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Figure 1: System Interface. (A) Builder is proposed for visually developing similarity measurements between MVESs. (B) Projection View
provides an overview-level validation by capturing and comparing the global structures of the data. (C) Pattern View offers a cohort-level
validation by extracting and comparing the temporal patterns of the cohorts. (D) Instance View presents an instance-level validation by
displaying and comparing the raw temporal information of the instances.

Abstract

Similarity-based exploration is an effective method in knowledge discovery. Faced with multivariate event sequence data
(MVES), developing a satisfactory similarity measurement for a specific question is challenging because of the heterogene-
ity introduced by numerous attributes with different data formats, coupled with their associations. Additionally, the absence
of effective validation feedback makes judging the goodness of a measurement scheme a time-consuming and error-prone pro-
cedure. To free analysts from tedious programming to concentrate on the exploration of MVES data, this paper introduces
an interactive similarity builder, where analysts can use visual building blocks for assembling similarity measurements in a
drag-and-drop and incremental fashion. Based on the builder, we further propose a visual analytics framework that provides
multi-granularity visual validations for measurement schemes and supports a recursive workflow for refining the focus set. We
illustrate the power of our prototype through a case study and a user study with real-world datasets. Results suggest that the
system improves the efficiency of developing similarity measurements and the usefulness of exploring MVES data.

CCS Concepts
* Human-centered computing — Visualization systems and tools; Interactive systems and tools;
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1. Introduction

Many different domains collect multivariate event sequences
(MVESs) from which analysts gain meaningful insights through
similarity-based exploration. In addition to two typical attributes,
category and timestamp, events in a sequence can also be asso-
ciated with other multivariate data [GGJ*21]. For instance, med-
ication administration events in the Electronic Medicine Admin-
istration Records (EMARs) capture multivariate information (e.g.,
timestamp, medication, dose, and care unit) each time a patient is
administered a medication. In real-world applications, the event at-
tributes of such data typically have three common characteristics:
(1) large volume, (2) diverse data formats, and (3) complicated as-
sociation relationships. The success of exploring MVES data de-
pends on the “goodness” of the similarity measurement, which sup-
ports the discovery of salient structures in entities. The concept of
exploration in this paper refers to the process of obtaining data in-
sights by building and validating similarity measurements.

To date, programming remains the only viable way to create sim-
ilarity measurements for complex MVES data. However, develop-
ing appropriate similarity measurements for diverse analysis ques-
tions in this way remains two significant challenges. Firstly, defin-
ing and coding similarity measurements can be tedious and require
iterative experimentation on different measurement schemes. For
MVES data, the existing similarity measurements are either lim-
ited to single-attribute information [WS09, WPTMS12, JCG*20]
or ignore the association relationships between event attributes
[WGW™20, GFL*20]. Given that no universal algorithm can au-
tomatically capture these associations, analysts have to tailor sim-
ilarity measurements according to domain experience. Secondly,
although various quantitative metrics for dimension reduction
[EMK*19] and clustering [LLX*10,CD18] results are widely used,
there is indeed no absolute best metric to evaluate the goodness of
similarity measurements independently of the data and exploration
questions. Furthermore, the absence of effective validation feed-
back requires analysts’ intuitive judgment to develop what can be
considered a satisfiable similarity measurement, which results in
each iteration being a time-consuming and error-prone procedure.

Our goal is to help analysts build and validate similarity mea-
surements of MVESs without programming. To address the first
challenge, we generalize the unified process of the prevailing
MVES similarity measurements and propose an MVES similarity
builder, a visual programming tool that allows analysts to use vi-
sual data and operation blocks for incrementally composing a sim-
ilarity measurement of MVESs into an executable directed acyclic
graph (DAG). We build the similarity measurements by interac-

tively defining a set of transformation rules in the order of data

. . ti c e . ti
objects: attribute PO, event similarity (Optional) operaon

sequence similarity. The builder integrates popular algorithms for
each type of rule and supports self-defined transformation.

For the second challenge, we design the visualization views to
show multi-granularity validation results. The overview-level vali-
dation helps users understand the global structure of the sequence
entities. The cohort-level validation provides a detailed comprehen-
sion and comparison of the cohorts in temporal and multivariate
perspectives. The instance-level validation shows and compares the
details of individual sequences. To improve the flexibility of MVES

data exploration, the visual analytics framework supports a recur-
sive workflow consisting of the following steps: building similar-
ity measurements, validating the performance of the measurements,
and selecting a subset of interest to start a new round of exploration.

Specifically, the main contributions of this work are as follows:

e An interactive visual similarity builder where analysts can
quickly develop MVES similarity measurements by building
data and operation blocks as executable DAGs.

e A visual analytics system that incorporates a set of visualiza-
tions to offer multi-granularity validation feedback. The frame-
work supports a recursive workflow to drill down into a particu-
lar subset of interest.

e An example usage scenario and a user study that demonstrate the
usefulness and efficiency of our prototype using career statistics
and hospital treatment datasets.

2. Related Work

Given its broad applicability, event sequence analysis has been ex-
tensively studied over the past decades. A comprehensive survey
is available in [GGJ*21]. This section provides an overview of the
prior work, which is the most relevant to our work, including (1)
event sequence exploration, (2) visual programming tool, and (3)
multivariate event sequence visualization.

2.1. Event Sequence Exploration

Similarity-centered exploration is an important approach for ex-
ploring unforeseen event sequences to discover global struc-
ture, potential cohorts, and individuals of interest. Mannila and
Ronkainen [MR97] formalized the definition of sequence simi-
larity as the edit distance based on a set of transformation op-
erations (e.g., insert, delete, and move) between events. Simi-
lan [WS09, WPTMS12] proposed a temporal categorical similar-
ity measure called M&M, which considered the number of swap-
ping, missing or extra events, and time difference of matched
events. Recently, more advanced machine learning techniques have
been utilized to facilitate similarity-centric event sequence explo-
ration. CarePre [JCG*20] adopted a distance measure that com-
bines event-to-vector and dynamic time warping (DTW)-based se-
quence alignment technique [GJG* 18] to focus on the population
of clinically relevant patients. Guo et al. [GFL*20] introduced a
method of calculating the similarity of medical records with event
and sequence embeddings. ViSeq [CYP* 18] introduced the bag-
of-motifs to identify different learner groups, and EventAction
[DPSS16] employed the bag-of-events to find similar archived stu-
dents for action recommendations. In addition, to gain fine-grained
insights, the recursive nature of data exploration has received in-
creased attention. One striking example for exploring event se-
quences is MAQUI [LLMB18], where the recursive approach was
used to enable interwoven querying and mining to obtain recursive
insights.

