
Eurographics Conference on Visualization (EuroVis) 2022
R. Borgo, G. E. Marai, and T. Schreck
(Guest Editors)

Volume 41 (2022), Number 3

Optimizing Grid Layouts for Level-of-Detail Exploration

of Large Data Collections

S. Frey

University of Groningen, the Netherlands

(a) h = 0 (1 member/node)

junction? ↑

(b) h = 7(47 members/node)

soil uncertain channel

(c) exploration (from b) to h = 6, 5, 4 (d) investigation (from c) to h = 3, 2, 1

Figure 1: Level-of-detail grid (LDG) for 95000 channel structures in soil from a probability distribution (MCMC). (a) At the highest

granularity level (height h = 0), each member is individually depicted, resulting in too many and too small tiles for expressive analysis (similar

to standard “flat” grid layouts). (b) LDGs allow to start from a visual summary at low granularity (height h = 7, where each tile represents

47 = 16384 members). Here, among others, this hints at the existence of junctions between channels at the top of the domain. (c) This is

investigated more closely via node expansion to higher detail (h = 6→ 5→ 4), confirming the occurrence of such junctions (a zoom-in is

shown, LDGs always consistently represent the full data). (d) For these cases, exploration to lower granularity (h = 3→ 2→ 1) reveals

exactly one additional junction between channels in the lower third and three channel entries at the bottom of the domain.

Abstract

This paper introduces an optimization approach for generating grid layouts from large data collections such that they are

amenable to level-of-detail presentation and exploration. Classic (flat) grid layouts visually do not scale to large collections,

yielding overwhelming numbers of tiny member representations. The proposed local search-based progressive optimization

scheme generates hierarchical grids: leaves correspond to one grid cell and represent one member, while inner nodes cover

a quadratic range of cells and convey an aggregate of contained members. The scheme is solely based on pairwise distances

and jointly optimizes for homogeneity within inner nodes and across grid neighbors. The generated grids allow to present and

flexibly explore the whole data collection with arbitrary local granularity. Diverse use cases featuring large data collections

exemplify the application: stock market predictions from a Black-Scholes model, channel structures in soil from Markov chain

Monte Carlo, and image collections with feature vectors from neural network classification models. The paper presents feedback

by a domain scientist, compares against previous approaches, and demonstrates visual and computational scalability to a million

members, surpassing classic grid layout techniques by orders of magnitude.

1. Introduction

Advances in simulation methods and image acquisition technology
allow to acquire vast collections of associated data points—hereafter

also referred to as ensembles—which support a comprehensive anal-
ysis of underlying processes [WHLS19]. However, obtaining an
overview of large ensembles beyond tens of thousands of members is

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14537

This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-
NoDerivs License, which permits use and distribution in any medium, provided the original work is
properly cited, the use is non-commercial and no modifications or adaptations are made.

https://orcid.org/0000-0002-1872-6905
https://doi.org/10.1111/cgf.14537

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

(a) LDG, τ = 0.4, Stock (b) IsomatchHG, τ = 0.4 (c) Hierarchical Clustering (d) LDG, τ = 0.85, Caltech (e) IsoMatchHG, τ = 0.85

Figure 2: Representations of 1024 members from (a–c) a stock prediction ensemble and (d,e) an image collection. (a,d) Our LDG optimizes for

low variance both within the hierarchy and across grid neighbors. To the best of our knowledge, there is no directly comparably method, yet we

adapted the hierarchical extension to Isomatch for the sake of comparison [FDH∗15] (IsomatchHG). (b,e) IsomatchHG iteratively splits the

grid and with it the ensemble members into equally-sized partitions yielding screen-space efficient grid like LDGs, but cannot prevent strong

discontinuities across grid neighbors (e.g., placing members with strong downward trend directly next to those with positive development in

the grid center in (b)). It also generally achieves less homogeneity within clusters, forcing a much higher granularity for the same disparity

(uncertainty) threshold τ , and scatters similar members across the grid (e.g., motorbikes in (e)). (c) Hierarchical clustering (Ward linking)

minimizes the variance of the clusters, but does not consider (treemap) placement, resulting in spatial discontinuities and separated members.

difficult, especially when there are no associated hierarchies, facets,
parameters, etc. to provide some explicit structure. Many scientific
ensembles further exhibit smooth distributions of members which
means that they are difficult to expressively classify or cluster into
distinct groups. This is often the case with simulation ensembles—
even if some cases with characteristic behavior or structures may
be identified by an expert, a range of results typically falls between
such distinctive categories, like the channel structures in Fig. 1 ob-
tained via Markov-Chain Monte Carlo (MCMC) [RXN20] or stock
developments in Fig. 2a–c from a Black-Scholes Model [BS73].
This paper proposes a computationally scalable approach for creat-
ing level-of-detail grids to also achieve visually scalability for large
ensembles without associated structure or distinct partitions, solely
based on distances between members.

Common state-of-the-art distance-preserving grid lay-
outs [FDH∗15, QSST10, SG14] present members in the cells of
a grid such that similar members are close. They are well-suited
for adequately conveying continuously changing members while
making efficient usage of screen space. However, showing visual
representations for ensembles with hundreds of members and more
does not scale visually due to too many tile images shown in tiny
cells (e.g., Fig. 1a). Hierarchical extensions have the potential to
address visual scalability at least, but previous methods toward
this yield grids with strong discontinuities and separated similar
members (Fig. 2b and Fig. 2e). Alternatively, hierarchical clustering
methods are able to generate homogeneous partitions of the
provided data, but corresponding treemap representations—apart
from being not as screen space-efficient as grid-based techniques—
cannot adequately reflect similarities across clusters (Fig. 2c). This
is particularly problematic for ensembles whose members cannot
clearly be separated into distinct classes.

In this work, we introduce level-of-detail grid layouts (LDG)
along with an efficient optimization approach to generate them for
large ensembles. LDGs combine the screen space-efficiency and
high neighborhood similarity of traditional distance-preserving grids
with the visual scalability of hierarchical approaches (Fig. 1, Fig. 2a).
(2D) grids are organized in a quadtree: leaves (height h = 0) corre-

spond to one grid cell—each featuring one assigned member—while
inner nodes (h > 0) cover a quadratic range of cells (2h×2h). Inner
nodes present the corresponding 4h members from the respective
leaves aggregated in one image tile, also directly conveying involved
disparity, if possible (e.g., the variation of channel structures in Fig. 1
or the range of stock prices in Fig. 2). LDGs can convey an ensemble
overview with nodes at uniform heights—whereas each tile repre-
sents about the same number of members (Fig. 1b)— or via adaptive
refinement in which grid areas with higher disparity are depicted
with finer granularity (e.g., Fig. 2d). They also support arbitrary
local refinement by a user during exploration (e.g., Fig. 1b–d).

LDGs do not aim to partition the data into distinct clusters but use
a hierarchical grid structure for level-of-detail presentation. LDGs
are optimized for homogeneity (minimizing disparity) within in-
ner nodes and across grid neighbors when assigning members to
cells—based on pairwise distances between members only. Our
optimization approach follows a progressive approach, iteratively re-
fining the LDG and quickly yielding expressive results. The parallel
grid optimization method employs a hierarchical scheme to achieve
computational scaling to large ensembles; we demonstrate this for
up to a million members in this paper.

The main contribution of this work is the introduction of LDGs
along with a computationally scalable optimization approach to
generate the representation from large ensembles. To the best of our
knowledge, LDGs are able to convey substantially larger ensembles
than previous grid layout techniques. Below, the paper reviews re-
lated work (Sec. 2), introduces LDGs (Sec. 3), and describes the opti-
mization approach to generate them (Sec. 4). Utility is demonstrated
via diverse use cases (Sec. 5), performance evaluation (Sec. 6), and
further comparison against prior approaches (Sec. 7). The paper
concludes with a discussion and outline of future work (Sec. 8).

2. Related Work

Distance-preserving techniques place data points (e.g., ensem-
ble members) as graphical elements such that similarity relation-
ships are reflected. Multidimensional projection techniques like t-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

248

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

SNE [vH08], LAMP [JCC∗11], or UMAP [MHM18] have emerged
as fundamental analysis tools, but using information-rich tiles
with 2D visualizations generally yields overlap and visual clut-
ter [JCC∗11]. While various techniques introduce additional mea-
sures to prevent overlaps—e.g., RWordle [SSS∗12], IncBoard [PO-
dAL10], ProjSnippet [GRP∗14], and UnTangle Maps [CLG16]—
they tend to inefficiently use visual space.

