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Abstract
Our ability to grasp and understand complex phenomena is essentially based on recognizing structures and relating these
to each other. For example, any meteorological description of a weather condition and explanation of its evolution recurs to
meteorological structures, such as convection and circulation structures, cloud fields and rain fronts. All of these are spatiotem-
poral structures, defined by time-dependent patterns in the underlying fields. Typically, such a structure is defined by a verbal
description that corresponds to the more or less uniform, often somewhat vague mental images of the experts.
However, a precise, formal definition of the structures or, more generally, of the concepts is often desirable, e.g., to enable
automated data analysis or the development of phenomenological models. Here, we present a systematic approach and an
interactive tool to obtain formal definitions of spatiotemporal structures. The tool enables experts to evaluate and compare
different structure definitions on the basis of data sets with time-dependent fields that contain the respective structure. Since
structure definitions are typically parameterized, an essential part is to identify parameter ranges that lead to desired structures
in all time steps. In addition, it is important to allow a quantitative assessment of the resulting structures simultaneously. We
demonstrate the use of the tool by applying it to two meteorological examples: finding structure definitions for vortex cores and
center lines of temporarily evolving tropical cyclones.
Ideally, structure definitions should be objective and applicable to as many data sets as possible. However, finding such def-
initions, e.g., for the common atmospheric structures in meteorology, can only be a long-term goal. The proposed procedure,
together with the presented tool, is just a first systematic approach aiming at facilitating this long and arduous way.

CCS Concepts
• Computing methodologies → Modeling methodologies; • Human-centered computing → Scientific visualization; Visual
analytics; • Applied computing → Earth and atmospheric sciences;

1. Introduction

In order to understand a phenomenon hidden in data, we need to
recognize structures and relationships between them. Structures are
characterized by defining qualities and features. In this work, we
deal with structures for which a mental image does exist but no
mathematical definition. For the sake of clarity, we distinguish be-
tween the semantics of a concept, i.e., anything that defines and
characterizes it, and the linguistic term used to denote it.

In all areas of daily life as well as in all sciences, concepts are
needed for thinking and communicating. This can be explained
very nicely using the example of meteorology: The description of
a weather situation and its development over time makes use of
technical terms such as ‘pressure systems’ (high or low), ‘fronts’
(warm, cold or rain), ‘clouds’, ‘precipitation’, ‘jet streams’ and so
on. Of course, in technical language, much more differentiating
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terms are used. For example, there is a hierarchical classification
system for clouds that distinguishes more than 30 types of clouds
by classifying them according to altitude and vertical shape, insta-
bility or convection activity, and specific structural details [WMO].

One could counter that in strictly rational science such mental
constructs are dispensable; for example, even a very complex me-
teorological state is completely described by a set of fields, which
is governed by a set of equations. In that sense, given these fields
in appropriate resolution, there is nothing more to say. What this
counterargument overlooks is that humans need both categorizing
and characterizing concepts of structures, and associated linguis-
tic terms, in order to think and talk about the phenomena as well
as to formulate hypotheses and theories about them. Therefore,
such mental constructs are fundamental building blocks of human
knowledge and are used practically everywhere.

It is an essential part of science to sharpen concepts, to differen-
tiate them more precisely, and to categorize them more meaning-
fully. Yet, for most concepts, only verbal descriptions exist that are
not very precise. Just consider questions like these: “Are we in the
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fourth wave of an epidemic?”, or “Is there a vortex in a given flow
and what is its spatial extent?”, or questions about the presence of
complex, multifaceted conditions, for example in medicine. With
regards to the first question, although everyone has an idea of an
‘epidemic wave’, different mathematical criteria are conceivable
that capture the mental construct more precisely (c.f. Sect. 3.2).
Also, everyone has a vivid idea of what a flow vortex is; neverthe-
less, even decades of research have not led to a full agreement on
what is the best criterion for determining the presence and extent
of a flow vortex (c.f. Sect. 4).

However, if data science (including data visualization) wants to
answer questions on the basis of data, precise and formalized defi-
nitions of such concepts are required. Especially in view of the fact
that the increasing amount of data requires more and more auto-
matic processing, which also calls for machine-understandable def-
initions of concepts. Precise mathematical concept definitions are
also necessary for creating phenomenological models, i.e., mathe-
matical models that contain such concepts as building blocks.

The question is: How can one build a bridge from the world of
mental concepts, which are at best described verbally, to the world
of precise, formal definitions? To do this, one first needs a deep
and ideally also mathematically oriented insight into the problem
domain. This often enables experts to suggest a first guess for a
formal definition. But, given a suggestion for such a definition,
how do you assess its quality and how do you improve it? Here,
visualization helps: it allows the comparison of structures that re-
sult from data and experimentally formulated formal definitions
with the mental image of that structure. This enables an iterative
improvement of formal structure definitions, considering also the
mental images of different people or even an entire expert commu-
nity (c.f. [HHK11]).

The long-term goal (which might take decades to achieve) is to
find definitions that are as ‘objective’ as possible and that work for
as many data sets as possible. We give advice on which principles
should be observed in this regard (see Sect. 3.1). An essential role
plays the selection of suitable indicator quantities that show the
presence of a structure. Another problem is that only in exceptional
cases definitions can be found that are parameter-free. For exam-
ple, many definitions contain threshold values. How should these
be determined?