While various sequence similarity measurements can be applied
to MVES data exploration, to the best of our knowledge, none of
them can automatically handle all real-world MVES data due to
the complexity of the attributes. For such data, tailored similarity
measurements are usually developed depending on analysts’ pref-
erences and analysis questions. Different from these works, our pa-
per proposes the first visual programming tool for the interactive
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development of MVES similarity measurements rather than a spe-
cific similarity measurement. Meanwhile, we further present a vi-
sual analytics framework that supports a recursive workflow to drill
down into the subset of interest or filter irrelevant entries.

2.2. Visual Programming Tool

Aiming at freeing analysts from heavy programming and enabling
people with less programming skills to complete development
tasks, numerous visual programming tools have been developed
in the field of visualization. Nodes on Ropes [WRF*11], MeVis-
Lab [MeV], Inviwo [JSS*19] provided several systems designed
to ease the development of tailored visualization applications with
visual blocks using DAG. To facilitate the process of creating intra-
chart and inter-chart animations, CAST [GLW21] and Data An-
imator [TLS21] presented two authoring tools that enable users
to build chart animations without programming. Built on regu-
lar expressions, (slqu)eries [ZDFD15] proposed an expressive vi-
sual query language for building queries on sequences in an ap-
proachable way. Users can visually describe high-level patterns
of interest by directly manipulating the constraint blocks in 2D
canvas and interactively explore the result visualizations. Event-
pad [CvW17, CMEVW18] allowed users to visually simplify the
event sequences into parts relevant to their investigation by speci-
fying rewrite rules. However, the works did not specifically target
the development of MVES similarity measurements and their pro-
gramming tasks are quite different from the task in our paper.

Several visual interfaces [WS09, WPTMS12, WGW*20] sup-
ported the user defining sequence similarity for different tasks.
However, the usefulness of these systems is limited to supporting
only the parameter tuning of a specific metric for a given input
data. In practice, faced with complex MVES data and various ex-
ploration questions, analysts have to iteratively develop and vali-
date similarity measurements without visual feedback, resulting in
a significant programming burden. In our work, our primary mo-
tivation is to improve productivity or save time in each iteration
consisting of the development and validation of the similarity mea-
surement. Therefore, we use visual building blocks for assembling
similarity measurements and validate their results from three gran-
ularities: overview, cohort and instance.

2.3. Multivariate Event Sequence Visualization

Recently, given that most real sequence data are multivariate, sev-
eral MVES visualization techniques have been proposed in vari-
ous domains to help users obtain comprehensive insights. Times-
pan [LPK*15] represented all the multi-dimensional and temporal
stroke data in a single hybrid view, incorporating factors from mul-
tiple visualization components to support exploring the stroke treat-
ment process. EventPad [CvW 17, CMEVW18§] allowed users to si-
multaneously explore such data at multivariate and sequential lev-
els by visually defining a set of multivariate rules, which can rewrite
MVES:s to high-level pattern sequences. To obtain a clear overview
of tactical patterns of racquet sports data, Wu et al. [WGW *20] pro-
posed a re-configurable glyph design to simultaneously show mul-
tiple attributes of a hit event using six encoding methods. They fur-
ther designed a glyph-based Sankey diagram [WLG*21] to summa-
rize the ever-changing multivariate tactic progressions. Particularly,
multivariate time series data (MVTS) have been widely collected
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Table 1: Denotations

Symbol  Description

elai) a single-attribute event with attribute a;

Sai) a single-attribute event sequence with attribute a;

e[A*]  amultivariate partial-event with attribute set A*

S[A*]  a multivariate partial-event sequence with attribute set A*

in various fields for studying various phenomena in the real world
and they can be seen as special MVES data whose event attributes
are all in numeric data format. The techniques for visual analysis
of MVTS can be divided into two categories: Small multiples and
Large single. Small multiples [GFL*20] juxtaposes individual di-
mensions to a series of similar charts. Large single integrates mul-
tiple information in one chart using strategies such as superposi-
tion [JME10] and dimensionality reduction [BWS*12,BSH*15].

However, most of the above works were limited to MVES data
with attributes of the same data format (i.e., either all-category at-
tributes or all-numeric attributes). Different types of attributes were
converted to the same type, which reduced the accuracy of the
MVES data. In our work, we extract and then visualize temporal
patterns with quantitative uncertainty for each attribute according
to their data formats, making them applicable to MVES data in a
wide range of domains.

3. Background and Requirement Analysis

In this section, we first introduce the data model of MVESs, fol-
lowed by the process model for similarity calculation. Finally, we
present the design requirements for exploring such data.

3.1. Data Model

Like Wu et al. [WGW™*20], we adopt a unified data format to
normalize MVES datasets for various domains. Each sequence is
a specific ordered list of events for each entity, denoted as § =
(e1,e2,e3,- - ,em), such as a user’s interaction log with an appli-
cation. We define the set of all event (or sequence) attributes as
A ={ay,ay, -+ ,a;} and the subset of the attributes as A* C A.
Each multivariate event (i.e., a player’s stats for a single sea-
son) is described by multiple attribute-value pairs, denoted as
e = {al = v’i,az = v§7~~~ Jap = vfl} Often, users only focus on
partial-events, denoted as e[A*], consisting of partial key-value
pairs related to the analysis question at hand. More concretely, the
data format of attribute a; is one type of category, numeric, range,

string, vector, set, etc. Some supplementary denotations are shown
in Table 1.