Addressing this, other approaches directly assign members to
cells under the consideration of similarity relationships. Self-
Organizing Maps (SOMs) are unsupervised neural networks cre-
ating a discretized lower-dimension grid representation of the
data [Koh90]. However, several members are generally mapped to a
single grid cell, yielding overlap on the composed grid [FDH∗15,
QSST10]. Generative Topographic Mapping is a probabilistic ap-
proach conceptually related to SOMs also suffering from over-
lap [BSW98]. Spectral Hashing creates codes such that their Ham-
ming distance approximates member distances [WTF09]. Codes are
split into bins to yield a grid mapping, but hash collisions also yield
overlaps. Starting from an input projection, NMAP employs a space-
filling method to generate regular placements in power-of-two grids
via recursive bisection and scaling [DSF∗14]. DGrid also employs
binary space partitioning in combination with multidimensional
projections [HP19]. CorrelatedMultiples employ a constrained mul-
tidimensional scaling solver that preserves spatial proximity while
forcing items to fit within a fixed region [LHNS18]. Self-Sorting
Map uses a permutation procedure to maximize the cross-correlation
between member and cell distances by swapping cells in different
(sub)quadrants [SG14]. The optimization procedure proposed in this
work bears some similarity in that it also partitions members into
sub-groups and locally solves optimization problems. Kernelized
Sorting solves a quadratic assignment problem from members to
grid cells [QSST10]. IsoMatch [FDH∗15] projects data to a plane us-
ing ISOMAP [TSL00], creates a bipartite graph between projection
and grid positions, and finally uses the Hungarian method [Kuh55]
for assignment. The Hungarian method is also used to create LDGs,
but crucially it is applied to partitions of fixed size instead of the
full ensemble, avoiding scalability issues arising from the approxi-
mately cubic complexity. We compare against Kernelized Sorting
and IsoMatch in Sec. 7 (also see supplemental material).

Grid layouts generally suffer from visual scalability problems
for large numbers of members: representing each member on its
own results in too many and too small tiles to be useful for analysis.
Hierarchical techniques can significantly improve scalability, and
various hierarchical visualization approaches have been proposed
for geographical, hierarchical or multivariate data with different
facets [SHS11,SDW09] (e.g., via treemaps [WD08,SMS∗20]). How-
ever, the data must have respective information associated with it,
or it needs to be created prior to the presentation. Hierarchical clus-
tering builds a hierarchy of clusters either bottom-up via merging or
top-down via splitting, aiming to minimize the dissimilarity within
clusters [Joh67]. However, the partitioning into distinct clusters can
be ambiguous for ensembles with non-distinct member groups, and
it is unaware of the targeted visual presentation (see Fig. 2c).

Extensions beyond plain 2D grids have been proposed for data
with no explicitly associated hierarchy to tackle visual scalability,
but they exhibit significant shortcomings regarding the aim of ex-

plorable visual summaries. For this, Kernelized Sorting [QKTB10]
simply replaces the 2D grid with a 3D pyramidal version, whereas
each cell of the pyramid has one member assigned to it at any height.
This does not yield a hierarchy, and the grid cells toward the top of
the pyramid do not summarize members below. Likewise, some tech-
niques like those based on SOMs allow to choose smaller grids and
assign multiple members per cell, yet the partitioning may be highly
imbalanced and there is no consistent global representation on the
level of individual members. An extension to IsoMatch [FDH∗15]
generates a hierarchical structure top-down by iteratively clustering
ensemble subsets, exemplified in the paper for 4096 members repre-
sented by 4×4-grids. Each cell contains 4096/16 = 256 members
in one top-level grid (choosing one image as representative per cell).
For each of the 16 top-level grid cells another 4×4 grid is created
(here, one cell contains 16 members), for which then again individ-
ual 4×4-grids are produced with one member per cell. Critically,
each of these 1+16+256 = 273 grids is generated and shown inde-
pendently from the others, and there is no consistent layout across
nodes. The full ensemble is only summarized at the 4×4 top-level
grid, with no flexibility of changing the granularity of the overview
during exploration. Selecting any node for a closer view only con-
veys these corresponding members without embedding into a larger
context. In contrast, the aim of this paper is a consistent global
representation with high similarity within hierarchy branches and
across neighbors in the grid. A comparison to a further extended
version of this original approach toward compatible grid layouts
called IsomatchHG is provided in Fig. 2 and Sec. 7.

Other related approaches include a SOM-based method for
interactive browsing that organizes image collections as a con-
nected graph with edges between similar images [BHM16]. Pan
et al. [PTD∗21] generate visually pleasing layouts from image col-
lections based on design principles and cognitive psychology, using
gradient backpropagation akin to the training procedure of neural
networks. Gomez-Nieto et al. [GNCM∗16] employ multidimen-
sional projection and mixed integer optimization to preserve seman-
tic relations and efficiently use display space in arrangements of
geometric primitives. Small multiples feature grid views providing
different perspectives on a single dataset [Tuf01, p. 170]. They can
be used for interactive data exploration [vdEvW13] and have been
applied to study flow maps [BBL12], movement and flow simula-
tions [CFSL07], and biomechanical motion data [KERC09]. An
extension by Meulemans et al. adds spaces when placing small mul-
tiples into a grid to improve visual clarity [MDS∗17]. This is related
to the concept of void members in this paper (see Sec. 3).

3. Level-of-Detail Grid Layout (LDG)

LDGs employ a hierarchical approach to scale distance-preserving
grid layouts to large ensembles both visually and performance-wise.
For effective level-of-detail representation, we target high similarity
both of neighbors in the grid (enabling expressive exploration of
similar members) and within branches in the hierarchy (yielding
meaningful aggregates). In contrast, hierarchical clustering tech-
niques (in combination with treemap presentations for example)
solely focus on homogeneous groups without accounting for the
spatial layout for the presentation (e.g., via treemaps, Fig. 2c), while
traditional grid layouts only take neighborhood into account (see

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

249

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

0
γ=0.34

1
γ=0.42

2
γ=0.46

3
γ=0.50

4
γ=0.47

5
γ=0.49

6
γ=0.54

7
γ=0.55

8
γ=0.50

9
γ=0.59

10
γ=0.67

11
γ=0.75

12
γ=0.48

13
γ=0.57

14
γ=0.66

15
γ=0.72

16
γ=0.46

17
γ=0.42

18
γ=0.51

19
γ=0.48

20
γ=0.33

21
γ=0.27

22
γ=0.39

23
γ=0.36

24
γ=0.51

25
γ=0.40

26
γ=0.61

27
γ=0.53

28
γ=0.47

29
γ=0.38

30
γ=0.53

31
γ=0.45

32
γ=0.83

33
γ=0.83

34
γ=0.60

35
γ=0.66

36
γ=0.69

37
γ=0.71

38
γ=0.48

39
γ=0.60

40
γ=0.48

41
γ=0.58

42
γ=0.39

43
γ=0.52

44
γ=0.66

45
γ=0.68

46
γ=0.53

47
γ=0.58

48
γ=1.00

49
γ=0.63

50
γ=0.67

51
γ=0.51

52
γ=0.56

53
γ=0.51

54
γ=0.53

55
γ=0.46

56
γ=0.67

57
γ=0.63

58
γ=0.57

59
γ=0.51

60
γ=0.54

61
γ=0.45

62
γ=0.49

63
γ=0.37

64
Δ=0.08

65
Δ=0.09

66
Δ=0.09

67
Δ=0.08

68
Δ=0.08

69
Δ=0.08

70
Δ=0.07

71
Δ=0.09

72
Δ=0.21

73
Δ=0.15

74
Δ=0.09

75
Δ=0.09

76
Δ=0.41

77
Δ=0.14

78
Δ=0.10

79
Δ=0.09

80
Δ=0.33

81
Δ=0.30

82
Δ=0.50

83
Δ=0.47

84
Δ=1.00

h = 1

h = 2

h = 3

h = 0

(a) node-link view of the LDG quadtree structure (b) grid at height h = 0

Figure 3: LDG for 63 members of the Turbo colormap and one grayscale color in (a) node-link view and (b) grid view at highest granularity.

Nodes depict the (average) color of its member(s), node id (large, top), and normalized evaluation value γ (h = 0) or disparity ∆ (h > 0).

detailed discussion in Sec. 7). A previous hierarchical extension for
Isomatch separately conducts layouting and member partitioning
and exhibits significant shortcomings (e.g., Fig. 2b, Sec. 7). LDGs
goal is not to partition the data into distinct clusters but yield one
consistent grid representation suitable for hierarchical presentation.

Structure. LDGs employ a quadtree in which every node n ∈ N

has a corresponding quadratic area in the grid: nodes Nh ⊂ N at
height h cover 2h × 2h cells (Fig. 3, N0 : 1,N1 : 4,N2 : 16, etc.).
Provided with the specified grid dimensions, a quadtree is created
that is large enough to fully cover this grid. All leaf nodes N0 ⊂ N

that are not part of the defined grid area are left unused (implemented
by statically assigning so-called void members to them, see below).
Throughout this paper, we enumerate heights and node ids starting
from the leaves, e.g., for a grid of 64 cells, the node ids {0, . . . ,63}
are at height h = 0, {64, . . . ,79} are on h = 1, {80, . . . ,83} are on
h = 2, and finally 84 is the root node on h = 3 (Fig. 3a). Nodes
are mapped to grid cells by recursively subdividing the grid area
top-down from the root nroot, associating the top-left quadrant with
the first child, the top-right quadrant with the second child, and
the bottom-left and bottom-right quadrant with the third and fourth
child, respectively (Fig. 3b). In Fig. 3, node 84 at h = 3 represents
the leaf node range {0,1, . . . ,63}, which is split for its children at
h = 2 into the index ranges {0, . . . ,15} for node 80, {16, . . . ,31} for
81, {32, . . . ,47} at 82, and finally {48, . . . ,63} at 83. Here, node 80
represents the top-left quadrant, 81 the top-right quadrant, and 82
and 83 the bottom-left and bottom-right quadrant, respectively.