In this paper, we describe a first attempt to a systematic approach
for finding such definitions in a visually supported, interactive way.
The presented tool makes it possible to compare various definitions,
indicator quantities, computational methods, and parameter ranges
and thus allows us to achieve suitable definitions in an iterative
process. It can be used both for a quick, pragmatic search for a
suitable definition for specific data sets, as well as for the long-term
goal of finding a definition that is as universal as possible.

We demonstrate the use of the tool by applying it to two me-
teorological examples: finding structure definitions for the vortex
cores and centerlines of temporally evolving tropical cyclones.

Overall the paper presents a systematic approach and workflow
as well as a prototypical interactive tool that enables expert users

• to find formal definitions of temporal structures, so that their

properties correspond for all time steps as closely as possible
to those of the mental image;

• to evaluate the suitability of different variables that indicate the
presence of a structure;

• to narrow down the intervals of the parameters in a structure def-
inition such that the structure properties match the mental image,
and the variance of the resulting structures becomes as small as
possible.

The proposed tool utilizes parallel coordinates with time as one
variable to simultaneously depict parameter intervals and structure
attributes for selected time intervals. In contrast to previous ap-
proaches for interactive structure extraction (e.g., using brushing
& linking), it directly supports the evaluation of all influencing fac-
tors, namely structure definitions (including computational meth-
ods for structure extraction), type of indicator quantities, and pa-
rameter intervals.

The paper is organized as follows: In Sect. 2, we present related
work. Sect. 3 focuses on describing the overall systematic approach
as well as the prototype tool we implemented. In Sect. 4, we apply
our approach and tool to two use cases from meteorology. Finally,
Sect. 5 concludes the paper with a discussion of our findings and
potential future work.

2. Related work

Concepts are the building blocks of thoughts and are necessary for
the representation of knowledge as well as for mental processes like
categorization, inference, decision making, learning and communi-
cation. This view has become widely accepted in cognitive science
and philosophy of science, see e.g., [Gär04, ZG15]. In this paper
we perceive concepts as mental constructs (as opposed to abstract
objects or skills) and we use a naive notion of concepts based on
concrete examples, thus avoiding complex philosophical questions
(see, e.g., reference [ML21] for an introduction to this topic).

The extraction of structures from data has a long history in data
visualization. The structures are often mathematical features. Most
prominent examples are mathematical features of spatial or spa-
tiotemporal fields, like extremal structures, level sets, critical points
and skeletons of stable manifolds. Therefore, the term ‘feature ex-
traction’ has become established in visualization. When dealing
with application-oriented structures that carry semantics, such as jet
streams, precipitation fields or tropical storms, it is better to speak
of ‘structures’ or ‘concepts’. These are characterized by certain
properties, which may include also mathematical features. This ter-
minology corresponds to that used in many other sciences, but dif-
fers from that traditionally used in visualization, where application-
oriented structures are often also referred to as ‘features’.

For a survey on the substantial history of structure extrac-
tion and visualization, see reviews on geometric-topological ob-
jects [MLP∗10, PPF∗11], on coherent set detection [HFB∗17],
on feature tracking in meteorological contexts [CBJ∗14, CDJ15,
VMN∗18,EMB∗21], and on the related problem of image segmen-
tation [EBJS17]. Most approaches in visualization refer to struc-
tures defined by single scalar or vector fields, e.g., level sets or
ridges of Lyaponov exponents, or application-related structures,
like centerlines of vortices [SWH05a] or jet streams [KHS∗18].
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Data visualization often focuses on isolating application-defined
regions of interest in spatiotemporal data. This is done by interac-
tively identifying subregions in a typically multidimensional space
spanned by data attributes that best characterize the structures of
interest [JH18]. Related procedures have been developed for image
segmentation and volume rendering, where transfer functions map
data characteristics to optical qualities, like color and opacity, to
highlight regions of interest [KKH01, LKG∗16].

An essential prerequisite for finding suitable structure definitions
with visual control is interactivity. Here we can build on the re-
search thread that began with the work by Doleisch et al. [DGH03].
In this work, the definition of subregions in a multivariate range
space is greatly facilitated by multiple coordinated views (his-
tograms, scatter plots, parallel coordinates, or function graphs),
representing different variables side by side. When data points are
interactively selected (‘brushed’) in one view, the associated data
items are immediately highlighted in all linked views. This ‘link-
ing’ is particularly powerful when attribute views are combined
with 3D views, showing the corresponding preimages in the do-
main. This technique can also be extended to time-dependent data
[DMG∗04, DHGK06] and has been applied to simulation data of
Hurricane Isabel [DMH04]. While in their work all structures are
defined by ranges of multivariate quantities, it is not concerned with
finding more general and also parameter-dependent definitions of
structures.

A tool for interactive exploration of sets of parameter-dependent
3D geometries has been presented in [BHGK14]. However, this
work also did not aim at obtaining structural definitions. To the best
of the authors’ knowledge, there is no tool to date that supports the
explicit goal of obtaining mathematical definitions of mentally and
verbally given structures by using visual data analysis techniques.

Visual comparison of similar, but different spatial data has been
more deeply explored in the context of ensemble visualization, see,
e.g., [KBVH17] and references therein.

The difficulty of finding a generally accepted, precise defini-
tion of concepts that is as objective as possible (i.e., independent
of the person observing) is best illustrated by the example of flow
vortices. Data visualization, together with flow research, has con-
tributed a great deal to this. There is not enough space here, to
sketch the nearly half-century-long research thread; instead we re-
fer to the current state of research [THR∗21] and the papers cited
therein. In recent work [vLHD∗21], a formal approach to the defi-
nition and persistence of meteorological structures has been taken.
This is exactly the kind of research we want to support and facilitate
with the proposed procedure and interactive tool.