3.2. Process model

According to an extensive survey of prior research and our inter-
views with analysts with over five years of experience, we gener-
alize a unified process model (Fig. 2) for calculating the similarity
between MVESs. The process model includes three types of data
objects (i.e., attribute, event similarity, and sequence similarity, de-
noted as the blocks in Fig. 2) and five types of rules (i.e., the links
between blocks) based on the type of input and output data ob-
jects. Specifically, the similarity measurement computation process
is considered as a directed graph that starts from the attribute object
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Figure 2: Process model for MVES similarity calculation.

and then sequentially executes a series of rules to achieve a specific

sequence similarity object. The rule is of the form a operation, B,
where o and P are data objects, and operation is a certain algorithm
or user-defined transformation. That is, the data object o and [ are
the input and output of the operation, respectively.

In this work, these rules are used for building the simi-
larity between two MVESs (S* = (e,e3,€3, -+ ,en) and & =
(e)l’7 eé,eg, -+, en)). The values of each similarity measurement are
normalized to be in the range [0,1]. Note that an MVES similarity
with a specific purpose is generally related to only a portion of the
attributes, denoted as A*. The five types of rules are as follows:

(1) Attribute — Attribute (A — A)

To obtain additional information, a new event attribute can be
derived from the preexisting ones, namely anew = operation(A™).
For example, to obtain accurate trajectories in travel data, a new
vector attribute location = [latitude,longitude] can be derived from
the attribute city name using the address resolution operation.

(2) Attribute — Sequence Similarity (A — SS)

Analysts can directly calculate the similarity between sequences
based on a single attribute a;, namely SS = operation(a;). For ex-
ample, to identify potential trajectory cohorts, analysts may employ
DTW [KRO5] to calculate the trajectory similarity between entities
according to the new attribute location.

(3) Attribute — Event Similarity (A — ES)

In real scenarios, associations between attributes are prevalent
and critical for developing sequence similarity. Take, for example,
the following EMARs of two patients:

e (Drug A, 200 mg) — (Drug B, 200 mg) — (Drug C, 100 mg)
e (Drug A, 400 mg) — (Drug C, 500 mg) — (Drug D, 300mg)

When we calculate the similarity of these two EMAREs, it is nec-
essary to consider both the medication attribute and the dose at-
tribute, thus avoiding significant loss of information. Furthermore,
due to the dependency of these two attributes, it is also unreason-
able to split each EMAR sequence into two independent single-
attribute sequences in the process of calculating their similarity.
Therefore, calculating the similarity of MVESs whose attributes
are not independent follows the order of calculating the multivari-
ate event similarity first and then the sequence similarity.

This rule defines how to calculate the similarity of two multi-
variate events based on two sets of attribute-value pairs, namely
ES = operation(A™). The event similarity should consider multi-
ple attributes and the associations between them. For example, the
similarity of two medicine administration events requires consider-
ing both drug and dose attributes and their dependence.

(4) Event Similarity — Sequence Similarity (ES — SS)

Table 2: Five types of rules for building similarity measurements

Rules Input Output Algorithm List

TF-IDF, Word2Vec, etc.

FastDTW, M&M, etc.

Cosine Distance, Jaccard Distance, etc.
DTW, Euclidean Distance, etc.
‘Weighted Summation, etc.

A=A Attribute Attribute

A —SS Attribute Sequence Similarity
A —ES Attribute Event Similarity

ES — SS  Event Similarity Sequence Similarity
SS — SS  Sequence Similarity Sequence Similarity

Based on the multivariate event similarity, analysts can em-
ploy some algorithms (e.g., the Euclidean distance and DTW al-
gorithms) to further compute the sequence similarity, namely SS =
operation(E S, such as the similarity of the EMARSs.

(5) Sequence Similarity — Sequence Similarity (SS — SS)

The previous sequence similarities can be combined into
a new similarity measurement for a new question (SSpew =
operation(S Sser), where SSyser is the set of all sequence similar-
ities). For example, the three sequence similarities of 2-point field
goals, 3-point field goals and free throws constitute the similarity
of NBA players’ careers on the offensive end.

3.3. Design requirements

The system is designed for analysts who have experience with dif-
ferent levels of work experience and event sequence mining tech-
niques. Over the course of approximately seven months, we have
worked closely with four senior event sequence analysts. The ana-
lysts work in a large data company that provides data analysis ser-
vices for various domains. At the early stage of the collaboration,
analysts introduced the MVES data in different domains, the tasks
in daily analysis, and the analysis process. Subsequently, we devel-
oped an early system prototype and then improved the designs iter-
atively. In each iteration, we held weekly meetings with the analysts
to introduce the visual designs and collect their feedback and com-
ments. Finally, we identified the five design requirements consist-
ing of one similarity measurement development requirement (R1),
three validation requirements (R2-R4), and one workflow require-
ment (R5). They motivate the design adopted in the current version
of the visualization system.

R1 Support visual the development of similarity measurements.
The traditional development of similarity measurements gen-
erally requires tedious programming and multiple iterations. In
addition, the definition of what constitutes sequence similarity
can change on a question-by-question basis, further exacerbat-
ing the programming burden. Analysts hope that the system can
provide a more efficient and accessible visual environment that
allows users to visually build sequence similarity with drag-
and-drop interaction.

R2 Overview and compare the global structures of the data. The
visual validation of similarity measurements should start with
an overview visualization to identify the global structure and
local differences of the data.

R3 Summarize and compare cohorts in temporal and multivariate
perspectives. To help analysts to obtain a multivariate compre-
hension of the cohorts, we need to summarize temporal patterns
on different attributes. For each attribute, a generic chart should
be designed based on its data format.

R4 Display detailed sequences of the instances. Analysts may ex-
amine instances to validate similarity relationships. Thus, an in-
stance view should be provided to display the raw MVES data.
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Figure 3: System overview. It contains three modules: data storage,
analysis, and visualization.