Optimization Objective. Assignment A : N0 → T maps each
leaf node ∈ N0 to a member from data collection T . Inner nodes
n ∈ N>0 contain the aggregate t̄(n) of members at corresponding
leaves N0(n). Below, N0(n) = {n0 ∈ N0 | n ∈ N↑(n0)} denotes all
leaves descending from n, whereas N↑(n) provides all ancestors of
n—nodes on the path to nroot (e.g., N0(72) = {32,33,34,35} and
N↑(32) = {72,82,84} in Fig. 3). LDG’s objective function Γ : A→
R quantifies the associated cost of assignment A (lower is better),
based on pairwise distances between members d : T ×T → R. Two
goals are considered in optimizing A: (G1) homogeneous branches
in LDG and (G2) similarity across neighboring nodes in the grid. To
quantify homogeneity (G1), LDG objective function Γ determines
differences of members t ∈ T to aggregates t̄(n) of inner nodes
n ∈ N>0 further up in the hierarchy. As a component of Γ, the
evaluation value γ̇ : N×T ×A→ R of assigning a member t ∈ T to
a node n ∈ N0 is computed as follows under consideration of A:

γ̇(n, t,A) = ∑
n↑∈N↑(n)

d(t, t̄(n↑)) with t̄(n↑) =
∑n∈N0(n↑) A(n)

|N0(n↑)|
. (1)

Akin to other distance-based techniques, we further strive for high
similarity across neighbors in the grid layout (G2). 4-neighborhood
is considered throughout this paper, i.e., differences to the left, right,
top and bottom neighbors (fewer at the grid boundary). Neighbors
can be from different tree branches, e.g., neighbors of node 48 are
nodes 26, 37, 49, and 50 in Fig. 3b. Cost function γ : N×T ×A→R

incorporates G2 as well as G1 by not only assessing γ̇ (Eq. 1) for a
node n but for its neighbors N+(n) as well:

γ(n, t,A) = γ̇(n, t,A)+
1
4 ∑

n+∈N+(n)

γ̇(n+, t,A). (2)

The factor 1/4 reflects that four neighboring branches are considered,
and has been chosen to attribute equal weight to G1 and G2. For
efficiency, results obtained for different nodes during the traversal
are cached, e.g., node 48 is evaluated against nodes 76, 83, and 84
only once. Finally, objective function Γ : N0×A→ R simply sums
up the evaluation values of all leaf nodes N0 under assignment A:

ΓT,N0(A) = ∑
n0∈N0

γ(n0,A(n0),A). (3)

Void members can be used in addition to regular ensemble members
to fill grids and increase assignment flexibility. They are generally
treated like regular members with two main differences: distance
d := 0 when a void member is involved, and void members do not
contribute to representations t̄ at inner nodes (in Eq. 1, |N0(·)| only
counts leaves to which regular members are assigned).

Presentation. Each member is visually represented by a tile that
covers the respective grid cell. Tiles of inner nodes (i) are sized to
span a range of grid cells, and (ii) are further scaled to depict the
ratio of regular to void members. Different aggregation schemes can
be used to generate the representation at inner nodes, depending on
the use case (see Sec. 5). Optimally, tiles expressively summarize
comprised members, while also conveying inherent disparity. For
example, the representation of channels in soil (Fig. 1) reflects
commonalities of underlying members, but also directly conveys
areas of high disparity. The stock use case (Fig. 2 (a–c)) depicts
the range of individual trends. For some cases—like the Caltech
image data base (Fig. 2 (d–e))—it may not be feasible to create such
aggregates comprising all members A(n) = {A(n0)∀n0 ∈ N0(n)}
associated with a node n in a single tile, and instead the most central
member t ∈ T is chosen as representative: min

t∈A(n)
∑t∗∈A(n) d(t, t∗)2.

Exploring the LDG essentially means changing at what granular-
ity certain areas of the grid are visible (i.e., which nodes are shown).
In this work, we consider rather basic interaction modalities, which

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

250

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

allow to adjust the set of visible nodes in three different ways. First,
making all nodes of a specified height h visible yields good compa-
rability across equally-sized tile images for an overview of member
content—possibly reflecting disparity in tile representations (e.g.,
Fig. 1b). Second, directly interacting with a tile at height h allows to
expand respective nodes to h−1 or collapse them to h+1 (i.e., sub-
stituting the tiles of four siblings by the tile of their parent, or vice
versa). Third, disparity ∆(n) is a normalized measure of how well
an aggregate representation t̄(n)—the average in feature space of all
members assigned to leaves of n (Sec. 4)—captures its members:

∆(n) =
∆′(n)

∆′(nroot)
with ∆′(n) = ∑

n0∈N0(n)

d(A(n0), t̄(n)). (4)

The measure is normalized via the disparity at nroot, the aggregate
of all members. Visible nodes (whose tiles are shown in the grid
presentation) are then determined by going from leaves to the root,
collapsing nodes n—i.e., they become invisible and their parent node
is set to visible—as long as their disparity ∆(n) does not exceed
τ . Adaptive selection conveys an impression of the distribution of
members: grid areas with more diverse members are shown in much
higher detail than largely homogeneous areas.

4. LDG Optimization

LDGs are generated by finding an assignment A of tiles to grid
cells (or leaf nodes) N0 such that cost function Γ is minimized:
min

A
Γ(N0,A). Conceptually, a specific assignment A is one element

of the set of all possible permutations of tiles. In total, there are
| N0 |!/(| N0 | − | T |)! combinations, with | N0 | being the number of cells
in the grid, and | T | denoting the amount of regular (non-void) tiles.
Accordingly, it can be regarded as a combinatorial optimization
problem, and even more concretely as an assignment problem. Lin-
ear assignment—which only considers the cost of assigning one
element of one set to an element of another one—can be solved
in polynomial time using the Hungarian algorithm [Kuh55]. In the
quadratic assignment problem, the cost between assigned elements
is considered as well, rendering the problem significantly more
complex [KB55]—it has been proven to be NP-hard [SG76]. Our
problem bears some resemblance to the quadratic assignment prob-
lem in that (virtually all) other assignments have an impact on the
cost associated with the assignment of a single element due to the
considered neighborhood and our hierarchical structure in particular.
Such problems are typically infeasible to address with exact meth-
ods that find the optimal solution [MR01], and commonly heuristics
are employed instead [AZ02]. Heuristics aim to identify a meaning-
ful solution by exploring a promising part of the search space via
so-called local search. Our local search approach for LDG genera-
tion independently considers subsets of the whole permutation and
solves linear assignment problems within them.

Approach Outline. The problem of minimizing the objective
function Γ is challenging as ensemble sizes can be in the order of
millions and practically the full assignment A has an impact on
the cost of a single member placement. Our progressive approach
starts from randomly initialized A and repeatedly runs local search
optimization passes to improve A. A pass starts with (randomly)
selecting the hierarchy level h on which to exchange LDG nodes

64

65

66

67

68

69

70

71

73

75

77

72

74

76

78

79

73

36 37 38 39

64

0 1 2 3

64

0 1 2 3

72

32 33 34 35

72

56 57 58 59

73

0 1 2 3

lo
c

a
l
u

p
d

a
te

lo
c

a
l
o

p
ti

m
iz

a
ti

o
n

p
a

rt
it

io
n

in
g

h
e

ig
h

t
s
e

le
c

ti
o

n

74

68

71

77

66

79

75

67

78

69

65

76

73

70

64

72
∈ T

0 ∈ N
0

64

∈ A*
h=1

∈ A

c
o

m
m

it
 u

p
d

a
te

(i
f

b
e
tt

e
r)

∈ N
h=1N*

h=1

T
b=70

T
b=73

T
b=64

T
b=72

Figure 4: Local search optimization: in each pass, select a level

(here h= 1), shuffle and partition respective nodes into sets N∗h ⊂Nh,

optimize locally, and finally update the assignment (Alg. 1).

Nh (height selection, Fig. 4). For local search, Nh is split into equally-
sized partitions (partitioning), before optimizing the assignment
within each considering the input assignment A (local optimization).
A is not adapted during local optimization, but instead changes are
reflected in a copy Â. Â is adjusted by reassigning the 4h members
belonging to each node (local update), preserving their local order
(essentially moving sub-grids). Finally, Â replaces assignment A if
it constitutes an improvement (commit update when Γ(Â)< Γ(A)).

