforward algorithm that we
summarize in Listing 1 for a single flow map sample; batch com-
putation is straightforward to extend. Note that this requires the
computation of two types of gradients of the neural vector field per
integration step: (1) weight gradient, and (2) positional gradient.
This amounts to 2 applications of vector-Jacobian multiplication, a
basic operation in modern deep learning libraries.

3.4. Fitting to Flow Map Samples, Fitting to Vectors
4. Analysis

In this section, we show through experimentation an analysis of
different factors that effect flow map-based optimization. Specifi-
cally, our approach necessitates the use of an numerical integration
scheme. Thus we are left with a number of questions, namely, is
Euler integration sufficient, in practice? How do we sample seed
points to generate the flow maps? For how long should we inte-
grate? To answer these question, we perform a study to determine
and justify the choices we make as part of the numerical integration
scheme.

396

Seeding Scheme

Dense Time Sparse Space
— Sparse Time Dense Space

|| Integration Scheme
— Euler Integration 451
RK4 Integration |

0 100 200 300 400 500 0 100 200 300 400 500
Timestep Timestep

() (b)

Figure 4: We show the vector field PSNR across all the timesteps
of the Double Gyre dataset reconstructed using flow map samples
under Euler and RK4 integration scheme (a) and different seed-
ing scheme (b). We find the performance to be comparable, thus
motivating our choice for a simple, explicit Euler scheme for opti-
mization.

We first qualitatively highlight the benefits of learning a vector
field via flow map-based optimization, compared to the more tra-
ditional baseline of directly fitting to vectors. Specifically, we have
taken the Heated Cylinder dataset and generated 128K flow map
samples, sampling uniformly at random over space-time, with inte-
gration duration 8 = 0.15. For comparison, we fit an implicit neu-
ral representation [SMB*20, TSM*20, LJLB21] to the vectors at
the initial seeds of these flow map samples. Thus, both methods —
directly fitting a vector field, optimizing for a flow map — receive
different, but the same amount of, information.

Fig. 3 shows the results. The top row shows the integral curves
from which the flow map samples were computed, namely, all such
flow map samples that pass through time = 6.23. Note the sparsity
in the training data (top-left). We find that our method (top-right) is
able to fit well to these training flow map samples, as one would ex-
pect assuming optimization is successful. For the vector field-based
fit (top-middle), however, we find that integrating this vector field
at these seeds results in sub-optimal integral curves. The ramifica-
tions of this on the rest of the data are presented in the middle row,
where we take an arbitrary, dense set of seeds at the aforementioned
time, and compute integral curves with the same duration § = 0.15.
Here, we find that at inference, flow map-based optimization leads
to vector fields whose integral curves better capture features in the
dataset, e.g. swirling motion due to vortices shed throughout this
simulation, in comparison to methods that just fit to the vectors
directly. The bottom row of Fig. 3 compares the FTLE for an inte-
gration duration of 8 = 0.3. Given the extreme sparsity of samples
we do not expect a high-quality FTLE approximation, but never-
theless, we can see, qualitatively, that flow map-based optimization
tends to better capture the FTLE over fitting to vectors. We defer a
more exhaustive comparison of varying levels of subsampling for
this dataset as supplemental material.

4.1. Effect of Integration Scheme

In order to understand the impact of different integration schemes,
we experiment with two of the most widely used integration
schemes - namely Euler integration and 4" order Runge-Kutta
(RK4) integration. Euler integration, albeit sensitive to the step size,

S. Sahoo, Y. Lu & M. Berger/ Neural Flow Map Reconstruction

70 5 RMSE
—02 0.2 0.0014

65

Train Integration Duration

a5 0.0001

Figure 5: We show the vector field PSNR (left) across all timesteps
for the Double Gyre dataset for different models trained with flow
map samples of varying integration duration. We show the general-
ization capabilities of the models to integration durations that were
not trained on as a heatmap (right).

is simple and fast. On the other hand 4" order Runge-Kutta inte-
gration is more robust and accurate. In our experimental setup, we
use the Double Gyre dataset [SLMO5b], and take flow map sam-
ples with fixed integration duration of = 10 and a step size of 0.1,
originating from every timestep excluding the last 10 timesteps for
both integration schemes. Fig 4(a) shows the results of training
using Euler and RK4 integration. Clearly, with sufficiently small
step-size Euler integration performs on par with RK4 integration
scheme and in the meanwhile being significantly faster to train. The
model under Euler integration scheme was trained in about 97 min-
utes whereas the model under RK4 integration scheme took about
152 minutes. Thus for the remainder of the paper we use Euler in-
tegration scheme because of its simplicity, faster training speed and
accuracy as compared to RK4 integration.