RS Keep track of recursive exploration history. During recursive
exploration, analysts may keep narrowing down the subset of
interest for further exploration. To avoid analysts from getting
lost in the process, the system should track the steps and reverse
the data drill-down steps if necessary.

4. System Overview and Implementation

Fig. 3 provides an overview of our system. The visualization mod-
ule includes an interactive similarity builder and visual validations
at three granularities. When using the system, analysts can first
build sequence similarity measurements (R1) in the builder based
on the exploration question at hand (A). Then, the results of dimen-
sionality reduction and clustering are automatically calculated and
visualized in the projection views (B) for capturing and compar-
ing the global structures of the data for overview-level validation
(R2). Next, analysts can understand the cohorts by comparing the
temporal patterns of different clusters in the pattern view (C) for
cohort-level validation (R3) and focus on cohorts of interest for a
new round of detailed exploration (R5). Finally, the raw temporal
information of the instances of interest can be displayed in the in-
stance view (D) for instance-level validation (R4).

Our system is an HTMLS web application consisting of a
database based on MySQL, a backend based on Django, and a vi-
sual analysis interface (Fig. 1) based on Vue.js and D3.js [BOH11].
The database stores user-supplied data (i.e., sequence table in CSV
file) imported via Fig. 1 (al left). The similarity measurements
can be exported as Python files via Fig. 1 (al right). The back-
end implements three categories of algorithms: (1) classical algo-
rithms (e.g., FastDTW [SC07]) and arithmetic functions for the
self-defined transformation of the input object to the output object,
(2) dimensionality reduction and clustering algorithms for identi-
fying cohorts, and (3) temporal pattern mining algorithms for sum-
marizing cohorts (see the supplemental material).

5. Visual Design

The system comprises four views, namely an interactive similarity
builder and three granularities of validation visualizations.
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5.1. Similarity Builder

The builder is designed to make it easier to develop similarity mea-
surements for MVES by assembling visual building blocks into an
executable DAG (R1). Itis an incremental build process where each
build action executes a certain rule (see Section 3.2) on existing
data blocks to generate a new data block, thereby extending the
DAG. The builder consists of the following three components.

Attribute view. Before building the similarity measurements,
analysts should initially understand the attributes to discover the
ones of interest. On the left of the builder (Fig. 1 (Al)), we em-
ploy several basic charts (e.g., bar chart and area chart) to display
the distributions on the attributes with different data formats. Once
an entity subset of interest is selected, an additional attribute distri-
bution of the subset is appended in each attribute chart, displaying
the fraction of the subset. More importantly, the charts are used as
interactive panels for analysts to drag and drop corresponding at-
tribute blocks onto the canvas.

Operation bar. To avoid repetitive programming, two types of
operation blocks (standard and custom blocks) are integrated into
the builder for each rule. First, we review the related algorithms
used for sequence similarity, incorporate them into an operation
repository as standard operation blocks, and categorize them into
five types of rules (mentioned in Section 3.2) based on the type
of input and output data objects, as shown in Table 2. Fig. 1 (A2)
lists, in rule order, the commonly used operation blocks, which are
selected by the user from the repository and represented as rounded
blocks. Furthermore, analysts can choose a corresponding custom
block and then visually define the transformation from the input to
the output of the rule via the formula builder panel (Fig. 4). As with
the attribute view, analysts can also drag and drop a corresponding
operation onto the canvas.

Canvas. In the 2D canvas (Fig. 1 (A3)), analysts can implement
a purpose-specific similarity measurement of MVESs by applying
the five types of rules in an executable DAG. As the rules are de-
fined sequentially according to the process (Fig. 2), the DAG ex-
tends toward sequence similarity. The attribute, event similarity and
sequence similarity blocks are colored brown, blue and green, re-
spectively. The rounded rectangles represent the operation blocks.
Each rule, that is, an edge of the executable DAG, is represented by
a linked block series (see Fig. 1 (A3 ®@®)). Analysts first select
some data blocks, and then choose an operation block to perform
on them. Finally, the system automatically calculates a new data
block, which can be used as an input to build new rules.

Our system supports direct interaction with the operation blocks
to set and modify their details. When the analyst drags and drops a
standard operation block onto the canvas, a standard panel will pop
up to show different options (see the supplemental material), in-
cluding the name of the output data object and the necessary param-
eters of the algorithm. In particular, when existing algorithms can-
not meet the analysis demand at hand, the analyst can drag and drop
a rule-specific custom block onto the canvas and visually define the
transformation formula from the input to the output via the formula
builder panel. For instance, Fig. 4 presents the custom panel of rule
A — ES. The panel integrates common arithmetic functions (b1)
and shows the input data objects (b2 and b3) in the toolbar. Oper-
ationally, starting with just one space in formula workspace (b4),
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Figure 5: Design alternative for building similarity measurements.

the user is required to select a data element or function for each
space. When the user selects a function, new spaces are appended
according to its input parameters, and its range is enclosed in paren-
theses. This process is repeated until the needed transformation is
finished. The panel can also be integrated as a component in other
visual analysis systems and its arithmetic functions can be modified
if desired.

Justification. For the iterative design process, we discussed an
alternative design of the builder, as shown in Fig. 5. Similar to
Eventpad [CvW17, CMEVW 18], multiple rules are displayed in a
list and applied from top to bottom. A rule can be defined by select-
ing data object(s) and an operation object via a drop-down menu.
However, the design may impose a heavy cognitive load on the ana-
lysts as they have to mentally reconstruct the similarity calculation
process based on the list of rules. Compared to the rule list design,
the DAG is a simple yet powerful tool for creating a new rule while
keeping a mental map of the process. Furthermore, the directed
graph helps analysts make associations between data and operation
objects through drag-and-drop interaction, which may contribute to
the organization and generation of ideas during the process.

5.2. Projection view

The projection view aims to provide visual validation at the
overview level. To compare the results of the similarity between
MVESs based on two different similarity measurements (R2), we
design a tightly coupled dual view (Fig. 1 (B)) to simultaneously
show different dimensionality reduction (DR) results for the same
subset. Fig. 1 (B1) corresponds to the latest similarity measure-
ment, and Fig. 1 (B2) corresponds to the other one.