Conceptually, a major “simplification” of this heuristic is that
while optimizing the assignment in an iteration (to yield an up-
dated version Â), it evaluates the cost γ for each node on the basis
of the assignment A from the prior iteration. As we demonstrate
throughout this paper, this approach yields high-quality, converging
results. It has two major benefits that allow efficiently processing
large data collections: (1) sub-problems in partitions can be solved
independently in parallel to each other (avoiding conflicts by de-
ferring updates to A to the end of a pass after local optimization),
and (2) linear assignment can be used within each partition. An-
other crucial aspect is that the assignment is iteratively optimized
at different heights h, utilizing the hierarchical structure of LDGs
to operate on different levels of granularity: fine-granular changes
(at low heights) can locally form smaller areas of similar members,
while course-grained changes rearranges whole such areas to form
larger homogeneous regions in the grid.

Below, the local search procedure is described in detail, before
discussing parallel implementation, complexity, and termination.

Local Search. Each pass considers all LDG nodes Nh at
height h, optimizing the assignment by exchanging 4h members
at once (Alg. 1). h is randomly chosen prior to each pass (height

selection in Fig. 4), with a probability proportional to 2−h, reflecting
that larger numbers of nodes at lower heights require more adapta-
tion (see Sec. 6). We generate a shuffled list of node indices Ñh for
height h (Line 3) and loop over its partitions N∗h ⊂Nh (Line 5, Line 6,
partitioning in Fig. 4). The partition size k ultimately does not af-
fect assignment quality but performance characteristics: it balances
the computational cost of a pass—lower for smaller k—against the
required number of passes–lower for larger k (k = 10 is used in
this work, Sec. 6). The assignment within each partition N∗h is indi-
vidually optimized. For this, we virtually set all leaves of involved

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

251

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

Algorithm 1 Local search pass for generating LDGs. A pass oper-
ates on height h, independently optimizing partitions N∗h ⊂ Nh.

1: function LOCALSEARCHPASS(A,N,h,k)
2: ⊲ consider all nodes Nh on height h in this optimization pass
3: Ñh← shuffle(Nh)
4: ⊲ identify best assignments within partitions
5: for all i ∈ {0,k,2k,3k, . . . , |Ñh|−1} do

6: N∗h ←{Ñh[i], . . . , Ñh[i+ k−1]}
7: ⊲ (virtually) assign void members ∅ to involved leaves
8: A∅←{A | A(n0) =∅ ∀n0 ∈ N0(N

∗
h)}

9: ⊲ cost matrix C∗l for assigning members ∈ Tb to node na

10: for all {(na,nb) | na,nb ∈ N∗h} do ⊲ loop over all node pairs

11: Tb←{A(n0) | n0 ∈ N0(nb)} ⊲ members at leaf nodes

12: C∗l (na,Tb)← ∑tb∈Tb
γ(na, tb,A

∅) ⊲ evaluate tb ∈ Tb at na

13: ⊲ solve linear assignment problem with cost matrix C∗l
14: A∗l ← linearAssignment(C∗l)
15: ⊲ update Â, maintain order among leaves of same node nh

16: Â← Â∪{A(N0(nh))← A∗h(nh) ∀nh ∈ N∗h}

17: ⊲ only use new Â if it actually reduces cost w.r.t. A

18: if ΓNh,T (Â)< ΓNh,T (A) then ⊲ evaluate from height h upward

19: return Â

20: else

21: return A

nodes N0(N
∗
h) to void members to remove their impact on node

representations, yielding A∅ (Line 8). This avoids a bias toward the
current state when considering changes to the assignment.

Matrix C∗h depicts the cost of assigning the members Tb (currently
assigned to node nb, |Tb| ≤ 4l) to node na (Line 10–Line 12). With
C∗h a linear assignment problem is then solved to determine new
member assignments (Line 14, local optimization in Fig. 4). Note
that this addresses a simplified version of the actual problem even
for an individual partition, as the influence of the other assignments
within that partition is neglected. With the cubic complexity of linear
assignment, this is significantly cheaper and eventually more effi-
cient than checking all possible permutations to account for mutual
influence. The changes determined for inner nodes are transferred
down to leaves for new assignment Â, maintaining the local order of
members (i.e., exchanging whole sub-grids, Line 16, local update in
Fig. 4). When the assignment is well-refined already in later stages,
it can occur that Â is actually worse than A due to the employed
simplifications. To quantify this, we compare the respective Γ from
the chosen height h upward and keep the assignment with the lower
score (Line 18–Line 21, commit update in Fig. 4).

Implementation and Complexity. The local search procedure
can be interrupted after each pass, e.g., after a time budget is ex-
hausted or when the rate of improvement has become slow, indicat-
ing convergence (see Sec. 6). In practice, the application context
and its constraints are essentially the decisive factors to choose a
suitable criterion. Partitions N∗h can be processed in parallel with-
out incurring read-write conflicts: different subsets N∗ ⊂ Nh do not
overlap, and changes during a pass are applied to a copy Â of the
assignment and not the input assignment A which is considered for
the evaluation within partitions (Alg. 1, Line 8 & Line 11). This pa-
per uses multicore CPUs to be less constrained in terms of memory,

but large ensembles would otherwise be a great fit for GPUs (im-
plementation and evaluation are planned for future work). We use
a 32-bit Mersenne Twister [MN98]—an equidistributed uniform
pseudo-random number generator—for generating initial assign-
ments, shuffling nodes (Alg. 1, Line 3) and selecting heights h prior
to each local pass.

The computational complexity of a pass on height h is

O

(

|Nh| (k log4(|Nh|) |FT |
|T |

|N0|
+ k2)

)

, (5)

i.e., it scales quasilinearly with the number of nodes |Nh|, quadrati-
cally with partition size k, and linearly with the size of a member’s
feature representation |FT |. It contains the number of partitions (in
O(Nh/k)), the complexity of the Hungarian Algorithm (≈ O

(

k3
)

),
and the cost for evaluation γ (O(|FT | log4|N0|). An approximately
linear impact is practically measured for the comparably small val-
ues of k(∈ {2, . . . ,40}) considered in this work (Sec. 6), i.e., the
corresponding linear term in Eq. 5 appears to be more influential in
this scenario. The cost of distance function d(·, ·) is in O(|FT |) for
both the Euclidean and the Cosine distance employed in this work;
the ratio |T |/|N0| of ensemble size to grid size reflects that no dis-
tance computations are issued for void members). Space complexity
is determined by the required storage for aggregate representations
of all nodes N: O(|FT | |N|).

5. Use Cases

LDGs are now applied to three diverse use cases: an image
dataset with extra feature representation from deep learning [LFP04,
LFP06] (Sec. 5.1), a million stock price predictions from a mathe-
matical finance model (Sec. 5.2), and channel structures in soil from
Markov chain Monte Carlo (MCMC) with domain scientist feed-
back (Sec. 5.3). A simple interactive web viewer—ported from a Qt
desktop application—allows readers to practically explore LDGs:
https://ldg-demo.github.io.

5.1. Image Collection with ML-based Feature Space

We now apply LDGs to image collection Caltech 101 [LFP04,
LFP06]). The collection contains 9144 images (≈ 300× 200 px),
featuring 101 attributed categories like faces, airplanes, watches,
pianos, etc. A color frame indicating its labeled category is added
for the largest 19 groups (others have a gray frame, categories
are underlined accordingly in the text). Images within a category
can be highly diverse—in particular the background category con-
tains a wide variety including foods, landscapes, boardgames, an-
imals, illustrations, icons, etc. — or show significant overlap in
content (like faces and faces easy). Crucially, this categorical in-
formation is not used directly in our optimizer. Instead, the val-
ues at the layer prior to the output of a Convolutional Neural Net-
work (CNN) classifier trained with these labels serves as expressive
feature representation FT (|FT |= 2048) of the image’s content for
LDG generation. Similarity is assessed via the cosine distance mea-
sure: dcos = 1− fa· fb

| fa|| fb|
(fa, fb ∈ FT). Members are placed in a grid

layout of 80×128 (9144 fixed and 10240−9144 = 1096 flexibly
placed void members). The image whose feature vector has the
smallest total distance to all others serves as tile representative at
inner nodes (akin to Fried et al. [FDH∗15]).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

252

https://ldg-demo.github.io

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

(a) height h = 0 (b) height h = 3 (c) adaptive selection (τ = 0.5) (d) zoom & refine from (c) to h = 1

Figure 5: LDG for Caltech 101. (a) Grids with 9144 visible nodes on h = 0 exhibit too many and too small tiles for an expressive summary.

(b) h = 3 (43 = 64 members/node) yields more clarity, yet diverse images may be summarized in one representation. (c) Adaptive selection

collapses homogeneous areas and expands diverse regions. (d) Investigation of big cats down to h = 1 from (c) (black rectangle, center right).