3. Structure definition finder

In the following, we first describe the proposed general procedure
to identify structure definitions based on the user’s mental image,
followed by an illustrative example. Then, we present the prototyp-
ical interactive tool that we apply to concrete examples in Sect. 4.

3.1. Methodological approach

The proposed systematic approach is graphically represented in
Fig. 1. It depicts an iterative workflow that allows the user to iden-
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Figure 1: Workflow for finding structure definitions, as described
in Sect. 3.1. Red denotes inputs, yellow - intermediate results, blue
- tasks to be carried out, green - decisions, and purple - the final
result.

tify and further narrow down appropriate structure definitions as
more data or new ideas about structure attributes are added. The
workflow starts with a verbal characterization of the structure that
we want to define more precisely in mathematical terms.

Based on the verbal characterization and the knowledge of math-
ematical structures, the user can describe the structure using math-
ematical terms, e.g., as a point, a line, an area, a tree, a graph, etc.
The mathematical type of structure already restricts the class of
mathematical methods for structure identification. Eligible are, for
example, methods of geometric data analysis (e.g., extraction of
level sets or extremal structures), shape analysis (e.g., extraction
of shapes that resemble a prototypical shape), cluster analysis and
classification (e.g., computation of a hierarchical clustering), topo-
logical data analysis (e.g., computation of persistence diagrams),
and time series analysis (e.g., identification of typical temporal pat-
terns), as well as combinations of these. The class of procedures is

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

323



N. Mikula, T. Dörffel, D. Baum & H.-C. Hege / Structure Definition Finder

(1) (2)
(4)

(3)

(5)

(6)

Color Transparency

Figure 2: Parallel coordinates window and its main areas: (1) time axis; (2) parameter space; (3) attribute space; (4) color/transparency
settings; (5) quantitative representation of selected parameter intervals; and (6) buttons for interactive exploration of selected structures.

relatively limited and it would be an interesting endeavor to char-
acterize and systematize them in more detail (for a first approach in
flow visualization, see [WST∗07]). The next step is the identifica-
tion of attributes, in our case, geometric and topological attributes,
which are suited to describe the structure more or less completely
and accurately. Of particular interest are attributes that allow the
user to distinguish structures matching her/his mental image from
structures that do not. This part of the workflow is shown on the
left side of Fig. 1.

The second input to the workflow is data (typically discretely-
sampled functions) containing the structure for which a definition
is to be found. Sometimes, one does not work directly on the origi-
nal input data, e.g., the velocity field, but on derived data, like Q or
Ω (c.f. Sect. 4). For the sake of generality, let us call all data that in-
dicate the presence of the desired structure ‘indicator quantities’, be
it the original or derived data. These indicator quantities are usually
well-established quantities in the respective application field and
they can be limited by using application-based higher-level prin-
ciples, e.g., invariances under transformations or invariance to the
choice of physical dimensions. The latter is achieved by choosing
dimensionless quantities. In order to extract the structure from one
or more indicator quantities, computational procedures are needed.
Similarly to the choice of indicator quantities, procedures should be
selected that are well-established in the application field. Usually, a
procedure depends on parameters that will influence the appearance
of the extracted structure. An algorithmic structure definition thus
consists of a computational procedure, one or more indicator quan-
tities, and suitable computational parameters (or parameter ranges).
For a recent survey on the definition, extraction and tracking of per-
sistent structures in meteorology, see reference [vLHD∗21].

Given potential computational procedures as well as indicator
quantities for extracting the structure of interest, the task of finding
a structure definition reduces to sampling the whole space of pos-
sibilities, including computational procedures, indicator quantities,
and computational parameters, and comparing the outcomes with
the user’s mental image. Visually assessing all sampled structures
would be very time-consuming. Therefore, one aims at reducing the
total number of samples to those that are most likely to match the
mental image. Here, the structure attributes come into play, which
again can be highly application-specific. They are computed for
each of the sampled structures and can then be used for filtering.

The restriction of the parameter space is done in the next step

of the workflow, by interactively brushing the attribute space.
As result, potential computational procedures, indicator quantities,
and computational parameters are identified that lead to structures
matching the selected structure attributes. Finally, the structures ex-
tracted in this way are visualized and visually assessed. Hence,
visual inspection plays the final role of quality control. Since we
have narrowed down the parameter space by brushing in the at-
tribute space, visual assessment is reduced to a small set of struc-
tures. It could reveal the need to (1) further explore the parame-
ter and attribute space, (2) identify other attributes that better de-
scribe the mental image, (3) identify other computational parame-
ters and/or procedures, and/or (4) identify further indicator quan-
tities (c.f. Fig. 1). If only a refinement of the attribute selection is
necessary, after some iterations one might be done. Otherwise, new
attribute descriptors and/or computational procedures will have to
be implemented.

Finding a generalized structure definition requires a set of data
containing the structure. This could be time steps of a single time
series, as in the applications presented here, a data collection of
a similar type, or even a set of time series. Ideally, the resulting
structure definition should then work for all data in the given set.

The final step of finding a structure definition is to translate back
the algorithmic definition given by the computational procedure
and its parameters into precise mathematical expressions. For ex-
ample, applying the Marching Cube algorithm to an indicator field
is equivalent to applying a threshold operator to a scalar field. The
result of this back translation is a mathematical structure definition
consisting of mathematical expressions and, if these are parameter-
ized, suitable parameter values or ranges.

