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Figure 1: Two scalar field ensembles (illustrated by nine representatives each) with clustermap distance matrices using branch mappings
(top) and classic edit mappings (center and bottom). In both ensembles, false clusters are identified by previous approaches, which prevent
detection of an outlier in the right ensemble (which is visible but not detectable without previous knowledge of the domain, i.e. its existence).
Our new distance does not find the false clusters and is therefore able to identify the outlier clearly in the right example.

Abstract

Edit distances between merge trees of scalar fields have many applications in scientific visualization, such as ensemble analysis,
feature tracking or symmetry detection. In this paper, we propose branch mappings, a novel approach to the construction of edit
mappings for merge trees. Classic edit mappings match nodes or edges of two trees onto each other, and therefore have to either
rely on branch decompositions of both trees or have to use auxiliary node properties to determine a matching. In contrast,
branch mappings employ branch properties instead of node similarity information, and are independent of predetermined
branch decompositions. Especially for topological features, which are typically based on branch properties, this allows a more
intuitive distance measure which is also less susceptible to instabilities from small-scale perturbations. For trees with O(n)
nodes, we describe an (9(n4) algorithm for computing optimal branch mappings, which is faster than the only other branch
decomposition-independent method in the literature by more than a linear factor. Furthermore, we compare the results of our
method on synthetic and real-world examples to demonstrate its practicality and utility.

1. Introduction

The study or visualization of scalar fields, either acquired through
simulation or real-world experiments, is a major avenue of research
within scientific visualization. As computational power increases,
so does the size and complexity of scalar fields. Furthermore, mod-
eling of uncertainty is rapidly becoming increasingly popular as
ensemble simulation is becoming more accessible. Due to this de-
velopment, efficient measures for the similarity of scalar fields are
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of high interest, e.g in clustering tasks or outlier detection in scalar
field ensembles, pattern or periodicity recognition in the analysis of
time-dependent scalar fields, and symmetry or self-similarity de-
tection within complex scalar fields of high dimension. Further-
more, the problem of finding mappings between substructures of
two given objects is closely related to distance measures, as many
algorithms such as edit distances compute both concurrently. Uses
for such algorithms include feature tracking in time-varying scalar
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fields and identifying common structures or features in ensemble
data, which are of importance in many visualization scenarios.

Since working directly on a scalar field becomes computation-
ally infeasible rather quickly, these tasks are often executed on ab-
stract representations. One prominent example for those is the con-
tour tree or a slightly simpler variant of it, the merge tree [EH10].
Both concepts originate in the fields of Topological Data Analysis,
more specifically Persistent Homology [EH10]. They have a variety
of applications (see [HLH™*16]), either used directly as a (abstract)
visualization of the represented scalar field, for generating visual-
izations, for improving interaction, or simply as a representation
amenable to other methods, e.g. distance functions.

In this paper, we present a novel distance measure for scalar
fields and merge trees that is based on the tree edit distance. While
edit distances and related methods on topological structures have
been used before to measure the distance between scalar fields
(e.g. [SMKN20, PVDT21]), our method generalizes previous ap-
proaches to overcome restrictions that prevent these methods from
capturing certain semantic properties of the data in the distance.

More precisely, tree edit distances work on mappings between
nodes or edges of trees, which are local features, whereas the topo-
logical features of interest are global ones such as branches. Re-
cent methods usually overcome this problem by working on branch
decomposition trees or labeling the nodes with properties of their
corresponding branch. Both approaches make the distance depend
on a fixed branch decomposition, typically derived by the elder
rule [EH10]. These are, however, not stable under small-scale per-
turbations, leading to semantically imprecise labels of the mapped
features and therefore poor mappings. In this paper, we present a
novel method that works on mappings between branches of arbi-
trary decompositions, making it therefore robust against such in-
stabilities. We call them branch mappings. Figure 1 illustrates two
example applications where branch mappings show better results
than previous approaches. Furthermore, our method generalizes the
notion of tree edit distances as a whole, and we aim to provide an
entry point for further research into this field and its application
in scientific visualization and computational topology, for which it
was developed. In detail, our contributions are the following:

e We collect prior work on edit distances in topology-based visual-
ization, and provide a novel categorization based on the desired
characteristics discussed above. An overview is given in Table 1.

e We describe a branch decomposition-independent edit distance
that focuses on paths and branches instead of nodes and edges;
this stands in contrast to previous methods that are either branch
decomposition-dependent or focus on edges.

e We illustrate the benefits of this distance in visualization applica-
tions by showcasing several synthetic and real-world examples.

After discussing related work in Section 2, we provide basic defini-
tions, an introduction into tree edit distances and the categorization
in Section 3.1. In Section 3, we define the concept of branch map-
pings, which are the core of our new distance measure and study
it formally in detail. Application examples and practical compar-
isons with previous methods can be found in Section 5, before we
conclude in Section 6 and give an outlook on future work.

2. Related Work

Similarity or dissimilarity measures based on topological abstrac-
tions of scalar fields, or more generally topological descriptors,
have been studied in various ways and a variety of techniques have
been proposed in increasing frequency. A recent survey by Yan et
al. [YMS*21] gives a good overview over these methods. An intro-
duction into topology based visualization methods in general can
be found in the survey by Heine et al. [HLH* 16].

Out of these methods, the works of Sridharamurthy et
al. [SMKN20,SN21], Pont el al. [PVDT21], Saikia et al. [SSW14],
Lohfink et al. [LWL"20] and Beketayev et al. [BYM™14] are most
related to ours, as they are all based on edit mappings or similar
mappings between contour or merge trees and their branch decom-
position trees. In Section 3.2, we discuss these methods in detail in
context together with the classification.

Furthermore, our work can be seen as a generalization of tree
edit distances without the context of merge trees. An overview
over various versions of tree edit distances and related problems
was given by Bille in 2005 [Bil05]. Closely related techniques are
the constrained edit distance [Zha96] and the tree alignment dis-
tance [JWZ94] on unordered rooted trees, or the one-degree edit
distance on ordered trees [Sel77]. We provide a more detailed dis-
cussion of these methods in Section 3.3.