DR methods are essential tools in visualization that reveal sim-
ilarities and differences [VDMPVdH*(09] among sequence enti-
ties. Among the commonly used DR algorithms, such as MDS
[BGOS], PCA, and LDA, we select the t-SNE algorithm [VdAMHO0S]
to project sequence entities for two considerations. (1) t-SNE and
metric MDS can utilize the distance matrix between the entities
to project them instead of the numeric feature representation that

is difficult to be obtained from MVESs. (2) t-SNE is more suit-
able than MDS for exploring cluster structures due to the excel-
lent separability of different clusters. We apply Procrustes trans-
formation [GD*04] to facilitate the comparison of the two t-SNE
results. Procrustes transformation is used to find the best overlap
between two sets of positions by using only translation, uniform
scaling, rotation, reflection, or a combination of these transforma-
tions [FCS*19]. Furthermore, based on the DR result, we further
divide sequence entities into different cohorts using k-means. To
achieve a reasonable clustering performance, we employ the el-
bow method [KM13] to find the inflection point of the sum of the
squared errors (SSE) and set the position of this point as the number
of clusters. The cluster number can be adjusted via Fig. 1 (bl).

The two projection views, each corresponding to a similarity
measurement, show the similarity between the entities. Each entity
is represented as a hollow circle, with the border color encoding
its cohort. The border color of circles in the second view (Fig. 1
(B2)) is the same as in the first view (Fig. 1 (B1)), corresponding to
the latest clustering result. Moreover, the two views are fully linked
with each other. For example, when analysts select a subset of in-
terest by drawing a lasso on either view, the two views are updated
simultaneously, i.e., the selected circles are highlighted.

The system supports a recursive workflow for drilling down into
the subset of interest for further exploration (R5). Analysts can also
filter cohorts via the checkbox (Fig. 1 (c2)) or select entities freely
via the lasso tool. If necessary, analysts can reverse or forward the
data drill-down steps via Fig. 1 (a2).

Justification. Adding the clustering result to the projection
views can improve scalability as datasets continue to grow in size
[EZZ04]. The clustering technique aggregates a significant num-
ber of entities into a limited number of cohorts, which means that
the number of validation elements is reduced. In addition, t-SNE
is performed first and followed by k-means on that output in this
view [WCR*17)]. First, the clustering algorithm can execute faster
on a dataset with fewer dimensions without significant loss of in-
formation. Second, this order avoids the visual confusion caused by
cluster intersections, which is helpful to capture the differences in
the local structure of the data under the two measurement schemes.

5.3. Pattern View

The pattern view is designed to offer visual validation at the cohort
level. To summarize and compare the cohorts in temporal and mul-
tivariate perspectives (R3), we extract temporal patterns for each
cohort on different attributes and visualize the cohorts’ patterns in
a set of pattern views (Fig. 1 (C)). The views share the same color
scheme as the projection views. Considering various data formats
of event attributes, we implement and improve a set of classical
temporal pattern mining algorithms accordingly to create a concise
yet temporal overview for sequence data in each attribute. Two ex-
amples with numeric and categorical attributes are as follows.

For each numeric attribute, our system employs the sequence
alignment technique introduced in ET2 [GJG* 18] to detect the tem-
poral trends of the cohorts. That is, the sequences of each cohort
are aligned temporally to a mean-sequence using DTW by multiple
iterations. To measure the uncertainty within the cohort, we addi-
tionally record the set of values corresponding to each position in
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the mean-sequence, and the upper and lower quartiles (Q1 /4, Q2/4
and Q3/4) during the iterations. The quartile trend is regarded as
the temporal pattern of a cohort and is encoded as a curve box-
plot [MWK14]. The multi-series line chart is designed to show the
temporal trend differences of the patterns. Each median-sequence
is represented as a line whose background area is used to encode
the deviation information of the cohort. Usually, cohorts with wide
background areas have high uncertainty and vice versa.

For each categorical attribute, we apply the MinDL+LSH algo-
rithm proposed by Chen et al. [CXR17] to extract an optimal set
of sequential patterns for each cohort. To reduce visual clutter, we
only retain the patterns with support (the number of sequences rep-
resented by a pattern) greater than a certain threshold (0.2). In this
pattern view, all sequential patterns of cohorts are displayed in a
list and sorted internally by the support. Each row represents one
sequential pattern whose height encodes the support. The events
of each pattern are visualized as rectangles, arranged from left to
right. Similarly, cohorts with many patterns have high uncertainty
and vice versa.

Justification. So far, three main visualization strategies are
available for MVES data, each with an example. Firstly, Wu et
al. [WGW?™20] used glyphs to display multiple attributes simul-
taneously in one view in a more compact manner. However, the
massive information leads to visual clutter if too many attributes
are represented. Secondly, EventPad [CvW17,CMEVW 18] rewrote
MVESs to high-level pattern sequences, namely single-attribute se-
quences. For our validation task, however, the rewriting strategy
may lead to loss of information, which reduces the credibility of the
conclusion. Thirdly, for multidimensional data, TPFlow [LXR18]
displayed the patterns of different subsets along each dimension
with multiple coordinated views, allowing users to easily observe
and compare the subsets without worrying about exhausting visual
channels. Therefore, we adopted the third strategy, which can be
directly extended to MVES data.

5.4. Instance View

The instance view (Fig. 1 (D)) is targeted to provide visual valida-
tion at the individual level (R4). When analysts spotted instances
of interest, they would toggle to the view via Fig. 1 (c1) for un-
derstanding and comparing their raw temporal information. The
system supports two ways of selecting individuals, namely, click
and lasso interaction. In the projection view, users can select the
points of interest (e.g., outlier points, cohort intersections and edge
points) by clicking on them or pick a representative individual (i.e.,
the group medoid) from a group with the lasso tool (see Fig. 6 (A)).
These instances are represented as solid circles and their raw infor-
mation on each attribute is displayed according to its data format
(see Fig. 6 (B)). For each categorical attribute, a discrete event se-
quence is displayed in each equal-height row, where a rectangle
represents an event (see Fig. 6 (B2)). For each numeric attribute,
we use a multi-series line chart without background (Fig. 6 (B1))
to show the temporal trend of these instances. The view shares the
same color scheme as the pattern view.