4.2. Effects of Sampling

The way that we sample flow maps is important to ensure that flow
feature are captured by the pathlines, enabling efficient learning.
Since we are working with a substantially reduced amount of data

Table 1: We list the datasets used for experimental comparisons,
along with their size, the integration duration we use for flow maps,
and the sampling reduction rate.

Dimensions

Dataset Name 3 Reduction Rate
(X Xy X zXxt)

Four Rotating Centers (2D)[GGT17] 128x128x512 10 16x

Double Gyre (2D)[SLMO05b] 256x128x512 10 16x

Fluid Simulation (2D)[JGG20] 512x512x1001 5 16x

Tornado 128x128x128x50 3 100x

Isabel 500x500x90x48 3 300x
ScalarFlow[EUT19] 100x178x100x150 5 300x

Half Cylinder[RG19] 640x240x80x151 3 300x

Table 2: We list the total training time, inference time (time taken
to integrate 10,000 particles for a duration of 20 in grid-time) and
the model-size for all the 3D datasets.

Dataset

Training Time

Inference Time (in seconds)

Model Size (in MB)

(in minutes)
Tornado 226 5.939 2.1
ScalarFlow 128 5.740 1.7
Isabel 487 15.432 8.2
Half Cylinder 609 22.349 135

© 2022 The Author(s)

Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

S. Sahoo, Y. Lu & M. Berger / Neural Flow Map Reconstruction 397

Neural Vector

Ground Truth

Neural Flow Map

L _dh 4 L . 4

Jakob et al. Bicubic Interpolation

i 4 L Ak 4

{\47/ hd NI

Figure 6: We qualitatively compare our method — Neural Flow Map — to various baselines (columns) across different 2D datasets (rows).
We show (1) difference images between the approximated FTLE and the ground truth FTLE, and (2) the FTLE (computed by integrating for
a duration of 300, 500, 500 for fluid simulation, double gyre and four rotating centers respectively). We find that our flow map method yields

improved performance across all baselines.

Fluid Simulation
0.107 0.30

Method
@ Neural Flow Map

0.25-

Double Gyre

Four Rotating Centers
0.5

0.08- Neural Vector 0.4+
@ Jakobetal.
Bicubic 0.20
0.06- 0.3
w w w
(%] 17} (%]
= So015 =
4 4 4
0.04- 0.2
L 0.10{
0.02- 1
0.05-{ 0
L
0.00 T T T T T T T 1 .00 T T T T T T T 1 0.0 T T T T T T T 1
100 150 200 250 300 350 400 450 500 100 150 200 250 300 350 400 450 500 100 150 200 250 800 350 400 450 500
Duration Duration Duration

Figure 7: We show quantitative results for our 2D experiments, where we measure the RMSE of flow map error across different integration
durations. Across all baselines, we observe consistent improvements using our flow map-based method — note, despite the fact that our
method optimizes on a single duration, it is nevertheless able to generalize to different (longer) durations.

we can only cover so much of the dataset. To this end, we propose
two different sampling schemes, namely sparse-time dense-space -
wherein we sample densely in space for a given timestep and con-
sider only a subset of the total timestep sparsely chosen, and dense-
time sparse-space - here we give more importance to the temporal
frequency over spatial frequency given the same budget of sam-
ples. In Fig 4(b), we can see the results of vector field PSNR. In
this experiment, we used a total of 168K samples from the Double
Gyre dataset - sampled as 336 spatial points across 500 timesteps
and 1680 spatial points sampled across 100 timesteps. We observe
that dense temporal sampling shows that temporal coverage is more
important and gives better results as compared to sparse temporal
sampling. Thus, in the remainder of the paper we use the dense-
time sparse-space sampling scheme, to ensure better temporal cov-
erage.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

4.3. Integration Duration

The duration for which the particles are integrated to generate the
flow map is an important factor for the training process. When in-
tegrated for extremely small duration, then the scenario resembles
that of vector-based optimization, since the network need only pre-
dict the immediate vectors in close proximity of seed location to
yield an accurate flow map. We hypothesize that in such cases the
model would not be able to take full advantage of the flow map
based optimization process and thus perform poorly. To confirm
our hypothesis, we design an experiment where we train different
models on flow map samples generated with increasing integration
duration. For this experiment, we use the Double Gyre dataset, and
we generate the flow map samples using Euler integration with a
step size of 0.1. We also keep the initial weights and the seed loca-
tions from which flow map samples are generated for each of the
models the same for fair comparison.

398

Ground Truth Neural Flow Map

S. Sahoo, Y. Lu & M. Berger/ Neural Flow Map Reconstruction

Neural Vector TTHRESH

X

¥ (8

Figure 8: We qualitatively compare the FTLE (computed by integrating for the entire duration of the simulation) for the ScalarFlow dataset
between our method, neural vector fitting, and TTHRESH [BRLP19]. We find that our method does not inherit noisy artifacts away from the
plume (blue circle), while in comparison to TTHRESH, we find that close to the plume center our method is able to better retain details of

high repulsive behavior in the flow.