The derivation of a structure definition from a mental image re-
quires, in general, interactive exploration of the parameter and at-
tribute space. However, for many applications, it is unfeasible to as-
sume that all parts of the presented workflow (Sect. 3.1 and Fig. 1)
are fully interactive. Hence, preprocessing may be required, in par-
ticular for the computation of the indicator quantities, the set of
structures, and the computation of the structure attributes. Once this
is done and all information has been precomputed, an interactive
exploration tool is needed that allows one to browse the attribute
space and visualize the matched structures in real time.

In the next section, we give an illustrative example of using the
workflow to find a structure definition of epidemic waves before
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we describe a prototypical interactive exploration tool that we use
in our applications (Sect. 4).

3.2. A first example: Epidemic waves

To illustrate this rather abstract description, we now outline the
procedure using a concrete example, namely the aforementioned
concept of an ‘epidemic wave’ (EW). For the sake of clarity, we
will discuss only the essential steps and the major questions to be
answered. Furthermore, we will aim for a simple solution. In par-
ticular, we will not use insights from mathematical modeling of
infection events with ODEs/PDEs [BCCF19] or agent-based mod-
els [WZSC21].

An epidemic prevails if a disease caused by a pathogen spreads
very rapidly to a large number of hosts in a population. Then in-
fection rates, i.e., cases of infection per day, are elevated and their
time course often resembles a crest of a wave—which lead to the
metaphor of the EW.

If we consider that the course of infection can differ in different
age groups, e.g., because of different contact behavior, and that at
one point in time several pathogen mutants with different effects
may be active, it becomes clear that the overall epidemic event
is composed of several subwaves. The subwaves can be shifted
in time, potentially leading to complex wave forms of the over-
all signal and impeding the separation of successive wave crests.
The overall effect is reflected in cumulative, location-dependent in-
fection rates, and for regions (cities, countries, etc.) in regionalized
mean infection rates. For simplicity, let us consider just the last
quantity. The mathematical structure of an EW is then a certain
pattern in a scalar time series.

The question now is what would be a good indicator variable to
determine whether or not a wave is present at a particular time. An
important requirement is that this variable is independent of fac-
tors under which the definition should be invariant. For example, in
the present case, the definition should be independent of population
size. The most basic candidate for an indicator quantity therefore
is the regionalized mean infection rate normalized by the size of
its population. This dimensionless quantity allows comparison be-
tween different regions.

A more advanced approach would be to base the definition, as
in reference [ZMGW21], on the estimated effective reproductive
number R, i.e., the average number of people infected by a sin-
gle infectious individual—and, if a mathematical model of the epi-
demic event is available, on further information the model provides.

The next question is what features of the time series could be
used to base the extraction of periods in which an EW is prevalent.
This is where the mental image particularly comes into play. One
can start, e.g., from the somewhat vaguely formulated key criteria
in reference [ZMGW21]: “1) an epidemic wave constitutes some
upward and/or downward periods; 2) the increase in an upward pe-
riod or the decrease in a downward period have to be substantial by
sustaining over a period of time to distinguish them from an uptick,
a downtick, reporting errors, or volatility in new cases.”

The next step is to design and implement an extraction method

based on well-defined mathematical operations. The resulting pro-
cedure, which will later be applied to time series data, will not be
parameter-free.

Then, attributes of the extracted structures are defined. We need
attributes that indicate how well requirements 1) and 2) are ful-
filled but others can also be added, e.g. measures for the ‘wavi-
ness’, ‘mountainousness’, and ‘pronouncedness’ of an extracted
structure, or features like strength of growth or decay, width and
steepness of crest, etc. There are no limits to the imagination here;
anything related to the mental image could potentially be useful.

The next step is to sample the parameter space of the method
while applying it to (many) data sets. When analyzing time series
of epidemic events, multiple waves can often be identified, e.g., in
the COVID-19 pandemic so far five waves in many countries. Con-
sidering data from different regions and from different epidemics
could lead to a more generally applicable definition of an EW.

Then, the results, i.e., the extracted waves and their attributes,
are visually inspected. By interactively constraining the attributes,
one can then identify the parameter ranges that lead to results that
match the mental image as closely as possible.

The mathematical description of the extraction procedure to-
gether with the selected parameter ranges then represent the formal
definition of the EW concept.

3.3. Prototypical interactive exploration tool

The prototypical tool, implemented in the visualization system
Amira [SWH05b], consists of two components: a procedure for the
extraction of parameterized structures, and an interactive tool for
the visual exploration of the parameter and attribute spaces.

The extraction component uses computational methods available
in the system and is applied in a precalculation step. The interactive
exploration component is based on parallel coordinates (PC). We
chose PCs because (1) they are easy for the user to interpret (each
extracted structure corresponds to exactly one identifiable curve),
(2) scalability with respect to dimensions is good, and (3) subin-
tervals for each variable can be easily defined. Should the selec-
tion of more complex regions in the parameter-attribute space be
required, one must choose other, maybe less scalable techniques,
such as scatter-plot matrices, where more complex subselections
are possible for every two dimensions. However, these would also
lead to more complex definitions, which we are not seeking in this
first work on the subject. Most closely related to our prototypical
tool is probably the work by Beham et al. [BHGK14] for exploring
the parameter space of a geometry generator.