Topology-based Similarity Measures. Apart from edit distances
on merge trees or contour trees, other distance measures based in
topological descriptors have been used; among these, the persis-
tence diagram is frequently used. Mapping persistence pairs of two
scalar fields based on some metric between them is, in principle,
largely equivalent to computing edit distances on branch decompo-
sition trees; the only difference is that persistence diagrams do not
take into account the nesting of the persistence pairs. Prominent
examples of such distances / mapping methods are the Wasserstein
distance [CSEHM10] and the bottleneck distance [CEHO7]. Pont
et al. [PVDT21] explicitly compare their edit distance method to
these distance measures. An example for a more advanced method
based on persistence diagrams is the work by Rieck et al. [RSL20].

Other graph-based distance measures work, for example,
on Reeb Graphs [BDFL16, BGW13, CO17, SMP15], extremum
graphs [NTN15], or also on merge and contour trees without specif-
ically using an edit distance [MBW 13, TN11, YWM™20].

Topology-based Feature Tracking. Edit mappings between topo-
logical descriptors can be used to track and visualize features in
time-varying scalar fields. Here, they are typically applied to de-
termine correspondence between topologically-characterized fea-
tures e.g. across time. The distance measures discussed above can
therefore all be used for this task (e.g. [LGW*21] or [PVDT21]).
Furthermore, a further set of tracking techniques is based on topo-
logical descriptors directly without relying on edit distance (e.g.
[OHW*17,EHMP04,BWP*10]). Finally, a last class of methods re-
lies on topological descriptors only for feature identification, while
the actual tracking is then done by other means, e.g. a measure of
spatial overlap [LWM™*17,SW17,SGL* 16, SHD*20].

Topology-based Ensemble Visualization. Another area where
often methods similar to edit distances are used for comparative
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analysis or similarity assessment is uncertainty visualization via
ensembles, specifically the task of finding a representative for the
topology of an ensemble of scalar fields. Lohfink et al. [LWL*20]
and Pont et al. [PVDT21] derive a representative tree structure for
the ensemble from the induced edit mappings. Other examples for
contour tree based visualizations of ensemble or uncertain data can
be found in the works of Wu and Zhang [WZ13], Kraus [KralO]
and Giinther et al. [GST14]. An example that does not work on
contour trees but persistence diagrams can be found in [TMMH14].

3. Merge Trees and Tree Edit Distances

In this section, we start with basic definitions of merge trees and no-
tation for paths and branches in the Subsection 3.1. Then, we will
give an overview over edit distances on general trees that are rele-
vant for edit distances on merge trees in 3.2. After that, we will re-
view previous approaches for mapping based merge tree distances
and categorize them in 3.3. An overview is given in Table 1.

3.1. Merge Trees

A detailed introduction into persistent homology and a definition
of merge trees can be found in [ELZ00] or [MW13]. For this paper,
we restrict to an abstract model that captures merge trees of scalar
fields of dimension > 1.

Abstract Merge Trees. We now define the abstract model for
merge trees, to which we will refer as abstract merge trees. These
should just be the class of trees, which can be interpreted as merge
trees for some domain of dimension at least 2.

Definition 1 An unordered, rooted tree 7' of (in general) arbitrary
degree (i.e. number of children) with node labels f: V(T) — R is
an Abstract Merge Tree if the following properties hold:

e The root node has degree one, deg(root(7)) = 1
o All inner nodes have a degree of at least two,
deg(v) # 1 forall v € V(T') with v # root(T)
e All nodes have a larger scalar value than their parent node,

f(e) > f(p) forall (¢, p) € E(T)

(Abstract) Merge trees can have arbitrary further edge- or vertex-
labels, e.g. persistence, volume or the actual segment of an arc.

Since the root of an abstract merge tree always has degree one
and inner nodes do not, subtrees rooted in an inner node are not
abstract merge trees themselves. Therefore, we identify subtrees
by root edges, rather than root nodes: Formally, for a node p with
children ¢y, ..., ¢, the subtree rooted in (cy, p) is the “classic” sub-
tree rooted in p where the subtrees rooted in c3, ..., ¢ are removed.
Given an abstract merge tree T with subtree 7’ rooted in the edge
(c,p), we define T — T to be the tree 7", which we obtain by re-
moving all edges and all vertices of 77 from T except the root p.
If p has degree two in T, then we also remove it from 7", as oth-
erwise p would be an inner node of degree one in 7”'. With this
definition, it holds that 77 and T"" are abstract merge trees as well.

From now on, we will often just use the term merge tree and it
should be clear from the context if this refers to an abstract merge
tree or an actual merge tree corresponding to a given scalar field.
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Paths and Branches. As for general graphs, a path of length k
in a merge tree T is a sequence of vertices p = vy...v; € V(T)k
with (vi,vi—1) € E(T) for all 2 < i < k (note the strict root-to-
leaf direction).We denote the edges within a path p by edges(p) =
{(vi,vi=1) } 2 <i<k}.Abranchof T is a path that ends in a leaf. A
branch b = by...by is a parent branch of another branch a = a;...ay
if a; = b; for some 1 < i < k. We also say a is a child branch of b.

A set of branches B = {By, ..., B;} of a merge tree T is called a
Branch Decomposition of T if {edges(B}), ...,edges(By)} is a par-
tition of E(T'). By B(T) we denote the set of all branch decompo-
sitions of T. Every branch decomposition B € B(T') of an abstract
merge tree contains exactly one branch b € B with root(T) € b. We
call this branch the main branch of B.

The parent-child relations of the branches in a branch decompo-
sition B € B(T) form a tree structure by themselves. The tree build
from the vertex set V = B and edge set

E ={(a,b) | a,b € B, b is a parent branch of a}
is called the Branch Decomposition Tree (BDT) of B.

Let T be a merge tree with B € B(T), T’ a subtree of T rooted
in (¢,p) and T/ = T — T’. If there is a branch b = by ...by in B that
starts in (c, p), i.e. p = by, ¢ = by, then B induces branch decompo-
sitions B' € B(T’) and B” € B(T"). B’ and B” can be obtained in
the obvious way: let a = ay ...ap with b = a; be the parent branch of
b. We put b into B’ and we put the branch a;...a;_a;,1...ap into B”
if p has degree two and a otherwise. All other branches from B are
put into B’ if they are descendants of b and into B” otherwise. We
denote the branch decompositions B’ and B” by B[T'] and B[T"'].