Justification. As with the pattern view, we present the original
MVES:s of the instances using the multiple coordinated views strat-
egy. At the same time, to minimize the learning burden for the user,
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Figure 6: The instance view (right) shows and compares the raw
temporal information of the instances selected by lassoing or click-
ing in the projection view (left).

we maintain the design consistency with the pattern view. In addi-
tion, abstracting the entire cluster by the group medoid significantly
reduces the number of validation instances, thereby improving the
scalability of the instance-level validation.

6. Evaluation

We illustrate the power of the system through a case study and a
user study with real-world datasets including career statistics and
hospital treatments.

6.1. Example Usage Scenario

The usage scenario was conducted by an exploratory research
group consisting of an analyst and his client, a basketball scout. The
NBA career stats data contains season statistics for more than 2,000
NBA players from 1980 and 2017. Each player’s performances per
season are considered as a multivariate event, consisting of 46 at-
tributes, such as Pos (Position), Tm (Team), G (Games), 3P (3-Point
Field Goals), and BLK (Blocks). Each player’s career is regarded
as an MVES, with an average length of 5.4 and a max length of
26. Navigating to the huge player stats would be overwhelming,
so our system supports the free exploration of this data accord-
ing to the scout’s interests. First, the analyst can use the builder
to quickly build player similarity measurements based on user in-
terest. Then, the scout can complete three high-level tasks via three
visual validations, respectively. (1) Redefine player classifications
or find replacements for a player via the projection view. (2) Iden-
tify temporal trends of player cohorts in different statistics to direct
player transactions via the pattern view. For instance, a team should
buy players before their vital statistics grow rapidly and sell them
before their form declines rapidly. (3) Discover desired player tem-
plates to guide player draft picks via the instance view.

To begin with, the research group browsed the distribution of
the attributes and then decided to explore whether distinct temporal
trends in players on the offensive end existed. Therefore, the an-
alyst first dragged attribute blocks 2P, 3P, and FT (Free Throws)
from the attribute view (Fig. 1 (A1)) onto the canvas (Fig. 1 (A3)).
Next, considering the large number of current players, the analyst
dragged the Euclidean Distance operation block with low compu-
tational complexity onto the canvas to build three univariate se-
quence similarities (i.e., ss3P, ss2P, and ssFT). Last, they used
the Weighted Summation operation block to combine the three se-
quence similarities into one holistic similarity measurement named
ssOFFENCE (Fig. 7 (Al)). Accordingly, the system yielded a pro-
jection view (Fig. 7 (A2) and colored the circles according to the
clustering result. As shown in Fig. 7 (A3-A6), the red cohort main-
tained high levels of 3P and 3P% (3-Point Field Goal Percentage)
throughout its player careers, while the 2P and FT levels are rela-



278 Xu et al. / Exploring Multivariate Event Sequences with an Interactive Similarity Builder

SSOFFENSE

e i dhasaa

%] %[ %]
(5120

%]
=l

LRIRI2 2141 41012 I—

Figure 7: Recursive exploration of NBA career statistics in three rounds. (A) Based on the offensive similarity (A1), excellent offensive cohorts
are identified, understood, and focused (A2-A6). (B) The orange cluster in B2 with a remarkably short career is filtered. (C) A multivariate
sequence similarity considering both MP and semantic position (Pos) is built to identify players with similar career role changes. SG, PG
and C cohorts’ performances are compared on multiple attributes (C3-C6).

tively low. However, the blue cohort had excellent 2P and FT per-
formances (i.e., most shots and highest hitting percentage), which
declined dramatically towards the end of their careers. The wide
background area of the blue line (see Fig. 7 (A4)) implies that this
cohort had a high uncertainty of 3P% performance. To further un-
derstand the two cohorts, the scout focused on them to open a new
round of exploration (Fig. 7 (B)).

After a group discussion, they planned to further build a sim-
ilarity measurement to identify player cohorts with similar posi-
tion/role changes (e.g., SG (Shooting Guard) — PG (Point Guard)
— C (Center)) during their careers. The Pos attribute and Leven-
shtein [L*66] operation blocks were dragged and dropped sequen-
tially onto the canvas to build the edit distance between the position
sequences (see Fig. 7 (B1)). As shown in the projection view (Fig.
7 (B2)), the players are divided into five clear cohorts, where the
orange cohort corresponds to the players with extremely short ca-
reers (see Fig. 7 (B3-B6)). Thus, the orange cohort was filtered out
as the scout focused on players with long careers.

However, while many players have the same position sequence,
their playing time at each position is quite different. Thus, for build-
ing a more reasonable position sequence similarity, the scout sug-
gested considering MP (minutes played) instead of relying only
on Pos. In addition, the scout emphasized that the similarities be-
tween positions should be quantified and not simply described as
the same or different. For example, the similarity between SG and
PG is higher than that between SG and C. Consequently, the analyst
improved similarity measurement ssPos following three key steps
(see Fig. 1 (A3)):

(1) Derive new attribute. A trained Word2Vec model was im-
ported as an operation block, which converts each position into a
vector representation. Then the Pos attribute and Word2Vec opera-
tion blocks were dragged onto the canvas to generate a new attribute
named posVec, representing the embedding vector of position (see
Fig. 1 (A3 ®)).

(2) Build event similarity. On the basis of the posVec and MP
attribute blocks, the analyst used the custom operation block to vi-

sually define the similarity between a pair of multivariate partial-
events ¢'[A*] and €”[A*] with attribute subset A* = { posVec, MP}.
The transformation formula from attributes to event similarity was
defined as:

X y . X 4 X
esPosPlus = CD <vpmVex,vasVex> *Min (VMP, V)MP) + ‘vMp — VX,IP’

where vﬁ,p indicates the value of attribute MP of event e*, \i;()sVec
denotes the value of attribute posVec of event ¢”, and CD is the ab-
breviation for Cosine Distance. The event similarity named esPos-
Plus consists of two parts: the position semantic and the MP dis-
tance. The formula was programmed via the formula builder panel

(Fig. 4) in the second step (Fig. 1 (A3 @)).