The PC view is shown in Fig. 2. A single line in the PC view
corresponds to one structure sampled from the parameter space
of one time step, accompanied with a set of computed attributes.
Hence, in our application, the high-dimensional space that is vi-
sualized using parallel coordinates consists of the time dimension,
the dimensions of the parameter space, and the dimensions of the
attribute space. The view’s first axis represents time (Fig. 2 (1)).
Brushing on the time axis could be done to restrict the considered
time range to a subrange. However, since in our applications we
are interested in parameters that are suitable for the whole time
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Figure 3: Track map of Hurricane Florence 2018 (basemap and
track taken from [Wik18]). The points show the location of the
storm at 6-hour intervals. The color represents the storm’s maxi-
mum sustained wind speeds according to the Saffir–Simpson scale
(see legend). The orange box defines the area of interest.

range, we do not use this functionality. The second axis repre-
sents the parameter space (Fig. 2 (2)). The fact that this space is
only one-dimensional in our example applications is a special case;
for higher-dimensional parameter spaces, additional axes would be
added. The parameter axes display only the result of interactive
brushing in the attribute space (Fig. 2 (3)). Brushing is done on
each attribute axis separately. The selections from the individual
brushing on all the attribute axes are concatenated to obtain one
final selection. Note that for the concatenation of the selection, cur-
rently only the logical AND operation is supported. As result of
the brushing, the lines corresponding to the selected attribute val-
ues are colored, by default in a light blue. Transparency and color of
the lines can be adapted (Fig. 2 (4)). The selected lines are analyzed
w.r.t. their parameter values and parameter intervals are identified
that are valid over the whole selected time range. These ranges are
shown on the right sidebar (Fig. 2 (5)) and the corresponding lines
are highlighted in dark blue to distinguish them from the rest of the
selected lines. Lines that are not selected are shown in gray. The
PC view is connected with a direct visualization that allows simul-
taneous investigation of the selected structures (Fig. 2 (6)). Please
see the accompanying video given in the supplementary material.

4. Example applications

In this section, we give a clear and concise example of our approach
by demonstrating the procedure for specific structures, namely spa-
tiotemporal geometric structures of tropical cyclones (TCs), i.e.,
their vortex cores and centerlines. The example is motivated by a
new theory of TC intensification, according to which the inclination
of the centerline, in interaction with atmospheric heat patterns that
adopt some spatial orientation to the inclined centerlines, is a key
parameter for TC intensification [PMOK12, DKGN20, DPK∗21].

The analysis is made on the basis of ERA5 reanalysis data of the
Hurricane Florence 2018. The data is given on a regular horizontal
grid with resolution of 0.25°×0.25°, i.e., about 30 km [HBB∗18a,
HBB∗18b]. In all our visualizations, the data are vertically scaled
with a factor of 100 to improve the perception of the structures. The

time frame for the analysis is chosen to cover three different phases
of the TC evolution: (1) stages of intensification; (2) full maturity;
(3) weakening. The track of Hurricane Florence and the region of
interest are shown in Fig. 3.

4.1. TC vortex core regions

What mental images related to TCs do meteorologists have in
mind? In the meteorological literature, TCs are described as
weather systems associated with strong winds and precipitation in
the tropics [Mar03]. The flow- and thermodynamics-related struc-
tures are vaguely characterized as follows [Hou09]:

• The flow is essentially horizontal along closed streamlines (pri-
mary circulation).

• The horizontal (circular) flow structure exhibits a certain degree
of symmetry.

• Surface-pressure possesses a local minimum at the center with
surrounding closed isobars.

• Wind speeds are elevated (>33 m/s: hurricane strength).
• Convection is organized (cloudless eye, eyewall, outer rain-

bands).
• The core region is warmer than its surroundings.
• The storm’s life-cycle takes place in the tropics.

Extraction and tracking algorithms based on such descriptions are
characterized by a large number of parameters [PSUS05], many of
which are not traceable to physical principles. Especially the men-
tal image of a TC in terms of its outer bound is hard to grasp since
the transition to the larger-scale atmosphere is smooth. For the core
region, characterized by the strongest winds, however, there is the
mental image of the flow being most affected by vortical motions.
For extraction of the core region, focusing on the major physical
phenomenon, namely the meso-scale vortex, seems to be a better
strategy. If necessary, thermodynamical attributes can be consid-
ered in a second step.

Atmospheric vortices can be characterized by high local vortic-
ity, more rigid-body rotation than stretching or shearing, low local
pressure, closed or spiraling streamlines or pathlines, and coher-
ent motion of neighboring fluid particles [Epp17]. Although still
“no single definition of a vortex is currently universally accepted,
despite the fact that fluid dynamicists continue to think in terms of
vortices” [CBA05], there is general agreement that vortices are best
characterized by dimensionless indicator quantities that signal their
presence and local strength and are formed from tensor invariants
of the velocity gradient ∇u (see, e.g., [SNU16]).

4.1.1. Indicator quantities for vortex core extraction

There is an abundance of methods for the extraction of vortex
cores. Even those based on decomposing the velocity gradient
∇u into strain-rate tensor A = 1

2 (∇u+∇u⊺) and vorticity tensor
B = 1

2 (∇u−∇u⊺) may provide different results.

• The widely used Q-criterion [HWM88] identifies a vortex as
a “connected fluid region with a positive second invariant of
∇u” [Kol07] , i.e.,

Q =
1
2
(∥B∥2 −∥A∥2)> 0. (1)
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Figure 4: Vortex regions extracted using Q > 0.02 (top) and Ω >
0.52 (bottom). The top image shows extracted vortex regions for
every 12 hours from the time frame of 02-07 September. For Ω, the
following time steps were chosen: 02 September 00:00, 04 Septem-
ber 00:00, 05 September 00:00, 06 September 00:00, 07 September
23:00. Colors represent the intensity of TC according to the Saffir-
Simpson scale (see legend in Fig. 3).