Tornado ScalarFlow

Method

| @ Neural Flow Map
Neural Vector

|| @ TTHRESH
Shepard

00011 :
0.000 ¥ T T T

Half Cylinder Isabel

0.25- /
40+

°
2
RMSE

5 10 15 20 25 30 20 40 60 80 100
Duration Duration

10 15 20 25 30 35 40 45
Duration

40 50 60 70 80 90 100 110 120130 5
Duration

Figure 9: We show quantitative results for the error incurred by flow maps obtained by different data reduction schemes for 3D flows: our
method, neural fitting to vectors, TTHRESH [BRLP19], and Shepard interpolation. In general, our method obtains improved performance —
note that at times, we obtain an improved performance in flow map, despite having a higher error in vector field (c.f. Fig. 10).

Fig 5 shows the results of the comparison. Our hypothesis gen-
erally holds true, more specifically, models trained on smaller in-
tegration duration do not perform as well as models training on
larger integration duration. Nevertheless, we see that at a certain
point, we obtain diminishing returns, as the longest integration du-
ration (20) is slightly worse than a duration of 10. We further test
the generalization capabilities of the models on integration dura-
tions for which they were not trained on. In Fig. 5(right) we see
that, models generalize well to integration durations for which they
were trained. Importantly, though, for models trained on longer du-
rations we do not sacrifice quality in preserving short-duration flow
maps. Interestingly, we find that for integration duration of 20, we
find that the model can generalize just as well, if not better, than
smaller integration durations. This is despite the fact that its corre-
sponding vector field quality is lower (left), suggesting that the flow
map-based optimization can provide vector fields that take a small
hit in performance with respect to the ground truth vector field, but
nevertheless, faithfully capture the flow map.

We emphasize that these results do not answer the question of
what duration to select, given a dataset. We believe that answer-
ing such a question is domain-dependent, e.g. for certain analyses,
flow maps of longer duration are more relevant than those of shorter
duration. Rather, our results show the robustness of our method to
varying duration, capable of optimizing over a range of durations.
We further hypothesize the drop in PSNR near the start and end
timesteps in Fig. 4 and Fig. 5 is most likely due to how the training

data is generated (please see Sec. 5.1) where we generated fixed
duration flow map samples using forward integration only, thus bi-
asing the network more towards the intermediate timesteps. We be-
lieve generating training data using a combination of forward and
backward integration along with variable duration of integration
can help alleviate this problem.

5. Results

We experimentally evaluate our method, both in 2D and 3D, by
comparing across a range of baselines. Specifically, in 2D we com-
pare to the superresolution method of Jakob et al. [JGG20], where
we train a CNN-based superresolution model of flow map upsam-
pling via their provided dataset of 2D flow simulations, under a
16x data reduction. Further, we compare to a standard baseline
of bicubic upsampling, also 16x reduction. In 3D, we compare to
the state-of-the-art compression method of TTHRESH [BRLP19],
where the compression ratio is set to approximately the reduc-
tion rate that we use to train our model — this is an approxi-
mation, as TTHRESH is error-controlled, so we choose the error
that leads to a compression ratio that is approximately our reduc-
tion rate. In addition, we compare to implicit neural representa-
tions [SMB*20, TSM*20, LJLB21], trained on the initiating seed
positions that we take for our flow map samples, namely, the vec-
tors at those positions. We also compare to two standard interpo-
lation baselines: (1) Shepard interpolation, using the same afore-
mentioned collection of points, and (2) cubic upsampling, where

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

S. Sahoo, Y. Lu & M. Berger/ Neural Flow Map Reconstruction 399

Tornado Half Cylinder

PSNR
SN
»
&

r r r r ! —T I
0 10 20 30 40 50 0 20 40 60 80 100 120 140 160
Timestep Timestep

Isabel ScalarFlow

Method

— Neural Flow Map
Neural Vector

— TTHRESH
Shepard Interpolation

55 60

50 55

PSNR

& &

N <</>
PSNR

30 35

0 10 20 30 40 50 0 20 40 60 80 100 120 140 160
Timestep Timestep

Figure 10: We show quantitative results for 3D unsteady flows measured in terms of their vector field PSNR. We find, in general, that our
method leads to an improved, if not competitive, performance across existing methods. We emphasize that our method does not explicitly
optimize for a vector field, but nevertheless, the vector field that is found is a faithful approximation.

we perform a 64x downsampling of the field. Though other inter-
polation schemes exist, e.g. ones based on barycentric coordinates,
these methods can be quite expensive to compute due to the require-
ment of a triangulation / tetrahedralization, and thus we omit them
from our study. Table 1 lists all of the datasets that we use in the
paper, along with their spatial resolution, the reduction rate chosen
for our experimental comparisons, as well as the integration dura-
tion. Since each dataset lives on a different physical domain, and
thus time is not comparable, in the table we list duration in terms
of the number of grid time steps taken.