(3) Build sequence similarity. Based on esPosPlus block, a pair
of sequences were aligned temporally using the DTW operation
block, and then sequence similarity named ssPosPlus was calcu-
lated (see Fig. 1 (A3 ®)).

From the projection views (Fig. 1 (B)), both the ssPos and ssPos-
Plus similarity measurements can identify five significant cohorts
corresponding to the five common positions. However, the research
group preferred ssPosPlus because the RD result of the five clus-
ters calculated based on it is more reasonable than ssPos. Specif-
ically, the SG cohort (cyan) in Fig. 1 (B2) is far away from the
other cohorts. However, it is near to the PG cohort (blue) in Fig.
1 (B1). Furthermore, because the MP attribute was considered, the
entities within the clusters are more differentiated rather than heav-
ily overlapping. The scout selected three cohorts (C, SG, and PG)
and turned to the pattern view (Fig. 1 (C) and Fig. 7 (C3-C6)) for
detailed information. Other findings are shown as follows: (1) In
the second half of the C cohort’s career (orange), 3P% improved
considerably, but with high uncertainty. (2) The three cohorts per-
formed equally well in WS/48 (Win Shares Per 48 Minutes) and
PTS (Points), increasing and then decreasing at a high level. (3) The
SG cohort gradually slipped in AST (Assists) but remained main-
tained a high level in AST% (Assist Percentage). For the instance-
level validation, the analyst can also turn to the instance view for
detailed information (see Fig. 6).
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6.2. User Study

We conducted a two-part user study with twelve data analysts
using the system to complete four specified similarity measure-
ments development tasks and four visual validation tasks. These
two parts corresponded to two goals: (1) Quantitatively evaluat-
ing the efficiency of the similarity builder in developing similarity
measurements. (2) Qualitatively assessing the usefulness of multi-
granularity visual validations for measurement schemes.

Data. We chose a publicly accessible critical care dataset,
MIMIC-IV [JBP*21], which none of the participants had explored
before. The dataset contains comprehensive information (e.g., lab-
oratory measurements, medications administered, and vital signs
documented) for 382,278 patients in the hospital. We selected a
group of 196 patients diagnosed with major depressive disorder
and retrieved their EMARSs during their first hospitalization. The
EMARSs of each patient are processed as an MVES. Each medica-
tion administration to a patient is a multivariate event consisting of
21 attributes, such as medication, type, dose due, route, care unit,
and timestamp.

Tasks. For Part 1, because no competing software can visually
develop similarity measurements, we compared the task comple-
tion time between the builder and the original development manner
(i.e., Python programming) to evaluate the efficiency of the builder.
For Part 2, the visual validation process includes a series of com-
plex exploration tasks, which is not a simple yes or no question.
Therefore, we conducted a qualitative user study instead of a con-
trolled quantitative experiment. Detailed tasks are available in the
supplemental material.

Tasks of Part 1 (T1-T4): Developing four specified similarity
measurements using the builder and programming, respectively.

Tasks of Part 2 (T5-T8): Validating the similarity measure-
ments of T1-T4 respectively by the projection view, pattern view
and instance view.

Participants. We recruited twelve participants at collaborating
company with two different degrees of experience exploring event
sequences using basic machine learning methods. Four analysts of
them (referred to as A1-A4) are our collaborators who have worked
with us from the initial stage and have extensive experience using
the system for sequence data exploration. The other eight analysts,
half senior analysts (A5—AS8) and half junior analysts (A9-A12),
have never seen the system before. Junior analysts (work expe-
rience <1 year each) have basic sequence mining algorithms and
programming skills using Python, whereas senior analysts (work
experience 5-8 years each) are significantly more capable than the
former. All participants had no prior knowledge about the MIMIC-
IV dataset. They were divided into three groups (G1-G3) based on
their familiarity with the system and skill level.

Procedure. The study was conducted at the experimenter’s of-
fice cubicle, with one participant at a time using the system on the
experimenter’s computer. We first briefly introduced our system’s
visual components, interaction designs and exploration workflow.
Then, we taught the participants how to use the system through the
usage scenario of NBA Career Statistics (Section 6.1). The tutorial
lasted approximately 30 minutes.
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Figure 8: Average development time for each group to complete
T1-T4 using the builder and programming manner, respectively
(left). Average user rating for the usefulness of the visual valida-
tions by each group after completing T5-TS.

After a 15-minute break, we started the first part of the experi-
ment. The participants were asked to complete four similarity mea-
surements development tasks (T1-T4) using the builder and pro-
gramming manner (Python) respectively. The order of development
manners was structurally alternated in each group. All algorithms
integrated in our system are also available for the programming
manner. We recorded the time spent by each participant on the tasks
using each implementation manner.

After a 20-minute break, we continued with the second part of
the experiment. The participants were asked to validate the mea-
surement schemes of T1-T4 respectively using the three validation
views. After finishing all the four tasks, we asked the participants
to rate the usefulness of the visual validations using a 7-point Likert
scale from strongly disagree (1) to strongly agree (7). The valida-
tion phase was limited to two hours.

Finally, we further gathered analysts’ feedback after they com-
pleted all tasks using the system.

6.2.1. Results

Below we report significant results of our quantitative and qualita-
tive analysis. For the detailed results of twelve participants, please
refer to the supplemental material.

Efficiency of the similarity builder. Comparing the task com-
pletion times (T1-T4) of the two development manners for each
group, the result suggests that the builder improves the speed and
efficiency of developing similarity measurements for all the ana-
lysts, especially junior analysts. As depicted in Fig. 8 (left), the
similarity builder reduces the user approximately two-thirds of the
time cost in developing MVES similarity measurements relative to
programming. Moreover, the completion times of the tasks using
the builder do not differ significantly among the three groups of
participants. The completion time of G1 is slightly lower than the
other two groups, indicating that the builder was friendly and ac-
cessible for users who had never used our system before.