• Ω was introduced to represent the ratio of vortical deformation
over the whole deformation inside a vortex core [LWYD16], i.e.,

Ω =
∥B∥2

∥B∥2 +∥A∥2 .

To avoid division by 0, it was proposed [DWC∗18] to add a small
positive number εΩ = 0.001(∥B∥2 −∥A∥2)max to the denomina-
tor such that the criterion becomes

Ω =
∥B∥2

∥B∥2 +∥A∥2 + εΩ

> 0.5. (2)

The authors claim that this method “is pretty universal and
does not need much adjustment in different cases and the iso-
surfaces of Ω = 0.52 can always capture the vortices prop-
erly” [LWYD16]. However, in order to capture the vortex core
region, further adjustment of the threshold is needed. Ω is both
dimensionless and normalized, resulting in values that are re-
stricted to the interval [0,1].

• The kinematic vorticity number [Tru53] Wk = ∥B∥/∥A∥ is an-
other promising quantity for the determination of vortex proper-
ties [SNU16]. If the rotation rate prevails over the strain rate, Wk
is larger than 1. Early circulations that have a potential to develop
into stronger vortices could be captured with a lower threshold of
Wk (e.g., Wk slightly smaller than 1). On the other hand, a higher
threshold of Wk focuses on already developed strong vortices. To
avoid non-physical noise, in our calculation we use an experi-

Figure 5: Minimum and maximum values for three chosen indica-
tor quantities in the time frame of 02-07 September 2018. Red line
represents the upper limit of analysis intervals. Color gradient in
the axis area represents the intensity of TC (see legend in Fig. 3).

mentally determined εWk = 0.03(∥B∥−∥A∥). The vortex core is
then identified by

Wk =
∥B∥

∥A∥+ εWk

> 1. (3)

Similar to Ω, Wk is dimensionless, but it is not normalized.
Hence, values can potentially fall into the interval [0,∞].

All three indicator quantities are Galilei-invariant. They character-
ize vortices, but their application may result in different vortex re-
gions. The inequalities in Eq. 1-3 provide only theoretical thresh-
olds. For real-case analyses, these values need to be adjusted to
capture the appropriate structures. Fig. 4 shows vortex regions ex-
tracted using Q > 0.02 and Ω > 0.52. Although at the highest hur-
ricane intensity (yellow and orange structures), both quantities can
capture the structures of the vortex core well, there are some is-
sues during the intensification and weakening phases. Structures
extracted with Q > 0.02 shrink up to 4.6 km while regions defined
with Ω > 0.52 do not represent TC cores correctly. In Fig. 5, the
value intervals for three indicator quantities over the time frame
of interest are shown (Fig. 3). Ω lies always in [0,1] while the ex-
tremum values for Q and Wk change over time. For the further anal-
ysis, parameter values that do not exist for the entire time window
are excluded. The upper limits of the selected parameter intervals
are depicted by a red line in Fig. 5.

4.1.2. Geometrical attributes of vortex regions

A vortex core region is associated with a dense cylinder-like struc-
ture. Based on this mental image and the examples shown above,
the following attributes were chosen to describe the geometry of
the extracted vortex core regions:
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ncells number of voxels
hmin minimum height
hmax maximum height
dmin minimum diameter
dmax maximum diameter

Cd compactness value [Bri08]

The number of voxels describes the overall size of the structure.
Minimum and maximum heights give the lowest and the highest
levels where the structure is defined. These attributes help to ensure
that the extracted structure starts at a very low level and reaches a
large height. The diameters of the structure were computed for each
individual horizontal slice using the formula d =

√
dX2

max +dY 2
max,

where dXmax and dYmax are the maximum distances the structure
spreads in x and y directions, respectively. The derived value d ap-
proximates the diameter of a circle enclosing all selected voxels in
the slice. It can be interpreted as the radius of the circumscribed cir-
cle. The diameter attributes are derived as minimum and maximum
values of d over all horizontal slices. Diameter and compactness
value control the width of the structure and its shape. The latter was
introduced by Bribiesca [Bri08] and is defined as Cd = Ac/Acmax ,
where Ac is the contact surface area and Acmax the maximum contact
surface area. For a solid composed of n voxels, the approximation
Acmax ≈ 3(n− (n)

2
3 ) can be used. The measure of discrete compact-

ness is dimensionless, has values from 0 to 1 and is maximized by
a cube.

4.1.3. Analysis and results

Three indicator quantities from Sect. 4.1.1 were computed based on
the velocity field u for 13 time steps in time interval 02-07 Septem-
ber 2018. For each indicator quantity and each time step, sample
structures were derived using 100 evenly distributed values from
the appropriate parameter intervals, i.e.,

• Q ∈ [0,0.05]
• Ω ∈ [0.5,0.99]
• Wk ∈ [1,8]

Properties describing each structure were computed as discussed
in Sect. 4.1.2. To inspect the 3D structures defined by properties
selected via the PC view, isosurfaces of the smallest and biggest
structures are visualized, i.e., structures corresponding to the upper
and lower limit of the derived parameter interval, respectively.

PC views with the desired attributes for the three indicator quan-
tities are shown in Fig. 6. The vortex core should start at the first
presented level 0.2 km and have at least 8 km height. To limit the
horizontal spread, structures with maximum diameter exceeding
600 km and with small compactness value, i.e., Cd < 0.8, were ex-
cluded. Lines representing structures meeting all the constraints are
shown in the PC view by two shades of blue. Dark blue highlights
the interval that would lead to the derivation of structures with the
desired properties for every time step included in the analysis.