3.2. Distance Measures for Trees

Various distance measures for rooted unordered trees have been
proposed and investigated in the last decades. In contrast to the
ordered case, they differ significantly in computational complex-
ity, ranging from quadratic algorithms of running time O(n - m)
to NP-hard or even MAX SNP-hard problems. We now provide a
short overview over often-used methods to provide insight into the
framework of tree edit distances in which we aim to place our new
method. Furthermore, this elucidates the relation between the vari-
ous other edit distances that have been applied to merge trees.

The classic edit distance for rooted, ordered, node-labeled trees
was introduced by Tai [Tai79] and is defined to be the cost-optimal
sequence of the following edit operations:

e node-deletion, where all children of the deleted node are ap-
pended to its parent,

e node-insertion, where a new child is inserted for some node and
a subset of its children is made the children of the new node, and

e node-relabel, where the label of a node is changed.

The cost of the single operations is defined by some cost function
c: ((LU{Ll}) x (LU{L})) = R>( where L is the set of node
labels and L stands for the null node needed to represent deletions
and insertions. If the basic cost function defines a metric on the set
LU{L}, then the edit distance between two trees defines a metric
on the set of all rooted, unordered, L-labeled trees [Tai79].

Edit sequences induce a mapping between the vertices of the
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trees, called edit mappings or Tai mappings [Tai79]. These are
ancestor-preserving, one-to-one mappings between the two vertex
sets. Their cost is defined as the sum of the relabel costs for all pairs
in the relation representing the mapping together with the sum of
all insertion/deletion costs for all vertices from both trees that are
not present in the relation. These mappings are induced as all nodes
in the first tree that are not changed within an edit sequence as well
as those relabeled can be matched to one unique node in the sec-
ond tree. Due to this correspondence between edit sequences and
mappings, it can be shown that the cost of the optimal sequence
and the optimal mapping is equal. Typical algorithms for edit dis-
tances therefore compute the induced mappings and their cost, not
the actual edit sequence (which can of course be derived from it).

In contrast to the ordered case, where the general edit distance
can be computed in cubic time [DMRWO07, DG18], the problem
of computing the edit distance for unordered trees (which we will
call de) is NP-hard [ZSS92] and even MAX SNP-hard [ZJ94], and
therefore not arbitrarily close to approximate by a tractable algo-
rithm unless P=NP. This has led to the development of many simpli-
fied versions of the edit distance. Two very popular approaches are
tree alignments [JWZ94] and the constrained edit distance [Zha96].

An alignment of two trees is a supertree of both that is obtained
by inserting in both trees until they are isomorphic. An alignment
induces a mapping and corresponding costs in a similar fashion as
before. The cost of the optimal alignment is equivalent to an edit
distance where all insertions have to occur before all deletions. We
denote this distance in the case for general trees as da.

An edit mapping between two trees is called constrained, if it
also fulfills the property that disjoint subtrees are strictly mapped to
disjoint subtrees [Zha96]. The constrained edit distance is defined
to be the cost of an optimal constrained edit mapping between two
trees. We denote this distance in the case for general trees as dc.

Pont et al. [PVDT21] further restricted the constrained edit map-
pings specifically for the usecase of BDTs of merge trees. They
introduced the constraint that if a node is deleted, i.e. mapped to
null, the entire subtree rooted in this node has to be deleted, too.
This distance is an unordered version of the 1-degree edit distance
which has been proposed by Stanley Selkow [Sel77] for ordered
trees. However, we do not provide a formal proof for this equiva-
lence. We denote the distance on unordered trees by dj.

All three versions discussed can be computed more efficiently
than the general edit distance. The alignment distance is still NP-
hard [JWZ94] for trees of arbitrary degree, but can be computed
in quadratic time if the trees have bounded degree [JWZ94], which
is a reasonable assumption for merge trees (however, not true in
general). Constrained and 1-degree edit distances are computable
in polynomial time for both bounded degree trees and arbitrary de-
gree trees, specifically quadratic time for bounded degree [Zha96,
PVDT21], and in time O(n; - ny - (deg; +deg,) - log(deg, +deg,)
for arbitrary degree. Furthermore, all three distances form a hierar-
chy in terms of how restrictive they are for the allowed mappings
and therefore also their search spaces form a hierarchy of inclu-
sions. For the four distances and arbitrary trees 7,7, the follow-
ing holds if they are applied using the same base metric (derived
from a clear hierarchy of the recursions in [JWZ94,Zha96,Sel77]):

de(Ty, 1) < da(T1,T2) < de(Ty, 1) < di (T, T2).

Edit Dist. BDI  Global Prop.  Time
de [SMKN20] v (do) - v 0(n?)
wl [PVDT21] | v (d)) - v/ o(n?)
ds [SSW14] v (dy) - v o(n?)
ds [LWL*20] v (da) v - o(n?)
dy [BYM*14] - v v o(n®)
dg (This paper) | v (dp) v v oY

Table 1: The categorization of mapping based merge tree dis-
tances. A distance should be a true edit distance (Edit Dist.), should
be branch decomposition-independent (BDI) and should use global
properties (Global Prop.). The runtimes refer to bounded degree.

3.3. Edit Distances for Contour Trees and Merge Trees

Distance metrics between contour trees or merge trees have been
used as similarity measures for scalar fields in many varieties, espe-
cially through the use of tree edit distances and their corresponding
edit mappings. We will now go through those previous approaches
that are most similar to ours, which are those that either explic-
itly compute structure-preserving mappings between certain parts
of the trees or at least internally use them to compute the distance
based on a base metric for the mapped objects.

Categorization. To give a better intuition for the differences be-
tween these methods and our method, we categorize them in the fol-
lowing by two further properties (apart from the distinction whether
they are explicitly edit distances or not). The first one is the type
of the input objects. They can be actual contour or merge trees,
or branch decompositions of these. Then, we distinguish the type
of labels or properties of these features that are used by the base
metric to compute distances of mapped pairs. Here we distinguish
local and global properties as labels of the mapped objects. Ex-
amples could be edge persistence for a local property and branch
persistence for a global property.