Images from the same category are typically positioned to be
close in the grid and the quadtree hierarchy, e.g., airplanes or motor-
bikes (Fig. 5). This can also apply to similar images from different
categories, like faces and faces easy, or helicopters and airplanes,
whereas images from the diverse background category are scattered
and positioned in the vicinity of similar neighbors of other categories
throughout the grid. This demonstrates the emergence of similar
features for similar objects during training, and indicates the benefit
of using feature vectors to organize members beyond their original
categorization, eventually allowing LDGs to expressively reflect
image similarity. For instance, zooming into Fig. 5a demonstrates
this for mammals (e.g., wild cats, cougar, kangaroo, dalmatian, etc.),
sea animals (e.g., dolphins, bass) or flowers (sunflower, lotus, water
lily). Watches and inline skates are placed next to motorbikes and
wheelchairs, presumably due to predominant circular shapes. Void
members are generally positioned between groups of similar images.

While height h = 0 provides a view that is too fine-granular
for large collections (Fig. 5a), h = 3 gives a much clearer quick
overview on the dataset (Fig. 5b). Adaptive node selection reflects
the similarity of assigned members and further expands visible
nodes in more heterogeneous grid areas (see Fig. 5c). Homogeneous
areas are represented by large tiles, whereas more heterogeneous
regions exhibit higher granularity. It can clearly be seen that there
are around a thousand airplanes, faces, and motorbikes (the largest
tiles belonging to visible nodes are on h = 4 , i.e., representing up
to 256 images). This also serves as a meaningful basis for further
exploration, as a quick overview can be gained on predominant types,
while also reflecting more diverse grid areas. Fig. 5d explores the
≈ 300 big cats from Fig. 5c more closely by expanding respective
visible nodes to h = 1 . Among others, it can be seen that leopards—
in addition to being close to related categories like cougars, and
wildcats—are also located next to crocodiles. The shared occurrence
of spotted patterns and the pictures of leopards at waterholes are
possible explanations for their apparent similarity in feature vectors.

5.2. Stock Price Simulation

Geometric Brownian motion is commonly used in mathematical
finance to predict stock prices via the Black–Scholes model [BS73]—
considering long-term trends and stochastic shorter-term fluctua-
tions. A large prediction ensemble allows model-based assessment
of different outcomes and their likelihood. This use case consid-
ers 1048576 (410) predictions for German electric utility company
E.ON for the 23 working days in August 2019 (Fig. 6), based on Xe-
tra Exchange data from the previous month (Fig. 7). The LDG has a
total height of 10, no void tiles are used. Stock prices are compared
via Euclidean distance, tiles depict the range of underlying trends.

Fig. 6a provides a comprehensive overview on stock predictions
with visible nodes at height h = 7 , i.e., conveying 47 = 16384 out-
comes each. There is a variety of characteristically different stock
developments (cf. annotations in Fig. 6a), with the majority exhibit-
ing a slight downward trend, essentially reflecting the development
observed in July. However, there is also a fraction of cases that
depict a soaring stock with significant gains (rectangle in Fig. 6a),
which is expanded for a closer look in Fig. 6b. The share of cases
that at the end of August approach the stock’s maximum price is
considered in particular. Interestingly, when drilling down further,
tiles indicate that some price developments with significant gains at
the end of the month even exhibit a (mild) downward trend in the
first couple of days. Exploring this down the LDG to the level of
individual model predictions in Fig. 6c shows that there are indeed
a couple of developments starting slow but eventually reaching high
prices. One member (highlighted in Fig. 6c) even closely approaches
the maximum price of the whole ensemble toward the end of August
despite stagnating in the first couple of days.

5.3. Channel Structures in Soil

This use case considers an ensemble of 95000 channel structures in
soil that has been obtained via Markov chain Monte Carlo (MCMC).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

253

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

starts stable, then falls largely stable

strong decline

weak decline

decline after short initial increase

largely neutral w/ periods of rising prices

booming stock

(a) h = 7 : each node =
∧

47 = 16384 outcomes

price risesprice falls
point of origin

(b) investigate booming prices from (a)
(c) explore scenarios stagnating at first from (b)

Figure 6: One million stock predictions. (a) From an overview on h = 7 , (b,c) rising stock prices are explored to individual predictions (h = 0).

E
.O

N
 s

to
c
k
 p

ri
c
e

business days in July 2019

Figure 7: Original stock prices obtained from Xe-

tra Exchange for a German electric utility company

(E.ON) from July 2019 (note that the depicted stock

price range differs from charts in Fig. 6).

MCMC conducts inverse calculations of channel structures based
on sparse, non-transient hydraulic head measurements. Each sample
consists of a grid of 50×50 scalar values that represent the estimated
hydraulic conductivity of the soil. Members are placed in a LDG
of height 9 and a 256× 512 grid layout (i.e., there are 131072
fixed and 131072−95000 = 36072 flexibly placed void members).
We collected feedback from a domain scientist who generated and
analyzed this data in his research. Currently, the standard evaluation
approach is to initially study (i) the variation in channel geometry for
a small selection of members and (ii) the average across all members
to assess the probabilities of channels at different locations (our
aggregation scheme for tiles reflects this accordingly, Fig. 1). The
expert further employs k-means clustering, for which two main
issues were noted: (1) choosing an adequate number of clusters, and
(2) significantly different clustering results for similar data.

The expert notes that LDGs can improve the analysis in dif-
ferent ways. LDGs can handle large ensembles visually as well
as performance-wise, and yield stable results for a reliable analy-
sis (Sec. 6). They provide a comprehensive summary of structures
from MCMC, and selecting visible nodes at different heights or
via adaptive selection is useful for further exploration (e.g., Fig. 1).
Highly aggregated views showing fewer tiles are generally preferred
by our expert: he notes that viewing too many tiles at once induces
a high cognitive load and is less effective for his analysis.

6. Performance Analysis

LDG’s performance is now investigated via 16 individual runs for
each case conducted using an AMD Ryzen 7 2700X 8-Core Proces-
sor and 32 GB RAM. Fig. 8a–c shows that progressive refinement
curves qualitatively depict similar development toward convergence:
they start with rapid significant improvements, significantly slowing
down closer to the optimum. The comparably narrow range around

the median in the plots indicates the good-natured refinement be-
havior that yields qualitatively comparable results regardless of the
seed initializing the pseudo-random number generator. Results from
the eight runs with the lowest seeds from Fig. 8b are compared in
Fig. 9a (tiles from one run are organized in one column i00–07):
while there naturally is some variation, the basic structures are sim-
ilar and demonstrate no significant impact of stochastic factors in
the result. This is also reflected in the respective Γ-values. Results
at different stages of refinement for one run are shown in Fig. 9b–
d. The initial random assignment yields similar aggregated results
across nodes with high disparity (b, with cells in bottom rows only
featuring void members). 32 passes already significantly reduce
disparity and clear structures emerge in tiles (c), yielding a structure
that remains largely stable (at h = 6) as predominantly fine-granular,
local adaptations occur (d). The LDGs presented in Sec. 5 are the
results with the lowest Γ-values from this study with 12352 refine-
ment passes for Caltech, 4224 for MCMC, and 5696 for Stock. This
almost directly reflects the number of conducted passes per case in
the experiments: while improvements are insignificant at later stages
as discussed above, Γ still slightly decreases at slow rates.

As discussed in Sec. 4, the number of members—see Stock study
in Fig. 8d—as well as the number of elements in a member’s feature
representation—compare across use cases in Fig. 8d—have a practi-
cally linear impact on the cost of an individual pass. Furthermore,
each increase in height h deceases the number of considered nodes
by ≈×4, which is also linearly reflected in lower costs—see Cal-
tech in (d). The variant MCMC/N256k with more void members
but the same quadtree height compared to the standard MCMC
configuration yields faster LDG computation as the higher sparsity
of the tree reduces the number of distance computations. The very
narrow (barely visible) black error bars also indicate stable pass
costs. Fig. 8e shows by example that the range of partition sizes
k = 5,10,20 yields similarly good performance, with smaller k = 2
and larger k = 40 performing worse. We use k = 10 throughout this
work. k appears both as linear and quadratic term in Eq. 5. Practi-
cally, we observe a roughly linear growth of average pass costs for
the comparably small partition sizes considered in this work (k = 2 :
12.4s,k = 5 : 18.6s,k = 10,28.7s,k = 20 : 52.2s,k = 40 : 108.4s).