The procedure leads to the following structure definitions for TC
cores based on the indicator quantities Q, Ω and Wk:

CQ = {x ∈ R3 |Q(x) > τQ; τQ ∈ [0.002,0.0076]},

CΩ = {x ∈ R3 |Ω(x) > τΩ; τΩ ∈ [0.7574,0.8316]},

CWk = {x ∈ R3 |Wk(x)> τWk ; τWk ∈ [1.4949,1.9899]}.

Figure 6: Parallel coordinates plot window and structures ex-
tracted by selecting proper parameter values for three indicator
quantities Q, Ω and Wk. Red and blue isosurfaces show the small-
est and biggest structures corresponding to the largest and smallest
parameter values in the identified parameter interval, respectively.

The obtained definitions correspond to the ERA5 reanalysis data of
Hurricane Florence 2018. Further analyses of, e.g., ERA5 reanaly-
sis data of other hurricanes are necessary in order to get structure
definitions that are more generally applicable.

Some resulting structures found for Q and Ω for the whole time
window are shown in Fig. 7. Both indicator quantities provide
comparable vortex core regions; those based on Q are somewhat
smoother.

4.2. TC core line

Structure definitions often build upon each other. The second ex-
ample demonstrates this situation. A TC core line is a structure
that describes position and course of a TC. It is located in or close
to the center of the TC vortex and represents another mental con-
cept that is not explicitly described by data fields. Representation
of the TC domain in cylindrical coordinates that are centered at the
vortex core line is very useful for studying TC structure and dy-
namics (see [PMOK12, DPK∗21]). Quantitative results, however,
highly depend on a TC core line.

Information about core line computation, used geometrical at-
tributes for parameter and attribute space exploration, as well as
analysis and results are described in the Suppl. Mat., Sect. S1.1.
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Figure 7: Vortex regions showing the average structure from the
derived intervals for Q (above) and Ω (below). Time steps at every
12 hours of the time frame of 02-07 September are shown. Colors
represent the intensity of TC according to the Saffir-Simpson scale
(see legend in Fig. 3).

4.3. Performance and computational costs

The computationally most expensive part of the workflow is the
preprocessing step. Extracting 100 structures sampled from the
initial parameter interval took on average 4.38 sec for each time
step. Memory costs are 1.5 MB per vortex region structure and
only 17.3 KB per center line. In total, for each indicator quantity,
1.5MB ∗ #structures(= 100) ∗ #timesteps(= 13) ≈ 2GB memory
was used. Computation of attributes took around 0.6 sec per struc-
ture. Attributes were stored in CSV format, which costs less than
20 KB of memory per indicator quantity. The calculations were per-
formed on a 8-core Intel i9-9900K machine with 3.6 GHz CPU and
16 GB RAM. Interaction with the PC view works in real time.

4.4. Assessment by domain scientists

During the development of the tool, we repeatedly discussed with
researchers from meteorology and mathematical modeling. After
presenting the workflow and implemented tool, they gave us the
following feedback:

TC core regions: The extracted boundaries look reasonable, corre-
spond to the experts’ expectations, and are useful for further visual
analysis. For better judgment and understanding of the structures,
it would be helpful to additionally visualize physical context (e.g.,
the ground pressure or the cloud field).

TC core lines: The extracted lines look reasonable. According to
the expert, it is of great value to get a handle of the variability un-
der varying parameters. The major criterion for judging their valid-
ity is consistency with the mathematical model that describes the
hurricane intensification [PMOK12]. This requirement is met. The

helical structures discernible for some of the core lines raised great
interest, as they could indicate interesting physical phenomena.

General feedback: The domain experts appreciated the elabora-
tion of the methodological core of structure definition finding and
its transformation into a practically executable workflow. The im-
plemented semi-automated approach met with great approval, since
(1) all possibilities are analyzed at the same time by systematic
sampling the parameter space; (2) an overview for all resulting
structures in the time+parameter+attribute space is provided by the
PC view; (3) the set of reasonable structures can iteratively be nar-
rowed down by constraining attribute values with 3D view control;
and (4) understanding is greatly improved by the linked PC and 3D
views. They furthermore appreciated that the structure extraction is
based on well-defined, fundamental mathematical operations and
that dimensionless indicator quantities have been used, enabling
comparison of physically different situations.

They agreed that the next step should be to apply the method
to other hurricanes—first to reanalysis data and then also to high-
resolution simulation data to capture effects of smaller-scale pro-
cesses as well. They pointed out that if the tool is used for very
large data sets, one might end up with more structures than one can
look at in 3D. They agreed that this is mitigated by first reducing
the number of structures in the PC view before looking at them in
3D (still, more can be done here, see Sect. 5).

They made the conceptually helpful remark that difficulties in
finding a single definition that works for all time steps and all hur-
ricanes could give clues to different physical processes underlying
the structures. Furthermore, they pointed out that the choice of at-
tributes for the selection of structures must be well considered, be-
cause once the attribute ranges are restricted, the variability of the
attributes can only be studied within these restricted ranges. The
best choice of attributes could therefore also depend on the meteo-
rological question.