Sridharamurthy et al. [SMKN20] used the constrained edit dis-
tance d¢ to measure the distance between merge trees. As a base
metric for the merge tree nodes, they used Lo and overhang costs
between the corresponding branches. In [SN21] they adapted this
distance to also work on subtrees (similar to eBDGs in [SSW14]).
Pont et al. [PVDT21] used a very similar distance to compute
geodesics between merge trees and barycenter merge trees as a
representative of an ensemble of scalar fields. They applied the 1-
degree edit distance dy to unordered (see Section 4.3 and App. A
in the supp. material) branch decomposition trees using the Wasser-
stein metric to compare branches. Another closely related approach
is the one by Saikia et al. [SSW14]. They also compute the one-
degree edit distance d; between branch decomposition graphs of
two merge trees to find self-similarities within the scalar fields. In
contrast to Pont et al. they considered ordered BDTs (see App. A in
the supp. material). As for the categorization, these three methods
fall into the same category: they use fixed branch decompositions as
an input (Pont et al. and Saikia et al. even do so explicitly by work-
ing on BDTs) while using global properties (i.e. persistence, birth,
death, etc. of branches) as labels. We will refer to these distances as
de, WZT and ds and by this mean the mapping method independent
on the used base metric (which means we do use the notation W2T
also for distances that do not use the Wasserstein metric for sin-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.



F. Wetzels & H. Leitte & C. Garth / Branch Decomposition-Independent Edit Distances for Merge Trees 371

gle branches). We should note that Pont et al. use a normalization
step as preprocessing to adapt the edit distance for geodesics and
barycenters that modifies the branch labels according to the branch
decomposition. To obtain a meaningful comparison, we only con-
sider their metric without the normalization step, as it then fits bet-
ter into the hierarchy of different edit distances.

Lohfink et al. [LWL*20] used tree alignments to represent the
topology of a scalar field ensemble and to obtain a joint layout of
all the contour trees in the ensemble. The underlying distance is the
tree alignment distance da. In contrast to labeling the nodes with
their corresponding branches and using a base metric on branches,
they labeled the nodes with their unique parent edge and used eu-
clidean distances for different arc properties as the base metric.
This approach gets actual contour trees as an input and uses local
properties (edge properties) as labels. We will refer to this distance
as du, again independent of the used base metric.

A branch decomposition-independent approach that does not fit
into the concept of edit distances was introduced by Beketayev et
al. [BYM*14] (dy). They also compute a cost-optimal mapping be-
tween two branch decompositions of two given merge trees. How-
ever, in contrast to the edit distances, the total cost of such a map-
ping is not the sum of the mapped branches, but the value of the
highest cost pair in the mapping. Furthermore, they also compute
the optimal pair of branch decompositions that minimizes the costs.
This falls into the category of methods that get contour trees as in-
puts (although their core method compares branch decompositions,
they actually find the optimal one) and also use global properties
(branch persistence etc.) for the base metric.

Advantages of using a true edit distance. Almost all approaches
from the last section use an actual edit distance. A very useful prop-
erty of edit distances is that they always come with a mapping of
different features of the compared objects. In our case they induce
a mapping between the nodes, edges or branches of the two in-
put trees. In fact, given a cost function for matching two such fea-
tures or deleting them, the edit distance value is equal to sum of
all mapped or deleted features in the optimal mapping. We usually
compute the distance and the mapping simultaneously.

An outlier in the list above is the method of Beketayev et
al. [BYM™* 14]. They also consider underlying mappings, but since
the value of the mapping is only the value of the worst match or
largest deletion, the correspondence between mappings and dis-
tances is weaker. Moreover, their distance does not correspond to
the cost of an edit sequence between the two input trees.

Using local properties only. The alignment distance used
in [LWL*20] uses arc properties for the base metric. While inde-
pendent of a specific branch decomposition, this approach has a
substantial downside, which we will discuss in the following ex-
ample. If one scalar field has two nested maxima of similar scalar
value with the saddle connecting them close to the extreme points,
and the other one only has one of the maxima, then the distance
between the two trees should be small, as there is only a small split
of the maximum from the second tree, which can also be seen as an
insertion of one very small maximum branch. However, the persis-
tence of the two arcs corresponding to the leaf nodes are both very
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Figure 2: Examples for matching problems. For local properties,
in (a) we see two merge trees with the optimal alignment matching
in green. Intuitively, the cost should be 2, as only one arc of persis-
tence 2 is removed. However, the actual cost is 8 since mapping the
right maximum in the left tree (persistence 3) to the left maximum
in the right tree (persistence 9) has cost of 6. For a fixed branch
decompostion, in (b) two merge trees with two different branch de-
compositions are shown. The two best matching options are shown
in violet and green. Both yield non-optimal results in comparison
to the desired distance.

small whereas the persistence of the arc leading to the single max-
imum in the other tree is large. Therefore the edit costs are high,
contradicting the (intuitively) desired behaviour. Figure 2a shows
two example trees where this problem appears. A practical example
could be two trees where we apply a simplification by persistence
to both of them and in one tree the second maximum stays whereas
it is removed in the other tree.

Using fixed branch decompositions. The problem stated in the
last section can be fixed by using branch persistences instead of
arc persistences. Most methods that we listed above make use of
this approach. However, such a metric would depend on a fixed
branch decomposition, but these are not unique and two badly cho-
sen branch decompositions of two very similar trees can lead to
huge distances. Usually, a very specific branch decomposition is
used, namely the one derived by the elder rule, preferring the most
persistent branches over small ones. But also this specific decom-
position can have crucial instabilities which we will again see in an
example. Consider a merge tree with two very persistent branches,
one of which is feature-rich and one so simple that it does not
have any child branches. Now consider another tree with the same
properties. Then, for a low distance, we need to match the feature-
rich branches in both trees onto each other as well as the simple
branches. If, however, the two branches have similar persistence,
the order of the branches can flip between the two trees. Then a
good matching between the two branch decompositions has only
the following options: either map the child branches of the two
feature-rich branches onto each other and take the cost of the persis-
tence difference of the main branches or match the main branches
according to their persistence and take the cost of not matching the
smaller branches. Figure 2b illustrates this example.