Usefulness of the validation views. The majority of the analysts
positively assessed the usefulness of the three validation views. As
depicted in Fig. 8 (right), the senior analysts (G1 and G2) gave rat-
ings above 6 (agree). However, junior analysts (G3) rated the use-
fulness of the validation views significantly lower than the other
two groups, at about 5 (somewhat agree). It can be interpreted as
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underutilization of the three validation views. The senior analysts
realized the low cost of building and validating similarity measure-
ments using the system and tried to build and validate more mea-
surement schemes to gain optimal schemes and comprehensive in-
sights. The junior analysts generally missed this tip.

6.2.2. User feedback

During the experiment, we received a wealth of insightful feedback
and comments from analysts, which were summarized by group.

G1: Our collaborators (G1) who are very familiar with the sys-
tem focus on the design justification and scalability. The major-
ity of the analysts stated that our system’s visualization and in-
teraction designs are well-designed. However, A2 pointed out that
the scrolling mechanisms used for both the builder view (for at-
tribute distributions) and the pattern view could become ineffective
if too many visual elements are represented, asking for added visual
strategies (e.g., focus + context or multi-scale views).

G2: G2’s senior analysts using this system for the first time
praised our system because it enables analysts to explore MVES
data paired with domain experts. They also appreciated that the
system provided multi-granularity validation feedback for similar-
ity measurements. “Developing a similarity measurement is an it-
erative trial-and-error process.” A6 commented, “The similarity
builder and multi-granularity visual validations did not reduce the
number of iterations, but the system can reduce the time per iter-
ation.” Meanwhile, they offered three constructive suggestions for
expanding the functionality of the system. Firstly, A5 and A8 sug-
gested that the system should support multi-analyst collaboration to
explore MVES data. Secondly, AS, A6 and A8 proposed to intro-
duce effective visual clues to guide the construction of similarity.
They commented that “The space of the similarity measurement
of MVES data determined by different choices of data subset, at-
tributes, algorithms and parameters is vast, so we need an effective
navigation.” Thirdly, A6 and A7 mentioned that it is not enough to
manage the exploration history just through the forward and back
buttons, and they suggested using a tree view to handle exploration
branches.

G3: Compared to G2, the junior analysts (G3) were particu-
larly impressed by the visual programming capability of the builder.
A9 and A10 commented that “It’s minimalistic yet expressive. The
builder eases the development of a similarity measurement for
MVES data by configuring it as human-data interaction, which re-
duces the programming requirements.” Meanwhile, they desired
some quantitative metrics to assess the performance of similarity
measures. When the performance of the similarity measurement
declines, the analyst can revert the measurement.

7. Discussion and Future Work

Generalizability. As a knowledge-assisted visual analytics pro-
totype, our system is designed to assist analysts in exploring
MVESs in various domains (e.g., electronic health records, hit se-
quences in racquet sports, and page logs on websites). Meanwhile,
our work can also be easily extended to a wider range of temporal
data, such as multivariate time-series data. For instance, air quality
data can be regarded as a special case of MVES data whose event
attributes (e.g., PM2.5, PM10, SO2, NO2, O3, and CO) are all in

numeric data format. For exploring such data, our system can be
directly utilized to build purpose-specific site similarity measure-
ments, validate their performance, and focus on areas of interest
for further exploration.

Scalability. Many common classical algorithms are available for
conveniently building similarity measurements. These algorithms
affect the scalability of our system to varying degrees. Never-
theless, the scalability issues about “algorithm” can be addressed
in the following perspectives. Firstly, the system allows users to
import a more efficient algorithm as a new operation block via
an operation import panel. Secondly, similar to the method of
Stolper et al. [SPG14], we will employ progressive visual analyt-
ics [MSA*19, ASSS18] solution to visualize meaningful partial re-
sults during execution for analyst intervention without waiting for
the computation to complete. Several scalability issues also exist in
our visualization views. The system supports visual validations of
similarity measurements at three granularities, which is a promising
solution for improving the scalability about “entities”. Although we
try to use multi-view visualization for supporting the exploration
of more attributes, we still encounter scalability issues about “at-
tributes”. Browsing information on multiple attributes at the same
time is overwhelming for the user, which means that the scrolling
mechanism is ineffective. Focus + context or multi-scale strategies
are useful solutions.

Limitations. We identified two limitations in our work. Firstly,
the system cannot fully handle the diversity of data formats of event
attributes. While the builder supports event attributes in various
data formats to develop MVES similarity measurements, the visu-
alization components support only the two most common types of
event attributes (i.e., category, and numeric) for visual validations
of similarity measurements. However, the data formats of event at-
tributes of real-world MVES data include not only category and
numeric, but also range, string, vector, set, etc. Therefore, more
summarization techniques for temporal data in different data for-
mats need to be integrated into the system to support more com-
prehensive visual validations. Secondly, the system is powerful but
not smart. More visual cues are needed to navigate the vast space
of the similarity measurements. Analysts use our system to explore
MVES data, relying heavily on their experience. We plan to collect
analyst behavior data as the basis for intelligent guidance.

8. Conclusion

In this paper, we introduce a visual analytics system for similarity-
based exploration of MVESs by building and validating the similar-
ity measurements. We generalize a unified process for calculating
MVES similarity and specify the system requirements for explor-
ing such data. The system features the MVES similarity builder, a
visual programming tool that eases, through the assembly of visual
building blocks, the process of development of similarity measure-
ments for MVES data. Built upon the builder, we further propose
a visual analytics system that provides visual validations at three
granularities (i.e., overview, cohort, instance) for similarity mea-
surements. The framework also supports a recursive workflow for
drilling down into the subset of interest. We illustrate the useful-
ness and efficiency of our system through a usage scenario and a
user study with real-world MVES data from the sports and medical
domains.
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