5.1. Implementation Details

Network Architecture Settings Our network architecture is
adapted from prior work by Lu et al. [LJLB21] — comprised of
fully-connected layers and sinusoidal activation function. We de-
part from Lu et al. in that we utilize Rezero [BMM*20] wherein
layers with skip connections are weighed by a learnable scalar
value initialized to O at the start of training process. This modifi-
cation to the architecture helped in stabilizing the training process.
We use a total of 6 hidden layers in all of our experiments. The
number of neurons in each of the layers is computed based on the
size of the flow map samples used for training and the hyperpa-
rameter M € (0, 1] which is set by the user. The hyperparameter
1 controls the number of network parameters with respect to the
number of training samples. Setting 1| to 1 will result in a network
with roughly equal number of parameters as the number of train-
ing samples. In practice, we use 1| = .5 in most of our experiments,
unless otherwise specified.

Training Data Generation For a given duration 8 we choose
seed points in the spatial domain uniformly at random for all
timesteps in the temporal domain ¢ € [ts,, — J], where f; is the first
timestep of the flow field data and ¢, is the last timestep. Based on
the total budget (i.e. the total size of flow field data divided by the
reduction rate) - we allocate same budget of spatial seed points for
each of the timesteps. We integrate these seeds points using RK4
integration scheme with a step size of 0.1.

Training Hyperparameters We use the ADAM opti-
mizer [KB15] with a starting learning rate of 10~* and decay it by

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

a factor of 0.2 every 40 epochs. We train for a total of 100 epochs
unless otherwise specified. We use explicit Euler integration,
where the step size is set to 1—10 of the grid-based time, in all of our
experiments to train our model.

5.2. 2D Unsteady Flow

We first experimentally evaluate our method on 2D unsteady flows.
In Fig. 6, we show a qualitative comparison between our method
and baseline schemes, where we show (1) FTLE error maps as ab-
solute difference between the ground truth FTLE and the predicted
FTLE, and (2) the FTLE. Notably, we find that our method has
significantly less visual artifacts relative to Jakob et al. [JGG20],
despite their method being supervised on a large collection of 2D
fluid flows. This suggests that obtaining a quality flow map recon-
struction, given reduced data, can be addressed without the need
of learning over a collection of fluid flows. We in fact obtain im-
proved visual results for in-domain examples as well (fluid flow
dataset [JGG20]), in addition to more standard 2D unsteady flow
datasets,

In Fig. 7 we show the quantitative performance of our method
over different datasets, where we evaluate the different methods un-
der varying integration duration. Note that our method was trained
on just one integration duration, for each of these datasets (c.f. Ta-
ble 1); nevertheless, our method is not merely overfitting to the du-
rations that it was trained on, and is able to generalize to arbitrary
durations. As one would expect, we obtain similar flow map errors
by a direct fit to the vectors (Neural Vector) for small durations,
since optimizing just for vectors should lead to good local (in small
duration) approximations in the flow map. However, for larger du-
rations, we can see how our method, generally, improves over the
neural vector fit baseline.

5.3. 3D Unsteady Flow

We next evaluate our method on a collection of 3D unsteady flows.
First, we show in Fig. 8 a comparison of different methods for cap-
turing details in the FTLE for the ScalarFlow dataset. Relative to
TTHRESH [BRLP19], we find that our method is able to better
capture intricate repulsive features near the central portion of the

400 S. Sahoo, Y. Lu & M. Berger / Neural Flow Map Reconstruction

plume (yellow circle) for this smoke simulation. We find that a di-
rect fit to the vectors yields comparable results, but as highlighted
(blue circle) our method does not reproduce noisy features away
from the plume center, as does the direct vector-based fit.

In Fig. 9 we show the quantitative performance of our method
over different baselines. All in all, we find that our method yields
improved performance over existing methods, though in certain in-
stances we find TTHRESH leads to lower error. Note, however,
that a significant advantage of our method over TTHRESH is that
the computation of integral curves, and consequently the approxi-
mation of the flow map, does not require any such resampling to
a regular grid. By representing the time-varying vector field as a
coordinate-based neural network, we can compute the flow map on
demand, in a random-access manner, whereas compression-based
techniques, such as TTHRESH, require decompressing to the full,
sampled regular grid in order to compute integral curves.

Although our method is not designed to optimize for a vector
field, we find that, in general, it is capable of producing good vec-
tor field approximations. In Fig. 10 we measure the performance
of our method, in terms of the vector field PSNR, relative to other
techniques. Overall we find that our method is an improvement, if
not competitive, with other techniques. Interestingly, we find that a
good approximation to the flow map need not imply that the found
vector field is faithful to the ground truth field. As an example,
for the ScalarFlow dataset, TTHRESH obtains an improved vector
field relative to our method early in the simulation; later our method
sees an improvement, though the margin of improvement is modest.
Nevertheless, as shown in Fig. 9, for ScalarFlow our method gen-
erally obtains large improvement in the flow map, particularly for
longer integration duration, further verified qualitatively in Fig. 8.