This problem can be illustrated on the following practical exam-
ple. Consider a scalar field ensemble consisting of 20 scalar fields
as illustrated in Figure 1 (all members shown in Figure 2, supp.
material). All fields have four large peaks of similar size with five
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smaller peaks arising from one of them. The height, size and ex-
act position of all peaks are chosen randomly within small ranges.
This leads to the following scenario: Which of the four main peaks
(the one with smaller peaks or one of those without) represents the
global maximum differs across the ensemble, and hence also the
main branch of the branch decomposition derived by the elder rule
differs. All fields are otherwise highly similar, as are their merge
trees. There are no significant differences between the fields apart
from small-scale, noise-like instabilities. However, the merge trees
resemble those in Figure 2b and therefore cannot be mapped prop-
erly by branch decomposition-dependent distances.

On this dataset, we observe that de [SMKN20] and
W2T [PVDT21], using the Wasserstein base metric proposed
in [PVDT21], distinguish four clusters within the members, which
does not convey an intuitive understanding of the data. A clus-
termap visualization of the edit distances can be seen in Figure 1.
In contrast to that, our new distance function, which we define in
the next section, does not find these false clusters and therefore re-
sembles an intuitive understanding of the dataset much closer.

4. Branch Mappings

All of the methods listed above have one of the mentioned short-
comings. They either use branch properties to overcome the prob-
lem of local properties at the expense of the need of a fixed branch
decomposition or they are independent of branch decompositions
but only use local properties or they combine the positive aspects
of both but do not offer the benefits of a true edit distance.

Here, we present a new approach that can be seen as a combina-
tion of the ones from [PVDT21], [SMKN20] and [BYM*14]. We
modify the constrained tree edit distance so that it maps branches of
two given merge trees onto each other and determine the total cost
of such a mapping by taking the sum of distances of all mapped
structures while computing the optimal branch decompositions for
these costs at the same time. By staying within the notion of edit
distances, we keep their global characteristics (in contrast to the
more local concept of taking the cost of the worst matched feature
pair) and the induced mappings, while still doing the optimization
over all possible branch decompositions and mapping the actual
features of interest (namely branches, not nodes or edges).

The distance we will introduce is based on the new concept of
branch mappings that are similar to edit mappings and can be seen
as an adaptation of those to branches of trees instead of nodes.
Branch mappings can be applied to merge trees with arbitrary
branch decompositions as well as merge trees with a fixed, given
branch decomposition. They can be computed in (’)(n2 -mz), which
is faster than the only other branch decomposition-independent
method (from [BYM™ 14]) by more than a linear factor. We achieve
this by intertwining the dynamic programming that iterates all
branch decompositions with the dynamic programming for the
classic edit distance. However, this method of course also has its
downsides. We will show that the branch mapping distance, while
being a metric on the domain of branch decompositions of merge
trees, it is not a metric on the set of merge trees. Furthermore, the
computation cost is higher than for the typical tractable edit dis-
tances, which usually can be computed in around O(n - m).

We start with the core concept underlying our distance, branch
mappings. Similar to edit mappings, constrained edit mappings, or
alignments, which are mappings between the vertex sets of two
given trees with different restrictions to keep certain structures,
branch mappings map branches of one tree to branches of another
tree while keeping the ancestor relations of the mapped branches.

Definition 2 Given two abstract merge trees 77,73, a branch map-

ping between 77 and 73 is a mapping M C By x B, with branch

decompositions By € B(T}),B, € B(T») such that

1. If (a,b),(d’,b') EM thena=d = b=V,

2. (m,m’) € M, where m and m’ are the main branches of B; and
By,

3. If a and b are parent branches of d, b and (a/7b/) € M, then
(a,b) e M,

4. If (a,b),(d’,b') € M and ay is a descendant of @} then by is a
descendant of b],

where a =ajy...ay,d’ =d}...a}, € By andb=by...by,b' =b}...bj €
Bj are arbitrary branches of the two trees.

Similar to branch decompositions, we define induced mappings as
follows: let T}, Ty be subtrees of Ti, T, By € B(Ty),B; € B(T»),
T/' =T, —T/,T; = T, — T; and M be a branch mapping between
B; and B;. Then we define M[B]] to be the map

{(a,b) eM ’ a is a descendant of m'}

where B] = By[T{] and m’ is the main branch of B]. For B =
B1[T]'] we define M[B] to be the map
{(a,b) €M [a ¢ M[Bi]and a # p}U{(p" . M(p)}

where B} and m’ are defined as before, p is the parent branch of m’
in By and p”’ the corresponding branch in BY. We define M[B}] and
M|BY] analogously.

4.1. Branch Mapping Distance

In analogy to basing tree edit distances on their corresponding map-
pings, we now define a distance function on merge trees and their
branch decompositions. For ease of notation, we define for a branch
mapping M the set of all edit operations as

M=MU{(a,L) ] Ha,b) € M}U{(L,b) | H(a,b) € M}.
Given a cost function on branches of two merge trees 71, 7>,
c:(( U Bu{lhx( U BU{L}) =R,
B[EB(T[) BzEB(Tz)
we define the cost of a branch mapping M to be
c(M) = Z c(a,b).
(a,p)EM

For a branch decomposition B € B(T) of some merge tree, we de-
fine an empty mapping M | (B) = {(b, L) | b € B} to be the map-
ping that corresponds to deleting the whole tree 7. We can now
define the distance functions based on the branch mappings.

Definition 3 Given two abstract merge trees 77,7, with branch de-
compositions By € B(T}),B, € B(T»), define the distance function

dp(B1,B3) =min{c(M) ’ M is a branch mapping between By, B; }.
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Analogously, for two abstract merge trees 77, 7>, we define
dp(Ty,Ty) = min{dp(B\,B) | B| € B(T\),B; € B(T»)}.