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

254

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

0 1000 2000 3000

pass

2.5

3.0

3.5

Γ

×10
4

(a) Caltech

0 1000 2000 3000

pass

2.5

3.0

3.5

Γ

×10
6

(b) MCMC

0 1000 2000 3000

pass

1.5

2.0

2.5

Γ

×10
5

(c) Stock

400

425

450

Ca
lte
ch

Ca
lte
ch
/l
1

Ca
lte
ch
/l
2

M
CM

C/
N2
56
k

M
CM

C
St
oc
k

St
oc
k/
25
6k

St
oc
k/
64
k

0

25

50

75

se
co
nd
s

(d) local search pass costs

0 25000 50000 75000

time (s)

2.5

3.0

3.5

Γ

×10
4

k = 2

k = 10

k = 20

k = 40

k = 5

(e) partition size k

Figure 8: 16 LDG generation runs each for use cases and variants: Stock/64k and Stock/256k feature |T |= 64k and 256k tiles, respectively

(original: |T |= 1024k); MCMC/N256k uses |N0|= 256k (instead of |N0|= 128k). (a–c) Refinement via local search passes (range is depicted

by filled area, thick line provides the median, thin horizontal line indicates best known solution after extensive runs), and (d) local search pass

timings, depicting local search pass costs on different levels for Caltech (black error bars show variation). (e) Impact of partition size k.

i00 i01 i02 i03 i04 i05 i06 i07 i08

(a) a column per run (b) 0 (3.81e6) (c) 32 (2.87e6) (d)

3520(2.2e6)

Figure 9: Impact of stochastic factors. (a) Aggregate representations

of eight individual runs i00–i07 at height h = 7 . Results are similar

throughout despite using different seeds (also reflected in similar

values for Γ, see Fig. 8b). (b–d) Refinement results at h = 6 for an

MCMC run, demonstrating quick convergence on higher levels. A

modified color map emphasizes ambiguity (pink replaces white).

While taking longer with increasing k, this also allows the optimizer
to achieve larger improvements on average (k = 2 : 4.6∆Γ,k =
5 : 16.7∆Γ,k = 10,33.3∆Γ,k = 20 : 61.3∆Γ,k = 40 : 88.9∆Γ). For
larger k, the timings indicate a trend toward superlinear growth,
while the achieved average improvement ∆Γ increases more slowly.

7. Comparison to Other Grid Layout Approaches

The major conceptual difference of LDGs to previous techniques
is the consideration of hierarchy during placement (G1, Sec. 3) in
addition to neighborhood (G2). Accordingly, LDGs yield a novel—
yet related—grid representation, with Γ serving as corresponding
measure for quantitative assessment (lower=̂better). All layouts—
across LDG, Kernelized Sorting [QSST10], Isomatch [FDH∗15], as
well as extension IsoMatchHG (see description below)—generally
exhibit high similarity of neighboring members (Fig. 10). In all
Caltech results, airplanes, motorbikes, as well as faces are located
next to each other (Fig. 10b–c). This also holds true for the Stock
predictions, placing tiles depicting similar trends in close proxim-
ity (Fig. 10f–g). LDGs occasionally even yield locally smoother
results than alternatives, e.g., there is no sharp transition in Fig. 10e
like that of Fig. 10f in the top center between rising and falling trends.
IsoMatch expands rising trends along the left border, resulting in
similar members being located comparably far away (Fig. 10g).
Besides neighborhood, the additional consideration of branch homo-
geneity can also clearly be seen for LDG (Fig. 10a and e).

(a) LDG, Caltech,

Γ = 111444333...222666
(b) KS, Caltech,

Γ = 150.80
(c) Iso, Caltech,

Γ = 156.71
(d) IsoHG,Caltech,

Γ = 151.10

(e) LDG, Stock,

Γ = 333222888...444444
(f) KS, Stock,

Γ = 363.40
(g) Iso, Stock,

Γ = 369.76
(h) IsoHG, Stock,

Γ = 345.11

Figure 10: Comparison of LDG against Kernelized Sort-

ing (KS) [QSST10] and IsoMatch (Iso) [FDH∗15] for downsampled

Caltech and Stock (with |T | = 1024,h = 0). LDG (a & e) exhibits

neighborhood similarity comparable to previous approaches (b, c, f,

g), but additionally considers hierarchies. A subset of |T | = 1024
members is used as both KS and Iso exhibit approximately cubic

complexity regarding |T |, resulting in issues for larger |T |.

For both Kernelized Sorting and IsoMatch extensions have been
proposed for better visual scaling with collection sizes exceeding
several hundreds. Kernelized Sorting simply replaces the 2D grid
with a 3D pyramidal version, also assigning individual members to
leaves (crucially yielding no hierarchical organization with inner
nodes representing their children) [QSST10]. For IsoMatch, Fried
et al. [FDH∗15] proposed an extension for hierarchical visualiza-
tion. Starting from a node nh+1 (initially the root node containing
all members T), their top-down method iteratively creates m child

nodes (nc[0]
h

,n
c[1]
l

, . . . ,n
c[m−1]
h

) by splitting respective members into
equally-sized clusters. Then, the grid layout for node nh+1 is gen-

erated by assigning the m members of n
c[0...m−1]
l

closest to cluster
centroids to grid cells (also using respective images as representa-
tives for each child). The grid layout is created individually for each
node, independent from the layouts of parents, children or siblings.
This means that only a single node nh+1 at one fixed aggregation
height h can be shown at a time, as grid layouts of any pair of nodes
are not compatible (regardless of whether they are siblings at the
same height or one is a child of the other). LDGs, in contrast, pro-
vide visual summaries of the full data with visible nodes at arbitrary

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

255

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

heights in one consistent view. To the best of our knowledge, no
other grid layout technique achieves this. A variant of the hierar-
chical extension of Fried et al. is now introduced for a meaningful
comparison: IsoMatchHG. It generates the lower-dimensional em-
bedding for grid layouting only once for the full data, and re-uses
it at every node instead of creating a new one like IsoMatch. This
yields significantly more consistent placement, but does not affect
clustering itself (i.e., the assignment of members to nodes remains
unchanged to the original). We use m = 4 for direct comparability
with the quadtree structure of LDGs. Fig. 10d & h show that Iso-
MatchHG clearly reflects a hierarchical grid structure akin to our
approach—e.g., assigning airplanes and faces to the h = 3-node
in (d)—which is also indicated by the lower Γ-score in comparison
to IsoMatch. Still, across both Caltech and Stock, the score associ-
ated with LDGs is significantly lower than any alternative including
IsoMatchHG. Artifacts in IsoMatchHG can clearly be seen as well:
when the clustering splits similar members early on higher up in the
hierarchy as it needs to produce equally-sized groups, they are also
positioned far apart in the grid (e.g., motorbikes). Fig. 2 presents
grids for LDG and IsoMatchHG at different granularity, and ex-
emplifies that hierarchical clustering in combination with treemaps
(HC+TM) for visualization also results in high discontinuities in the
layout as well as separated groups of similar members (besides being
less efficient in terms of visual space). Conceptually, this can be at-
tributed to the fact that HC+TM considers the clustering of members
for generating the hierarchy separately from generating the layout.
Critically, the difference to our LDG approach is that we do not aim
to cluster the data—which might be considered an ill-posed task for
ensembles with smoothly varying members. Instead, LDGs use a
hierarchical grid structure for level-of-detail presentation, which is
generated by jointly optimizing for high member similarity within
hierarchically grouped cells and across grid neighbors.

8. Discussion and Conclusion

LDGs provide summaries of large data collections with millions of
members and can be generated efficiently solely based on mutual
distances. The level-of-detail grid representation yields visual scala-
bility, and the local search-based parallel progressive optimization
scheme explicitly exploits the hierarchical structure for computa-
tional scalability. The hierarchical design enables interactive investi-
gation via adaptive selection or manual node expansion and always
yields a complete, consistent grid view presenting all members at
different levels of granularity. To the best of our knowledge, LDG’s
ability to generate and present large consistent grid layouts exceeds
that of prior grid layout-based techniques by orders of magnitude.
LDG’s utility has been exemplified via diverse use cases: image
collections with feature vectors from a neural network, a million
stock market predictions from a Black-Scholes model, and 95000
channel structures in soil from Markov chain Monte Carlo.