6. Discussion

We have presented an approach for data reduction of unsteady flow,
where we aim to learn Eulerian representations, e.g. time-varying
vector fields, through explicitly optimizing for Lagrangian repre-
sentations, e.g. samples of a flow map. Our experimental results
demonstrate improvements in performance, both with respect to the
underlying vector field, as well as the ground truth flow map. By
learning a neural representation of a time-varying vector field, we
further allow for the random-access computation of the flow map,
obviating the need to explicitly sample the vector field to a regular
grid, and thus providing a low-friction, convenient form of post-
hoc analysis of unsteady flow. Although the main focus of our work
has been for unsteady flows we believe that our method is applica-
ble to steady flows as well. However, from the perspective of data
reduction, we expect marginal gains with our method for steady
flows. For large reduction rates in unsteady flows, our method en-
courages spatio-temporal consistency in the learned time-varying
vector fields, a property that would be lacking in steady flows.

We acknowledge several limitations with our approach. Perhaps
the main limitation is the time required for optimization (c.f. Ta-
ble 2). Like neural ODEs [CRBDI18], each step of optimization,
in effect, necessitates the integration of a (learned) time-varying
vector field. In practice, the adjoint sensitivity scheme for gradi-
ent computation ends up dominating the computation time; in the

case of explicit Euler integration, this method requires perform-
ing backpropagation at each integration step. On the other hand,
as studied in Chen et al. [CRBDI18], an advantage of framing
optimization-via-integration is that we can employ adaptive inte-
gration schemes. This has the potential to reduce the number of
steps required for producing good gradient estimates, e.g. only re-
quiring finely-resolved integration when gradients for particular in-
tegral curves are important.

We further acknowledge that our results are competitive with
state-of-the-art data reduction methods, but in some instances our
method is inferior. The restriction to optimizing only over fixed-
duration flow map samples is largely for simplicity, and we believe
that the incorporation of a richer set of information for optimiza-
tion, e.g. a sparse sampling of vectors in addition to flow map sam-
ples, flow maps of varying integration duration, would lead to more
effective reconstruction.

For future work, we plan on extending our method for flow map
extrapolation, rather than just interpolation. We will investigate
how to extend latent space integration [CRBD18, RCD19] rather
than just integrating over the spatial domain, in order to enable our
models to extrapolate flow. We expect that such a dynamics-based
regularization on the latent space should prove useful for general-
ization, based on prior work in manifold mixup [VLB*19], and we
anticipate these advantages will transfer to coordinate-based MLPs.

We also plan on investigating schemes to facilitate the time re-
quired for optimization. We are encouraged by recent works in
meta-learning for coordinate-based MLPs [SCT*20, TMW*21], in
particular, learned initializations for rapid training adaptation to
novel signals [TMW™*21]. Such schemes should transfer well to
the rapid learning of unsteady flow. Moreover, thanks to recently-
created datasets for building machine learning models on flow
datasets [JGG20], we now have the opportunity to learn over a
rich set of fluid flows. We plan on investigating coordinate-based
neural networks that can scale better in space-time, rather than the
use of a simple MLP. Since the size of the network grows quickly
with the complexity of the input data, learning a good represen-
tation of a large dataset would require a larger network, thereby
increasing the training as well as inference time. Methods such as
ACORN [MLL*21] should prove useful in this regard, and we in-
tend to adapt such architectures to time-varying flows.

Last, we plan on extending our method to optimize not just
for flow maps, but more general properties of flows. In princi-
ple, it should be possible to optimize for quantities derived from
flow maps, e.g. FTLE - indeed, similar types of memory-efficient
schemes that we developed can be adapted to this setting. More-
over, other flow properties, be it steady (vorticity) or unsteady (ac-
celeration) should also be possible to gather as part of data reduc-
tion in situ, and directly optimize post hoc. More broadly, we be-
lieve that coordinate-based neural networks have significant utility
for data reduction in scientific visualization, and we are excited to
pursue such directions as part of future work.