Furthermore, we also include empty trees into the definition of the
branch mapping distance:

dp(By, L) = c(M_(B1)),dp(L,Bs) =c(M_(By)),
dB(T],J_) = mln{dg By, L ’B[ GB(T])}
and dp(L,T>) symmetrically.

For practical purposes, we want to restrict the base metric for sin-
gle branches or the branch labels to semantically meaningful ones.
In our case, this means that those properties captured by the labels
or costs are actually branch properties. Formally, we want a cost
function c(ay...ag,by...by) between two branches to only depend
on the start and end points of the branches, i.e. aj, ai, by and by.
The number and position of child branches should be irrelevant. We
then call it a pure branch distance.

4.2. Important Properties

Metric properties of the branch mapping distance We now
show that dp is a metric on the set of all branch decompositions
of abstract merge trees but not on the set of all abstract merge trees.

Theorem 1 dp is a metric on the set
{(T,B) | T is an abstract merge tree, B € B(T)},
as long as the cost function ¢ on the branch labels is a metric.
Proof See supplementary material, App. B. [
Theorem 2 dp is not a metric on the set of all abstract merge trees.

Proof If we consider the distance function dp applied to merge trees
with arbitrary branch decompositions, the triangle inequality does
(in contrast to the previous result) no longer hold. The previous
argument is not possible in this case since the optimal mapping
between 71,7, and T3, T3 can use a different branch decompositions
which leads to mapping costs that are not possible with a single
branch mapping. A counterexample can be found in Figure 3. []

Recursive Structure A core property of the branch mapping dis-
tance is the following: as long as the base metric is a pure branch
metric, we can decompose a branch mapping into the different sub-
trees of the given branch decompositions and if we do so, we can
do it in the same way for the cost of the mapping.

Lemma 1 Given two merge trees 77,7, with branch decomposi-
tions B, B, and a branch mapping M C B X B, for any subtrees
T/ and Tj of T} and T, for which B} [T{] and B,[Ty] exist, and any
pure branch distance c, it holds that:

o (M) =c(M[B[T{]]) +c(M[B[T — T{]]).
o (M) =c(M[B[T3]]) +c(M[B[T, — T3]]).

Proof Follows directly from the pureness of c. [

Lemma 2 Given two merge trees 71,75 with roots vy,uy, let vy, un
be the unique children of the two roots and let those have children
v3,v4 and u3, uy. Let T{ be the subtree rooted in (v2,v3), T{’ rooted
n (v2,v4), Ty rooted in (up,u3) and Ty’ in (uy,uy). Let M be an
optimal branch mapping for 77 and 7,. Then, for the optimal cost
of M it holds that:

© 2022 The Author(s)
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Figure 3: Branch mapping distances for three merge trees using
|b1 —ba|+ |p1 — p2| as base metric for branches with birth values
b1,by and persistences pi,pa. The optimal map between (a) and
(b) uses branches (0,10), (3,6) and (5,8), whereas the one for (b)
and (c) uses (0,8), (5,10) and (6,11). These maps yield branch
mapping distances of 2 and 1. The optimal map between (a) and
(c) uses branches (0,10), (3,6), (0,11) and (6,8) which yields a
total distance of 5. This violates the metric property as the direct
distance between (a) and (c) is greater than the way over (b).

° dB(Tl,Tz) dB(Tl s )+dB(T1 Tl ,Tz) or

o dp(Ty, ) =dp(L,Ty) +dp(Ty,Tr — Tz/) or

° dB(Tl,Tz) dB(Tlu, )+dB(T1 Tl .,Tz) or

o dg(T1,5) =dp(L, Ty ) +dp(T1, T — T3') or

e dp(Ty,T>) =dp(T{,T;) +dp(Ty = T{, T, — T3) or
o dg(T1, ) =dp(T|",Ty) +dp(Ty —T{', T, — T;') or
o dg(Ty, 1) = dB(Tl,Tz”)+dB(T1 T/, —T)) or
o dp(T\, 1) =dp(T{",T3) +dp(Ty = T{", T, = T5)

Proof See supplementary material, App. C. [

If one of the trees only consists of two nodes, i.e. it only has one
possible branch decomposition with one branch, we can just omit
the corresponding recursions. Next, we consider the recursion for
the case where one tree is empty.

Lemma 3 Given a merge tree 77 with root vy, let v, be the unique
children of the root and let it have children v3,v4. Let T{ be the
subtree rooted in (v3,v3) and T{’ rooted in (v3,v4). Then, for the
optimal cost of M| (T7) it holds that:

. dB(Tl s J_) = dB(T]/,J_) +d3(T1 — T]/,J_) or
o dg(Ty, L) =dp(T{', L) +dp(Ty — T{', L),
and dp(L,T>) decomposes symmetrically.

Proof See supplementary material, App. D. [

We should note that the previous lemmas only consider binary
merge trees. However, it is easy to adapt for trees of arbitrary degree
and we therefore omit this proof for better readability. We continue
with the base cases of the recursion.

Lemma 4 Given two merge trees 71 = ({vi,v2},{(va,v1)}), b =
({u1,u2},{(uz,u1)}) that only have one branch, the following
holds for dp:

L4 dB(ThJ—) = C(Vle,J_)’
e dp(L,T5)=c(L,ujup) and
e dp(Ti,T2) = c(viva, uiuz).

Proof See supplementary material, App. E. [
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dg dp
1
wp W,

Figure 4: A schematic illustration of the search spaces of
branch based distance measures for merge trees or scalar fields.
W2D (Wasserstein Distance between Persistence Diagrams, com-
pare [PVDT21]) maps the branches of a fixed branch decompo-
sition without any structural constraints. dc and W2T restrict the
search space by introducing structural constraints based on the
merge trees. Since dc allows for gaps in the mapping and W2T is
not order preserving, the two models can be seen as orthogonal
to each other. ds also works on fixed branch decompositions and
is strictly more restrictive than the others. For details, see App. A
(supp. material). dg then takes the structural constraints from dg
but lifts them to the space of arbitrary branch decompositions,
thereby defining a model that is orthogonal to both d¢c and WZT.