The major focus of this work is on the optimization approach to
efficiently generate LDGs for large data collections. This is achieved
by the adoption of a local search strategy in combination with a
custom-tailored hierarchical scheme that allows to optimize the grid
at different granularity levels h. We were able to empirically demon-
strate favorable characteristics in our evaluation. However, no formal
guarantees regarding convergence characteristics can be provided,

besides that after each local search pass the result is better or at
least equal in terms of evaluation score Γ (Alg. 1 Line 18–Line 21).
LDGs yield similar refinement behavior (Fig. 8a–c) and resulting
grids (Fig. 9a) for different random initialization. It would be an
interesting direction for future work to investigate whether other
initialization schemes might yield good results more quickly and
whether they introduce biases of some sort. Our approach further
follows a progressive approach in the sense that it iteratively refines
results, and we could additionally cater to streaming scenarios with
data incoming at runtime by placing new elements into an extended
grid space (or incorporating them within the current grid if enough
void space is available). Visual analysis approaches could generally
be useful to understand how such extensions impact refinement char-
acteristics [WKF21]. An important strength of LDGs is that they
can be flexibly explored, and basic means for interaction are consid-
ered in this work: via global settings regarding height h or disparity
∆, as well as directly by selecting tiles for expansion or collapse.
We believe that dedicated future work on interaction concepts for
LDGs has great potential to improve the exploration process. For
instance, disparity could be used as a basis for adaptive interaction
beyond the specification of a global threshold τ , e.g., expanding
tiles in the neighborhood of a selected tile dependent on whether
they represent similar members. Tile representations already reflect
the similarity across neighbors, but still additional visual cues could
be beneficial to further emphasize this aspect. For this, we will
look into dedicated disparity markers—e.g., lines between tiles with
varying length or thickness—as well as markerless approaches (like
shifting tiles toward similar neighbors). In this paper, LDGs have
been demonstrated to provide comprehensive visual summaries, but
they might also be useful for other tasks, like search for specific
members in large ensembles, comparison of member pairs, or iden-
tifying outliers. This will be further investigated and potentially
dedicated extensions added in future work. LDGs could further be
embedded into a full-fledged (progressive) visual analytics frame-
work [SPG14], integrating it with other visualization and analysis
methods via brushing and linking.

Another objective for future work is to further evaluate and im-
prove the computational scaling of LDG’s placement optimization
scheme toward even larger ensembles with billions of members.
For this, an out-of-core approach will be required to circumvent
memory limitations. This would also alleviate the major drawback
of an additionally planned GPU implementation, which would oth-
erwise be well-suited to exploit the massive degree of parallelism
exhibited by the optimizer, presumably significantly accelerating
LDG generation. The efficiency of the method itself could be im-
proved as well, e.g., via heuristics for clever partitioning prior to
local search. Our local search-based heuristic could further be com-
bined with advanced population-based metaheuristics considering
multiple candidate solutions, like ant colony optimization, evolution-
ary computation, particle swarm optimization, genetic algorithms,
etc. [BR03] (such approaches have previously been applied success-
fully to other types of permutation-based problems [Meh11]).

Acknowledgments

Supported by Deutsche Forschungsgemeinschaft (DFG, German
Research Foundation) – Project Number 327154368 – SFB 1313.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

256

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

References

[AZ02] ANGEL E., ZISSIMOPOULOS V.: On the hardness of the quadratic
assignment problem with metaheuristics. Journal of Heuristics 8, 4 (July
2002), 399–414. doi:10.1023/A:1015454612213. 5

[BBL12] BOYANDIN I., BERTINI E., LALANNE D.: A qualitative study
on the exploration of temporal changes in flow maps with animation and
small-multiples. Computer Graphics Forum 31, 3pt2 (2012), 1005–1014.
doi:10.1111/j.1467-8659.2012.03093.x. 3

[BHM16] BARTHEL K. U., HEZEL N., MACKOWIAK R.: Navigating
a graph of scenes for exploring large video collections. In MultiMedia

Modeling. Springer International Publishing, 2016, pp. 418–423. doi:
10.1007/978-3-319-27674-8_43. 3

[BR03] BLUM C., ROLI A.: Metaheuristics in combinatorial optimization:
Overview and conceptual comparison. ACM Computing Surveys 35, 3
(Sept. 2003), 268–308. doi:10.1145/937503.937505. 10

[BS73] BLACK F., SCHOLES M.: The pricing of options and corporate
liabilities. Journal of Political Economy 81, 3 (1973), 637–654. doi:
10.1086/260062. 2, 7

[BSW98] BISHOP C. M., SVENSÉN M., WILLIAMS C. K. I.: GTM: The
Generative Topographic Mapping. Neural Computation 10, 1 (01 1998),
215–234. doi:10.1162/089976698300017953. 3

[CFSL07] CHEN J., FORSBERG A. S., SWARTZ S. M., LAIDLAW D. H.:
Interactive multiple scale small multiples. In Poster Compendium of IEEE

VIS 2007 (2007), pp. 46–47. 3

[CLG16] CAO N., LIN Y., GOTZ D.: Untangle map: Visual analysis of
probabilistic multi-label data. IEEE Transactions on Visualization and

Computer Graphics 22, 2 (Feb 2016), 1149–1163. doi:10.1109/TVCG.
2015.2424878. 3

[DSF∗14] DUARTE F. S. L. G., SIKANSI F., FATORE F. M., FADEL S. G.,
PAULOVICH F. V.: Nmap: A novel neighborhood preservation space-
filling algorithm. IEEE Transactions on Visualization and Computer

Graphics 20, 12 (Dec 2014), 2063–2071. doi:10.1109/TVCG.2014.
2346276. 3

[FDH∗15] FRIED O., DIVERDI S., HALBER M., SIZIKOVA E.,
FINKELSTEIN A.: IsoMatch: Creating informative grid layouts.
Computer Graphics Forum 34, 2 (2015), 155–166. arXiv:https:
//onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12549,
doi:10.1111/cgf.12549. 2, 3, 6, 9

[GNCM∗16] GOMEZ-NIETO E., CASACA W., MOTTA D., HARTMANN

I., TAUBIN G., NONATO L. G.: Dealing with Multiple Requirements
in Geometric Arrangements. IEEE Transactions on Visualization and

Computer Graphics 22, 3 (Mar. 2016), 1223–1235. doi:10.1109/TVCG.
2015.2489660. 3

[GRP∗14] GOMEZ-NIETO E., ROMAN F. S., PAGLIOSA P., CASACA

W., HELOU E. S., DE OLIVEIRA M. C. F., NONATO L. G.: Similarity
preserving snippet-based visualization of web search results. IEEE Trans-

actions on Visualization and Computer Graphics 20, 3 (March 2014),
457–470. doi:10.1109/TVCG.2013.242. 3

[HP19] HILASACA G. M. H., PAULOVICH F. V.: Distance preserving
grid layouts. CoRR abs/1903.06262 (2019). arXiv:1903.06262. 3

[JCC∗11] JOIA P., COIMBRA D., CUMINATO J. A., PAULOVICH F. V.,
NONATO L. G.: Local affine multidimensional projection. IEEE Trans-

actions on Visualization and Computer Graphics 17, 12 (Dec 2011),
2563–2571. doi:10.1109/TVCG.2011.220. 3

[Joh67] JOHNSON S. C.: Hierarchical clustering schemes. Psychometrika

32, 3 (Sept. 1967), 241–254. doi:10.1007/bf02289588. 3

[KB55] KOOPMANS T. C., BECKMANN M. J.: Assignment Problems

and the Location of Economic Activities. Cowles Foundation Discussion
Papers 4, Cowles Foundation for Research in Economics, Yale University,
1955. URL: https://ideas.repec.org/p/cwl/cwldpp/4.html. 5

[KERC09] KEEFE D., EWERT M., RIBARSKY W., CHANG R.: Inter-
active coordinated multiple-view visualization of biomechanical motion
data. IEEE Transactions on Visualization and Computer Graphics 15, 6
(Nov 2009), 1383–1390. doi:10.1109/TVCG.2009.152. 3

[Koh90] KOHONEN T.: The self-organizing map. Proceedings of the IEEE

78, 9 (1990), 1464–1480. doi:10.1109/5.58325. 3

[Kuh55] KUHN H. W.: The Hungarian method for the assignment problem.
Naval Research Logistics Quarterly 2, 1-2 (1955), 83–97. doi:10.1002/
nav.3800020109. 3, 5

[LFP04] LI FEI-FEI, FERGUS R., PERONA P.: Learning generative visual
models from few training examples: An incremental Bayesian approach
tested on 101 object categories. In 2004 Conference on Computer Vision

and Pattern Recognition Workshop (June 2004), pp. 178–178. doi:
10.1109/CVPR.2004.383. 6

[LFP06] LI FEI-FEI, FERGUS R., PERONA P.: One-shot learning of
object categories. IEEE Transactions on Pattern Analysis and Machine

Intelligence 28, 4 (April 2006), 594–611. doi:10.1109/TPAMI.2006.
79. 6

[LHNS18] LIU X., HU Y., NORTH S., SHEN H.-W.: CorrelatedMultiples:
Spatially coherent small multiples with constrained multi-dimensional
scaling. Computer Graphics Forum 37, 1 (2018), 7–18. doi:10.1111/
cgf.12526. 3

[MDS∗17] MEULEMANS W., DYKES J., SLINGSBY A., TURKAY C.,
WOOD J.: Small multiples with gaps. IEEE Transactions on Visualization

and Computer Graphics 23, 1 (2017), 381–390. doi:10.1109/TVCG.
2016.2598542. 3

[Meh11] MEHDI M.: Parallel Hybrid Optimization Methods for Permuta-

tion Based Problems. Theses, Université des Sciences et Technologie de
Lille - Lille I, Oct. 2011. 10

[MHM18] MCINNES L., HEALY J., MELVILLE J.: UMAP: Uniform
manifold approximation and projection for dimension reduction, 2018.
arXiv:1802.03426. 3