7. Acknowledgements

This work is supported by the National Science Foundation under
grant number 1IS-2007444.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

S. Sahoo, Y. Lu & M. Berger/ Neural Flow Map Reconstruction 401

References

[ABK16] AUSTIN W., BALLARD G., KOLDA T. G.: Parallel tensor
compression for large-scale scientific data. In 2016 IEEE international
parallel and distributed processing symposium (IPDPS) (2016), IEEE,
pp. 912-922. 2

[ACG*14] AGRANOVSKY A., CAMP D., GARTH C., BETHEL E. W.,
Joy K. I., CHILDS H.: Improved post hoc flow analysis via lagrangian
representations. In 2014 IEEE 4th Symposium on Large Data Analysis
and Visualization (LDAV) (2014), IEEE, pp. 67-75. 2,3

[AGJ11] AGRANOVSKY A., GARTH C., Joy K.: Extracting flow struc-
tures using sparse particles. 3

[BMM*20] BACHLECHNER T., MAJUMDER B. P., MAO H. H., CoT-
TRELL G. W., MCAULEY J.: Rezero is all you need: Fast convergence
at large depth. arXiv preprint arXiv:2003.04887 (2020). 9

[BR10] BRUNTON S. L., ROWLEY C. W.: Fast computation of finite-
time lyapunov exponent fields for unsteady flows. Chaos: An Interdisci-
plinary Journal of Nonlinear Science 20, 1 (2010), 017503. 3

[BRLP19] BALLESTER-RIPOLL R., LINDSTROM P., PAJAROLA R.:
Tthresh: Tensor compression for multidimensional visual data. IEEE
transactions on visualization and computer graphics 26,9 (2019), 2891—
2903. 2, 8,9

[CBJ16] CHANDLER J., BUJACK R., JoYy K. I.: Analysis of error in
interpolation-based pathline tracing. In EuroVis (Short Papers) (2016),
pp- 1-5. 3

[COJ14] CHANDLERJ., OBERMAIER H., JOY K. I.: Interpolation-based
pathline tracing in particle-based flow visualization. [EEE transactions
on visualization and computer graphics 21, 1 (2014), 68-80. 3

[CRBD18] CHEN R. T. Q., RUBANOVA Y., BETTENCOURT J., DUVE-
NAUD D. K.: Neural ordinary differential equations. In Advances in
Neural Information Processing Systems (2018), vol. 31, Curran Asso-
ciates, Inc. 3, 5, 10

[DC16] D1 S., CAPPELLO F.: Fast error-bounded lossy hpc data com-
pression with sz. In 2016 ieee international parallel and distributed pro-
cessing symposium (ipdps) (2016), IEEE, pp. 730-739. 2

[DLHT15] DoNG C., Loy C. C., HE K., TANG X.: Image super-
resolution using deep convolutional networks. IEEE transactions on pat-
tern analysis and machine intelligence 38, 2 (2015), 295-307. 2

[DLT16] DoONG C., Loy C. C., TANG X.: Accelerating the super-
resolution convolutional neural network. In European conference on
computer vision (2016), Springer, pp. 391-407. 2

[EMY*20] ERICHSON N. B., MATHELIN L., YAO Z., BRUNTON S. L.,
MAHONEY M. W., KuTz J. N.: Shallow neural networks for fluid flow
reconstruction with limited sensors. Proceedings of the Royal Society A
476, 2238 (2020), 20200097. 3

[EUT19] ECKERT M.-L., UM K., THUEREY N.: Scalarflow: a large-
scale volumetric data set of real-world scalar transport flows for com-
puter animation and machine learning. ACM Transactions on Graphics
(TOG) 38, 6 (2019), 1-16. 6

[GGT17] GUNTHER T., GROSS M., THEISEL H.: Generic objective vor-
tices for flow visualization. ACM Transactions on Graphics (TOG) 36, 4
(2017), 1-11. 6

[GGTHO7] GARTH C., GERHARDT F., TRICOCHE X., HANS H.: Effi-
cient computation and visualization of coherent structures in fluid flow
applications. IEEE Transactions on Visualization and Computer Graph-
ics 13,6 (2007), 1464-1471. 3

[GHCW21] GU P, HANJ., CHEN D. Z., WANG C.: Reconstructing un-
steady flow data from representative streamlines via diffusion and deep-
learning-based denoising. IEEE Computer Graphics and Applications
41,6(2021), 111-121. 3

[GWGS02] GUTHE S., WAND M., GONSER J., STRASSER W.: Inter-
active rendering of large volume data sets. In IEEE Visualization, 2002.
VIS 2002. (2002), IEEE, pp. 53-60. 2

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

[GYH*20] Guo L., YES., HANJ., ZHENG H., GAO H., CHEN D. Z.,
WANG J.-X., WANG C.: Ssr-vfd: Spatial super-resolution for vector
field data analysis and visualization. In 2020 IEEE Pacific Visualization
Symposium (PacificVis) (2020), IEEE Computer Society, pp. 71-80. 2

[Hal00] HALLER G.: Finding finite-time invariant manifolds in two-
dimensional velocity fields. Chaos: An Interdisciplinary Journal of Non-
linear Science 10, 1 (2000), 99-108. 1, 3

[HalO1] HALLER G.: Distinguished material surfaces and coherent struc-
tures in three-dimensional fluid flows. Physica D: Nonlinear Phenomena
149, 4 (2001), 248-277. 1