We can use these lemmas to derive a recursive formula for
dg(Ty,T») by taking the minimum of the different terms in each
case. This gives a recursion very similar to the ones for the classic
edit distances that can be computed with a dynamic programming
approach. In the Section 4.4 we will discuss this algorithm.

4.3. Search Space Comparison to other Methods

We now want to illustrate more precisely how the branch mapping
distance relates to other known distance measures. Since the con-
tour tree alignments from [LWL*20] form some kind of outlier
by only considering local properties, we will only look at those
methods that use actual branch properties. We therefore try to fit
the new method into a hierarchy of branch based methods that we
extracted from the papers describing the two closest methods on
merge trees [SSW14, SMKN20,PVDT21]. We do this by illustrat-
ing the relationship in a schematic drawing of the considered search
spaces for mappings between branches/features shown in Figure 4.

4.4. Algorithm

In this section, we will use the recursive structure of optimal branch
mappings shown in Lemmas 2-4 to derive a recursive algorithm that
computes the branch mapping distance.

First, consider all subtrees 77, 7{', Ty, Ty, T — T{, T — T},
T, —T, and T, — T, from Lemma 2. All of them (in all recursive
steps) are abstract merge trees with a root of degree one. We can
identify the trees appearing in this recursion by two nodes: the root
node of the subtree and its unique child (which does not have to be
a child in the original tree 71/7>). Therefore, we generally switch
to identifying trees in this manner in contrast to identifying them
just by one node like in the recursions for classic tree edit distances
and define an algorithm computing dg(ny, p1,n2, p2) where ny,n
stand for the current nodes and p, p> stand for the parent nodes of
the considered subtrees. For example, dg(T7,T») is represented by
dg(vi,va,u1,up), whereas dg(Ty — T{, T, — Ty') is represented by

dp(v4,v1,us,uy). Intuitively, py, pp can be considered as the last
matched nodes in the currently tracked branch, which is illustrated
in Figure 5. In App. F (supp. material), we present pseudo code
showing the algorithm for binary trees and discuss how to adapt
the algorithm for non-binary trees.

Running time. An obvious bound on the running time of Algo-
rithm 1 in App. F (supp. material) using memoization is O(|T;|? -
|T5|?), since the number of subproblems is constant, they are al-
ways smaller than the current one and there are only |T}|* - |T3|*
many 4-tuples of nodes. However, this can be tightened to O(|T}| -
depth(T7) - |T3| - depth(T3)), since we know that py, pp are always
ancestors of ny,ny. A short discussion on the runtime for non-
bounded degree can be found in App. F (supp. material).

These bounds of course only hold if the base metric is com-
putable in constant time. Typical metrics like difference in persis-
tence or bottleneck, Wasserstein and Loo-distances are all constant
time operations. For branch mappings, it is also important that these
are pure branch metrics, since then they only depend on the start
and end point of a branch, which are always available when evalu-
ating the base metric (through ny, py or ny, p3).

Variants. There are a few adaptations that can be applied and
should be noted here. First, saddle swap instabilities are a key prob-
lem of all tractable edit distances on merge trees and are of course
still present in the branch mapping distance. To handle such insta-
bilities, [SMKN20] and [PVDT21] use a preprocessing step to col-
lapse small edges (through an e-parameter) such that branches in a
parent-child relation that are probable to be influenced by such in-
stabilities become siblings instead. Of course, this preprocessing is
also applicable to our method and should yield the same improve-
ments, however, we did not implement or test it. Furthermore, it is
possible to adapt our algorithm to not try all branch decompositions
and use a fixed one instead. The computed distance and mapping
then becomes equivalent to the one from [SSW14].

It is also possible to not just sum up the costs of all pairs in
the optimal matchings but to sum up the squared pair costs and
then take the square root of the sum. This approach was used
in [PVDT21] and makes the resulting distance directly comparable
to the classic Wasserstein distance for persistence diagrams. This
is of course also possible with our method or d¢ and we used this
variant for the motivational examples in Section 1.

Another property to note is that branch mappings induce ver-
tex mappings in the sense of constrained (or even 1-degree) edit
mappings. Therefore, it is possible to construct an alignment of
two trees by computing the optimal branch mapping. This align-
ment is a supertree of the two input trees and can therefore again
be aligned. This gives us the possibility to use an iterated heuristic
for an alignment of a set of merge trees (based on the branch map-
ping distance) as it has been done for contour trees in [LWL*20].
We plan to implement such a method in future work.

5. Experiments

In the following, we demonstrate the utility of our technique as a
basis for typical tasks in visualization, and compare it against other,
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Figure 5: Exemplary illustration of recursive structure of dg(ny, p1,na, pa) in Algorithm 1 in App. F (supp. material). In (a) we continue
main branch tracking with the left subtree in both trees and match the right subtrees onto each other, whereas in (b) we continue main branch
tracking with the left subtree in T\ and the right subtree in T) and match the other two subtrees onto each other. In (c), we continue main
branch tracking with the left subtree in T) and delete the right subtree. In T;, we do nothing. In (d), we continue main branch tracking with

the right subtree in Ty, delete the left subtree and do nothing in T>.

similar techniques. The basis for these experiments is a straightfor-
ward Python implementation of the algorithm given in Section 4.4
and the constrained edit distance. Merge trees are computed using
TTK [TFL*18], and ParaView [SAL*07] is used for result visu-
alization. The three experiments described in the following corre-
spond to three different uses of distance functions between scalar
fields as found in many visualization applications: outlier identifi-
cation, periodicity detection, and feature tracking. App. H (supp.
material) discusses the results on noisy versions of the same data.

For benchmarks, we use a C++ implementation which is pub-
licly available on Github as well as the easier to read Python ver-
sion [WLG21]. Computation of individual distances for the here
used trees with up to 80 vertices took only a few milliseconds. On
noisier trees with sizes between 100 and 400, times went up to the
range of seconds. For more details, see App. G (supp. material).

5.1. Outlier Detection

Outlier detection is a major concern in ensemble analysis, and the
distance between merge trees of two scalar ensemble members
can be used towards this. We consider a synthetic example dataset
shown in Figure 1. This dataset is based on the example ensemble
from Section 3.3, with one modification: we add a fifth peak in the
middle of the four large peaks, but create an outlier by omitting
this peak in a single ensemble member. Outlier detection then pro-
ceeds by computing the pairwise merge tree distances for all pairs
of trees, using the squared sum of the mapping costs.