[MN98] MATSUMOTO M., NISHIMURA T.: Mersenne twister: a 623-
dimensionally equidistributed uniform pseudo-random number generator.
ACM Transactions on Modeling and Computer Simulation 8, 1 (Jan. 1998),
3–30. doi:10.1145/272991.272995. 6

[MR01] MANTACI R., RAKOTONDRAJAO F.: A permutations represen-
tation that knows what “Eulerian” means. Discrete Mathematics and

Theoretical Computer Science 4, 2 (2001), 101–108. 5

[POdAL10] PINHO R. D., OLIVEIRA M. C. F., DE ANDRADE LOPES

A.: An incremental space to visualize dynamic data sets. Multimedia

Tools and Applications 50 (2010), 533–562. 3

[PTD∗21] PAN X., TANG F., DONG W., MA C., MENG Y., HUANG F.,
LEE T.-Y., XU C.: Content-Based Visual Summarization for Image
Collections. IEEE Transactions on Visualization and Computer Graphics

27, 4 (Apr. 2021), 2298–2312. doi:10.1109/TVCG.2019.2948611. 3

[QKTB10] QUADRIANTO N., KERSTING K., TUYTELAARS T., BUN-
TINE W. L.: Beyond 2d-grids: A dependence maximization view
on image browsing. In Proceedings of the International Conference

on Multimedia Information Retrieval (New York, NY, USA, 2010),
MIR ’10, Association for Computing Machinery, p. 339–348. doi:
10.1145/1743384.1743440. 3

[QSST10] QUADRIANTO N., SMOLA A. J., SONG L., TUYTELAARS T.:
Kernelized sorting. IEEE Transactions on Pattern Analysis and Machine

Intelligence 32, 10 (Oct 2010), 1809–1821. doi:10.1109/TPAMI.2009.
184. 2, 3, 9

[RXN20] REUSCHEN S., XU T., NOWAK W.: Bayesian inversion of
hierarchical geostatistical models using a parallel-tempering sequential
Gibbs MCMC. Advances in Water Resources 141 (July 2020), 103614.
doi:10.1016/j.advwatres.2020.103614. 2

[SDW09] SLINGSBY A., DYKES J., WOOD J.: Configuring Hierar-
chical Layouts to Address Research Questions. IEEE Transactions

on Visualization and Computer Graphics 15, 6 (Nov. 2009), 977–984.
doi:10.1109/TVCG.2009.128. 3

[SG76] SAHNI S., GONZALEZ T.: P-complete approximation problems.
J. ACM 23, 3 (1976), 555–565. doi:10.1145/321958.321975. 5

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

257

https://doi.org/10.1023/A:1015454612213
https://doi.org/10.1111/j.1467-8659.2012.03093.x
https://doi.org/10.1007/978-3-319-27674-8_43
https://doi.org/10.1007/978-3-319-27674-8_43
https://doi.org/10.1145/937503.937505
https://doi.org/10.1086/260062
https://doi.org/10.1086/260062
https://doi.org/10.1162/089976698300017953
https://doi.org/10.1109/TVCG.2015.2424878
https://doi.org/10.1109/TVCG.2015.2424878
https://doi.org/10.1109/TVCG.2014.2346276
https://doi.org/10.1109/TVCG.2014.2346276
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12549
http://arxiv.org/abs/https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.12549
https://doi.org/10.1111/cgf.12549
https://doi.org/10.1109/TVCG.2015.2489660
https://doi.org/10.1109/TVCG.2015.2489660
https://doi.org/10.1109/TVCG.2013.242
http://arxiv.org/abs/1903.06262
https://doi.org/10.1109/TVCG.2011.220
https://doi.org/10.1007/bf02289588
https://ideas.repec.org/p/cwl/cwldpp/4.html
https://doi.org/10.1109/TVCG.2009.152
https://doi.org/10.1109/5.58325
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1002/nav.3800020109
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1109/CVPR.2004.383
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1109/TPAMI.2006.79
https://doi.org/10.1111/cgf.12526
https://doi.org/10.1111/cgf.12526
https://doi.org/10.1109/TVCG.2016.2598542
https://doi.org/10.1109/TVCG.2016.2598542
http://arxiv.org/abs/1802.03426
https://doi.org/10.1145/272991.272995
https://doi.org/10.1109/TVCG.2019.2948611
https://doi.org/10.1145/1743384.1743440
https://doi.org/10.1145/1743384.1743440
https://doi.org/10.1109/TPAMI.2009.184
https://doi.org/10.1109/TPAMI.2009.184
https://doi.org/10.1016/j.advwatres.2020.103614
https://doi.org/10.1109/TVCG.2009.128
https://doi.org/10.1145/321958.321975

S. Frey / Optimizing Grid Layouts for Level-of-Detail Exploration of Large Data Collections

[SG14] STRONG G., GONG M.: Self-sorting map: An efficient algorithm
for presenting multimedia data in structured layouts. IEEE Transactions

on Multimedia 16, 4 (June 2014), 1045–1058. doi:10.1109/TMM.2014.
2306183. 2, 3

[SHS11] SCHULZ H., HADLAK S., SCHUMANN H.: The Design Space
of Implicit Hierarchy Visualization: A Survey. IEEE Transactions on

Visualization and Computer Graphics 17, 4 (Apr. 2011), 393–411. doi:
10.1109/TVCG.2010.79. 3

[SMS∗20] SONDAG M., MEULEMANS W., SCHULZ C., VERBEEK K.,
WEISKOPF D., SPECKMANN B.: Uncertainty Treemaps. In 2020 IEEE

Pacific Visualization Symposium (PacificVis) (June 2020), pp. 111–120.
doi:10.1109/PacificVis48177.2020.7614. 3

[SPG14] STOLPER C. D., PERER A., GOTZ D.: Progressive visual an-
alytics: User-driven visual exploration of in-progress analytics. IEEE

Transactions on Visualization and Computer Graphics 20, 12 (2014),
1653–1662. doi:10.1109/TVCG.2014.2346574. 10

[SSS∗12] STROBELT H., SPICKER M., STOFFEL A., KEIM D., DEUSSEN

O.: Rolled-out wordles: A heuristic method for overlap removal of 2d
data representatives. Computer Graphics Forum 31 (2012), 1135–1144.
doi:10.1111/j.1467-8659.2012.03106.x. 3

[TSL00] TENENBAUM J. B., SILVA V. D., LANGFORD J. C.: A global
geometric framework for nonlinear dimensionality reduction. Science 290,
5500 (2000), 2319–2323. doi:10.1126/science.290.5500.2319. 3

[Tuf01] TUFTE E. R.: The Visual Display of Quantitative Information,
2 ed. Graphics Press, Cheshire, CT, 2001. 3

[vdEvW13] VAN DEN ELZEN S., VAN WIJK J. J.: Small multiples, large
singles: A new approach for visual data exploration. Computer Graphics

Forum 32 (2013), 191–200. doi:10.1111/cgf.12106. 3

[vH08] VAN DER MAATEN L., HINTON G.: Visualizing high-dimensional
data using t-sne. Journal of Machine Learning Research 9 (2008), 2579–
2605. 3

[WD08] WOOD J., DYKES J.: Spatially Ordered Treemaps. IEEE Trans-

actions on Visualization and Computer Graphics 14, 6 (Nov. 2008), 1348–
1355. doi:10.1109/TVCG.2008.165. 3

[WHLS19] WANG J., HAZARIKA S., LI C., SHEN H.: Visualization
and visual analysis of ensemble data: A survey. IEEE Transactions on

Visualization and Computer Graphics 25, 9 (Sep. 2019), 2853–2872.
doi:10.1109/TVCG.2018.2853721. 1

[WKF21] WATERINK E., KOSINKA J., FREY S.: Visual Analysis of
Popping in Progressive Visualization. In Smart Tools and Apps for

Graphics - Eurographics Italian Chapter Conference (2021), Frosini
P., Giorgi D., Melzi S., Rodolà E., (Eds.), The Eurographics Association.
doi:10.2312/stag.20211485. 10

[WTF09] WEISS Y., TORRALBA A., FERGUS R.: Spectral hashing. In
Advances in Neural Information Processing Systems 21, Koller D., Schu-
urmans D., Bengio Y., Bottou L., (Eds.). Curran Associates, Inc., 2009,
pp. 1753–1760. 3

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

258

https://doi.org/10.1109/TMM.2014.2306183
https://doi.org/10.1109/TMM.2014.2306183
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1109/TVCG.2010.79
https://doi.org/10.1109/PacificVis48177.2020.7614
https://doi.org/10.1109/TVCG.2014.2346574
https://doi.org/10.1111/j.1467-8659.2012.03106.x
https://doi.org/10.1126/science.290.5500.2319
https://doi.org/10.1111/cgf.12106
https://doi.org/10.1109/TVCG.2008.165
https://doi.org/10.1109/TVCG.2018.2853721
https://doi.org/10.2312/stag.20211485