[HBJG16] HUMMEL M., BUJACK R., JOY K. I., GARTH C.: Error esti-
mates for lagrangian flow field representations. In EuroVis (Short Papers)
(2016), pp. 7-11. 3

[HSJ21] HAN M., SANE S., JoHNSON C. R Exploratory
lagrangian-based particle tracing using deep learning. arXiv preprint
arXiv:2110.08338 (2021). 3

[HSW10] HLAWATSCH M., SADLO F., WEISKOPF D.: Hierarchical line
integration. [EEE transactions on visualization and computer graphics
17,8 (2010), 1148-1163. 3

[HTZ*19] HAN J., TAO J., ZHENG H., Guo H., CHEN D. Z., WANG
C.: Flow field reduction via reconstructing vector data from 3-d stream-
lines using deep learning. IEEE computer graphics and applications 39,
4(2019), 54-67. 3

[HW19] HANIJ., WANG C.: Tsr-tvd: Temporal super-resolution for time-
varying data analysis and visualization. IEEE transactions on visualiza-
tion and computer graphics 26, 1 (2019), 205-215. 2

[HY00] HALLER G., YUAN G.: Lagrangian coherent structures and mix-
ing in two-dimensional turbulence. Physica D: Nonlinear Phenomena
147, 3-4 (2000), 352-370. 1, 3,4

[HZCW21] HAN J., ZHENG H., CHEN D. Z., WANG C.: Stnet: An
end-to-end generative framework for synthesizing spatiotemporal super-
resolution volumes. IEEE Transactions on Visualization and Computer
Graphics (2021). 2

[JEG11] JANG Y., EBERT D. S., GAITHER K.: Time-varying data visu-
alization using functional representations. IEEE Transactions on Visual-
ization and Computer Graphics 18,3 (2011), 421-433. 2

[JGG20] JAKOB J., GROSS M., GUNTHER T.: A fluid flow data set
for machine learning and its application to neural flow map interpola-
tion. IEEE Transactions on Visualization and Computer Graphics 27, 2
(2020), 1279-1289. 2, 6, 8, 9, 10

[KB15] KINGMA D. P., BA J.: Adam: A method for stochastic optimiza-
tion. In ICLR (Poster) (2015). 9

[LGZL*20] Liu L., GulJ., Zaw LIN K., CHUA T.-S., THEOBALT C.:
Neural sparse voxel fields. Advances in Neural Information Processing
Systems 33 (2020). 3

[LILB21] Lu Y., JIANG K., LEVINE J. A., BERGER M.: Compressive
neural representations of volumetric scalar fields. Comput. Graph. Fo-
rum 40, 3 (2021), 135-146. 2, 4,6, 8,9

[LSE*11] LAKSHMINARASIMHAN S., SHAH N., ETHIER S., KLASKY
S., LATHAM R., RoSS R., SAMATOVA N. F.: Compressing the incom-
pressible with isabela: In-situ reduction of spatio-temporal data. In Euro-
pean Conference on Parallel Processing (2011), Springer, pp. 366-379.
2

[Ma03] MA K.-L.: Visualizing time-varying volume data. Computing in
Science & Engineering 5,2 (2003), 34—42. 2

[MLL*21] MARTEL J. N. P., LINDELL D. B., LINC. Z., CHANE. R.,
MONTEIRO M., WETZSTEIN G.: Acorn: Adaptive coordinate networks
for neural scene representation. ACM Trans. Graph. (SIGGRAPH) 40, 4
(2021). 10

[MST*20] MILDENHALL B., SRINIVASAN P. P., TANCIK M., BARRON
J. T., RAMAMOORTHI R., NG R.: Nerf: Representing scenes as neural
radiance fields for view synthesis. In European conference on computer
vision (2020), Springer, pp. 405-421. 3

402 S. Sahoo, Y. Lu & M. Berger / Neural Flow Map Reconstruction

[Mur93] MURAKI S.: Volume data and wavelet transforms. IEEE Com-
puter Graphics and applications 13, 4 (1993), 50-56. 2

[Pon87] PONTRYAGIN L. S.: Mathematical theory of optimal processes.
CRC press, 1987. 3

[RCD19] RUBANOVA Y., CHEN R. T., DUVENAUD D. K.: Latent ordi-
nary differential equations for irregularly-sampled time series. Advances
in Neural Information Processing Systems 32 (2019), 5320-5330. 3, 10

[RG19] Roso I. B., GUNTHER T.: Vector field topology of time-
dependent flows in a steady reference frame. IEEE transactions on visu-
alization and computer graphics 26, 1 (2019), 280-290. 6

[RGG19] Rojo 1. B., GROSS M., GUNTHER T.: Accelerated monte
carlo rendering of finite-time lyapunov exponents. [EEE transactions
on visualization and computer graphics 26, 1 (2019), 708-718. 4