Using clustermaps to visualize the distance matrices, it is easy to
see that the branch mapping distance (dp) distinguishes the outlier
clearly, whereas the constrained edit distance d¢ and the Wasser-
stein distance W2T do not. For the latter two, the cost of the missing
branch in the outlier ensemble member is concealed by the cluster
effects when working with fixed branch decompositions. A visu-
alization of the entire ensemble and further results obtained using
additional parameter choice can be found in the supplementary ma-
terial (App. H). Note that this dataset was constructed specifically
to illustrate the problem of fixed branch decompositions, as dis-
cussed in Section 3.3. We make both datasets available publicly
with our implementation [WLG21].
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5.2. Periodicity Detection

Periodicity detection is an often encountered problem in time-
varying data; we here consider a time-varying dataset consisting
of 1001 time steps of a 400 x 50 grid representing the scalar veloc-
ity magnitude of the flow around a cylinder that forms a periodic
Karmaén vortex street. It was simulated by Weinkauf [WT10] using
the GerrisFlowSolver [Pop04].

Reproducing the experiment of Sridharamurthy et al. [SMKN20]
with our distance measure, we compute the merge tree distance
matrix for all pairs of time steps and visualize this as a heatmap
(cf. Figure 7). Here, the branch mapping distance exhibits exactly
the same periodicity pattern as the constrained edit distance (Fig. 13
in [SMKN20]), giving a period/half-period of 75/37 time steps, re-
spectively (see App. H (supp. material) for a direct comparison).

5.3. Feature Tracking over Time

As a last experiment, we utilize our distance metric for feature
tracking within a time series of scalar fields. Here, we consider two
different time series. The SciVis contest 2008 dataset [WNOS] de-
scribes development of ion density during universe formation, and
was also used as in a tracking case study in prior work [PVDT21].
Second, the heated cylinder dataset describes an ensemble of
flows around a heated pole in a fluid. This dataset was also used in
prior work on ensemble analysis [LWL*20], and we make it avail-
able publicly [WLG21]. We again consider velocity magnitude as
the variable of interest for tracking.

For both datasets, we provide a proof-of-concept for the pro-
posed branch mapping distance by replicating previous results. We
are able to extract semantically meaningful matchings of features,
comparable to those found earlier [LWL*20, PVDT21] from the
branch mappings for both datasets (see App. H (supp. material)
for a direct comparison). Visualizations of the matched features are
shown in Figure 6, indicating that our distance measure is useful
for tracking applications in topology-based visualization.

6. Conclusion and Outlook

In this paper, we presented a novel variant of edit distances tailored
specifically to matching branches of merge trees. We provided a
formal definition and analysis of metric properties as well as an al-
gorithm and implementation. We showed that it is as expressive as
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Figure 6: Feature Tracking for the Heated Cylinder (top) and ion density (bottom) datasets. We rendered all maxima matched by the optimal
branch mapping in consistent colors over all time points. The matching for the heated cylinder shows how the rising plume splits up over
time into two and then three distinct maxima while the two peaks around the pole stay constant. The rendering for the ion density dataset
shows that the branch mapping represents the intuitively correct mapping of the corresponding peaks, which is for example not true for a
mapping obtained by Wasserstein distances on persistence diagrams according to [PVDT21].

previous approaches on practical datasets and that it can improve
the quality of the matching and distance measure significantly on
datasets containing specific structures. We also discussed limita-
tions of the new method: its higher complexity and the fact that it is
not a metric on merge trees, which does, however, not influence its
utility for the provided tasks. In the context of our classification, we
have described an edit distance-based method that works on merge
trees and uses global properties. However, this method does so in
a very specific and restricted way, which we now discuss together
with options for less restrictive methods and future work.

Other Branch Decomposition-Independent Methods. A restric-
tion we used was to only map branches. We could generalize this
to arbitrary paths of a merge tree. As branches are paths, this would
just extend the concept of branch mappings by again increasing the
search space. Such path mappings would actually be computable
in the same time and space bounds. In future work, we want to
investigate the formal foundations of path mappings.

Another restriction is that the new distance corresponds to the
1-degree edit distance in the classic setting. We also want to con-
sider adaptions of constrained edit mappings, alignments, the gen-
eral edit distance or even unrooted versions of those. For these op-

Figure 7: A heatmap of the distance matrix for all pairs of the
first 225 time steps of the vortex street dataset (full matrix cf. supp.
material, App. H), clearly indicating a period/half-period 75/37.

tions, we have to find suitable definitions and study their complex-
ity to see which of these options are applicable in practice.

Other Applications. Furthermore, as hinted in Section 4.4, we
plan to integrate branch mappings (and maybe path mappings) into
the alignment framework introduced in [LWL*20] (which is defi-
nitely possible) and investigate the possibility of combining it with
the geodesic/barycenter methods introduced in [PVDT21]. The lat-
ter seems more likely to be possible for certain variants of path
mappings which we believe to be a metric, since the normalization
step from [PVDT21] seems hard to apply to non-fixed branch de-
compositions and barycenter computation could be hindered by the
missing triangle inequality. A very typical application of distance
measures for scalar fields that we have not studied in this paper
is symmetry or self-similarity detection. As the memoization table
computed by the algorithm includes distances for all subtrees of
both input trees, it is possible to use it to find substructures of high
similarity by applying methods similar to those from [SSW14]. We
aim to implement them in future work, too. Furthermore, we plan
to investigate if similar distances can be defined for contour trees
instead of merge trees. Hurdles to overcome here would be, for
example, that paths in contour trees are not necessarily monotone,
and by restricting to monotone branches, the impact of saddle-swap
instabilities increase significantly.

Parallel Implementation. For a more efficient implementation,
we want to look deeper into optimization options and also develop
a parallel implementation of our algorithm. This could lead to a
significantly improved performance, as the branching factor in the
O(n4)-sized search space is high, which (intuitively) should lead to
high parallelization potential.
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