They showed great interest in using the tool themselves, to bring
in deeper physical knowledge and find structure definitions for
other common meteorological structures; furthermore, to generate
attribute statistics for many structures in order to derive, e.g., evo-
lution equations. The possibility of using this tool and the visual-
ization of other physical fields to examine the relationship between
structures and the underlying processes met with particular inter-
est. This could lead to more differentiated structure definitions.

5. Discussion and future work

In many scientific fields, important concepts are described purely
verbally. From such descriptions, as well as from many individ-
ual examples, schematic drawings, photographs, and data visualiza-
tions, a mental image emerges that is shared by a specialist com-
munity. What is often missing is a precise formal definition; this
becomes even more necessary the more we make data-based deci-
sions and act data-driven.

In this paper, we describe a principled approach that makes it
possible to move from mental images to precise formal definitions.
It entails a general, abstract workflow and a matching interactive
tool. We outline the approach using the concept of ‘epidemic wave’
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as an example, and demonstrate it in detail using the example of two
concepts from meteorology that build on each other, namely core
regions and core lines of tropical cyclones.

The basic idea is to perform the following sequence of steps:
(1) identify the mathematical type of the structure; (2) identify
variables that indicate the presence or absence of the structure in
question in the given data; (3) create a parameterized mathemati-
cal algorithm to extract the structure from the data; (4) attribute the
extracted structures, with properties that play a role in the mental
image; (5) restrict the attribute space under visual control so that
the remaining structures match the mental image; (6) determine the
parameter ranges leading to these matched structures; and (7) trans-
late the algorithmic definition of the computational method and its
parameter ranges back into a mathematical/formal definition.

In the associated prototypical interactive tool, we use parallel co-
ordinates and the paradigm of linking & brushing on the attribute
space together with a direct 3D visualization of the selected struc-
tures. This allows the user to verify whether the obtained structure
definition indeed matches the mental image. Furthermore, it en-
ables the user to narrow the structure definition further and further.
In order to identify structure definitions that are applicable to all
time steps of time-dependent data (a common scenario in the anal-
ysis of meteorological phenomena), it is essential to display the
structure attributes for all time steps simultaneously.

An inherent limitation of our approach is that a potentially large
number of structures must be extracted for different parameters and
time steps and all necessary attributes characterizing the structures
must be computed. However, this can usually be done automati-
cally in a preprocessing step. Once this is done, our approach is
interactive.

In order to test the proposed approach, we used a prototypical
tool to identify definitions for two structures from meteorology:
vortex core regions and core lines of tropical cyclones. We do not
claim to have found the ‘best, universal’ method for extraction of
these specific structures. Rather, we demonstrate that it is possible
to transform mental images of structures into precise mathemati-
cal definitions through interactive, visually supported exploration.
The motivation on the meteorological side was that the vortex core
line is a major ingredient of the asymptotic theory on strongly tilted
TCs [PMOK12, DPK∗21]. The TC core line determines the origin
of a tilted cylindrical coordinate system that simplifies the assess-
ment of both, symmetric and asymmetric structures. Further eval-
uations of this theory therefore require a robust definition of the
TC core line. The present work provides such a definition and also
allows to estimate statistically the uncertainty comprised in the en-
semble. Along this line, we will apply our prototype tool to fur-
ther TC data, e.g., Hurricanes Isabel (2003), Earl (2010), Eduoard
(2014), and Fiona (2016). The question we will ask is whether
we can find similar parameter ranges across different TC data in-
cluding higher-resolution data created with the ICON simulation
model [ZRRB15].

The tool was very well received by meteorologists and a num-
ber of further ideas emerged on how it could be improved and used
practically in meteorological research. One idea is to improve the
scalability towards very large datasets by performing a cluster anal-
ysis in the attribute space and then continuing at the level of clus-

ter representatives. Other future work will include the application
and extension of our tool to more precisely define further meteo-
rological structures such as convective cells and cold fronts. This
will show us limitations of our current prototype and allow us to
generalize it further. On the meteorological side, it will enable us
to analyze process-structure relationships, which could then even
lead to more physically sound structure definitions.

In the examples shown, only a one-dimensional parameter space
was needed. However, the approach and the presented tool also sup-
port multi-dimensional parameter spaces. For these the main prob-
lem is sampling the parameter space and dealing with the poten-
tially very large number of extracted sample structures. Therefore,
more elaborate sampling methods than the one used here may be
needed.

Our prototype implementation implicitly concatenates the at-
tribute selection using the logical AND operation, thus creating a
single high-dimensional attribute interval. However, the support of
more complicated logical expressions might be needed for other
structures. For this, the development of an expression editor along-
side the parallel coordinates view will be explored. Another impor-
tant aspect that we would like to study in more detail is the sensi-
tivity of the structure of interest with respect to parameter changes,
in analogy to studies in iso-contour extraction [PH10].

With regards to structure definitions there are limits in princi-
ple. On the one hand, mental images are fuzzy and their verbal
descriptions are often incomplete. On the other hand, there is no
predefined unique path when translating mental images into formal
definitions. In our framework, this manifests itself in three ways:
(1) It is not clear a priori, which structural indicators are most ap-
propriate; (2) It is not clear, which mathematical representation is
most appropriate for a structure; (3) Parameters of the structure rep-
resentation can often only be fixed with finite precision. The pro-
posed framework with its flexibility and built-in refinement capa-
bilities aims to mitigate these problems as well as by allowing for
long-term competition for ever sharper definitions.

We view the proposed framework as an initial approach and hope
that it will open the door to improved approaches that lead to the
development of more precise definitions for an increasingly broad
range of concepts that are relevant to data-driven analyses, deci-
sions, and actions.
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