[RPD19] RAPP T., PETERS C., DACHSBACHER C.: Void-and-cluster
sampling of large scattered data and trajectories. [EEE transactions on
visualization and computer graphics 26, 1 (2019), 780-789. 3

[SB21] SAHOO S., BERGER M.: Integration-aware vector field super
resolution. 2

[SCB] SANE S., CHILDS H., BUJACK R.: An interpolation scheme for
vdvp lagrangian basis flows. 3

[SCT*20] SiTZMANN V., CHAN E. R., TUCKER R., SNAVELY N.,
WETZSTEIN G.: Metasdf: Meta-learning signed distance functions. In
Proc. NeurIPS (2020). 10

[SFT*22] SCHWERI L., FOUCHER S., TANGJ., AZEVEDO V. C., GUN-
THER T., SOLENTHALER B.: A physics-aware neural network approach
for flow data reconstruction from satellite observations. New fechniques
for improving climate models, predictions and projections (2022). 3

[SGM*11] SUTER S. K., GUITIAN J. A. 1., MARTON F., AGUS M.,
ELSENER A., ZOLLIKOFER C. P., GOPI1 M., GOBBETTI E., PAJAROLA
R.: Interactive multiscale tensor reconstruction for multiresolution vol-
ume visualization. [EEE Transactions on Visualization and Computer
Graphics 17,12 (2011), 2135-2143. 2

[SLMO05a] SHADDEN S. C., LEKIEN F., MARSDEN J. E.: Definition and
properties of lagrangian coherent structures from finite-time lyapunov
exponents in two-dimensional aperiodic flows. Physica D: Nonlinear
Phenomena 212, 3-4 (2005), 271-304. 3

[SLMO5b] SHADDEN S. C., LEKIEN F., MARSDEN J. E.: Definition and
properties of Lagrangian coherent structures from finite-time Lyapunov
exponents in two-dimensional aperiodic flows. Physica D: Nonlinear
Phenomena 212, 3-4 (2005), 271-304. doi:10.1016/7.physd.
2005.10.007. 6

[SMB*20] SITZMANN V., MARTEL J., BERGMAN A., LINDELL D.,
WETZSTEIN G.: Implicit neural representations with periodic activa-
tion functions. Advances in Neural Information Processing Systems 33
(2020). 2,4, 6,8

[SPO7] SADLO F., PEIKERT R.: Efficient visualization of lagrangian co-
herent structures by filtered amr ridge extraction. IEEE Transactions on
Visualization and Computer Graphics 13, 6 (2007), 1456-1463. 3

[SRP11] SADLO F., RiGAZz1 A., PEIKERT R.: Time-dependent visual-
ization of lagrangian coherent structures by grid advection. In Topologi-
cal Methods in Data Analysis and Visualization. Springer, 2011, pp. 151—
165. 3

[SWO03] SCHNEIDER J., WESTERMANN R.: Compression domain vol-
ume rendering. In IEEE Visualization, 2003. VIS 2003. (2003), IEEE,
pp- 293-300. 2

[TMW=*21] TANCIK M., MILDENHALL B., WANG T., SCHMIDT D.,
SRINIVASAN P. P., BARRON J. T., NG R.: Learned initializations for
optimizing coordinate-based neural representations. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), pp. 2846-2855. 10

[TSM*20] TANCIK M., SRINIVASAN P. P., MILDENHALL B.,
FRIDOVICH-KEIL S., RAGHAVAN N., SINGHAL U., RAMAMOORTHI

R., BARRON J. T., NG R.: Fourier features let networks learn high fre-
quency functions in low dimensional domains. NeurIPS (2020). 2, 4, 6,
8

[VLB*19] VERMA V., LAMB A., BECKHAM C., NAJAFI A.,
MITLIAGKAS 1., LOPEZ-PAZ D., BENGIO Y.: Manifold mixup: Better
representations by interpolating hidden states. In International Confer-
ence on Machine Learning (2019), PMLR, pp. 6438-6447. 10

[WW21] WEISS S., WESTERMANN R.: Differentiable direct volume
rendering. IEEE Transactions on Visualization Computer Graphics, 01
(2021), 1-1. 3

[XHKK21] XIAN W., HUANG J.-B., KoPF J., KiM C.: Space-time
neural irradiance fields for free-viewpoint video. In Proceedings of
the IEEE/CVF Conference on Computer Vision and Pattern Recognition
(2021), pp. 9421-9431. 4

[YWS*21] YUQIW.,WUY., SHANL., JIANZ., HUIYING R., TIECHUI
Y., MENGHAI K.: Flow field reconstruction method based on array neu-
ral network. The Aeronautical Journal 125, 1283 (2021), 223-243. 3

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

https://doi.org/10.1016/j.physd.2005.10.007
https://doi.org/10.1016/j.physd.2005.10.007

