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(a) node-link view of the LDG quadtree structure; the 64 colors are assigned to leaves (height h = 0 ), with nodes at h = 1, 2, and 3 containing aggregates of

their respective leaves

(b) grid at height h = 0 (corresponding nodes ∈ N0)

(c) grid at height h = 1

(d) grid at h = 2
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(f) adaptive visible node selection with disparity thresh-

old τ = 0.4

Figure 1: LDG for 63 members of the Turbo colormap and one grayscale color in (a) node-link view and (b–e) grid view for different visible

nodes. Each node (and corresponding grid area) depicts the (average) color of its member(s), node id (large, top), and normalized evaluation

value γ (h = 0) or disparity ∆ (h > 0). (f) adaptive visibility selection via τ .

Abstract

This document provides additional material for the EuroVis 2022 paper with the title “Optimizing Grid Layouts for Level-of-

Detail Exploration of Large Data Collections”. In particular, it provides more in-depth information regarding the presentation of

LDGs, as well as further evaluations.
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Table 1: Notation used for the description of LDGs

N nodes in the LDG representation

nroot root node (∈ N)

h height of nodes N (i.e., distance to the

root node nroot)

Nh set of nodes Nh ⊂ N at height h (e.g., N0:

leaf nodes at h = 0)

N↑(n) gives all ancestors of n (i.e., all nodes on

the path to the root nroot)

N0(n) leaf nodes of the corresponding subtree

of n ∈ N: {n0 ∈ N0 | n ∈ N↑(n0)}

T set of members in a data collection

d : T ×T → R distance between members ∈ T

A : N0 → T assignment of leaves (grid cells) to collec-

tion members

t̄(n) the aggregate of all members assigned to

corresponding leaves N0(n) of a node n

Γ : A → R objective function quantifying the cost of

assignment A

γ̇ : N ×T ×A → R cost of placing a member ∈ T at a node

∈ N under grid assignment A, only con-

sidering the hierarchy

γ : N ×T ×A → R extension of γ̇ that considers neighbor-

hood as well

∆(n) disparity: a normalized measure of how

well aggregate representation t̄(n) cap-

tures its members

τ disparity threshold for adaptive selection

of visible nodes

1. LDG Notation

Table 1 provides an overview on the notation used for the description

of LDGs.

2. LDG Presentation

Grid View

When presenting LDGs, their structure is reflected by ad-

justing the spacing between node tiles accordingly (Fig. 1).

From grid cell coordinates g along any axis, gaps to the top

or left are determined based on the distance to the closest

common parent regarding the cell to the top or left, respectively:

g 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

σ(·) – 1 2 1 3 1 2 1 4 1 2 1 3 1 2 1

Naturally, there is no spacing for the leftmost (or the topmost)

node. The position of every cell in the grid is then computed via

g+ω ∑i∈{1...g} σ(i), with ω being a scaling factor controlling the

width of the spacing. Inner nodes Nh>0 use the grid coordinates of

their top-left-most node ∈ N0.

Tiles of inner nodes (i) are sized to cover a range of grid cells, and

(ii) are further scaled to depict the ratio of regular to void members

(e.g. Fig. 2b). The tile’s side length of node n at height h is as
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Figure 2: 8×6 LDG with 37 colors of the Plasma colormap and 11

void members. (a) On h= 0, void members help to further emphasize

similarity relationships by forming void spaces. (b) On h≥ 1, the tile

representation is scaled with the ratio of regular to void members.

follows:


2h +ω ∑
i∈{1,...,2h−1}

σ(i)





︸ ︷︷ ︸

(i) reserved tile area in the grid

√

|N0(n)|

4h

︸ ︷︷ ︸

(ii) scaling with regular member ratio

. (1)

Tiles are further centered within their cell at the barycenter of their

corresponding non-void tiles to reflect their respective positions in

the grid (Fig. 2).

Exploration

Although the focus of this work is on the LDG representation, suit-

able exploration modalities are naturally required for data analysis

in practice. In our current prototype, we provide different means for

interaction, which—besides panning and zooming the presentation—

allow to adjust the set of visible nodes in three different ways:

globally via (i) height h or (ii) disparity ∆, and (iii) through direct

selection of tiles for expansion or collapse. Directly interacting with

a tile at height h allows to expand respective nodes to h−1 or col-

lapse them to h+1. We optionally also consider the tiles within the

8-neighborhood to reflect that similar members also of interest may

be placed in the vicinity with our LDGs. Hovering a tile with the

mouse highlights the considered neighborhood. In general, tiles fade

in as they become visible to outline the changes resulting from user

interaction.

3. Performance Analysis and Comparison

Prototype Viewer

On https://ldg-demo.github.io we provide a prototype

viewer where all layouts of discussed use cases can be explored

interactively. It is a port of the desktop application written in C++

using the widget toolkit Qt based on JavaScript and WebAssem-

bly. Please note that while it cannot provide the performance of

desktop tool and exhibits other limitations, we still deemed it to

be beneficial to provide it as it allows to explore the LDGs beyond

what is demonstrated in the paper. Among others, we could confirm

that it works well with Safari, Chrome and Firefox. Compromises

regarding tile image resolutions were necessary to keep data sizes as

low as possible in the web environment. Still, user interactions like

lowering the disparity threshold or choosing a low level can take

a while to take effect if a lot of tiles have to be loaded for the first
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(a) 0 (Γ = 3.81×106) (b) 32 (2.87×106) (c) 64 (2.77×106) (d) 128 (2.66×106) (e) 256 (2.54×106) (f) 3520 (2.20×106)

Figure 3: Refinement results at h = 6 for an MCMC run, demonstrating quick convergence on higher levels. A modified color map emphasizes

ambiguity (pink replaces white).

time (depending on the machine and the network connection); we

ask for patience in such cases. In general, at least the reduced cases

for comparison should be quick to load and interact across a wide

range of connection speeds and processors.

The performance of our LDG optimization approach is investi-

gated by means of sixteen individual runs conducted for (variants of)

each use case with an AMD Ryzen 7 2700X Eight-Core Processor

and 32 GB RAM. Results at different stages of refinement for one

run are shown in Fig. 3. The initial random assignment yields simi-

lar superimposition results across nodes with high uncertainty ((a),

with cells in bottom rows only featuring void members). 32 passes

already significantly reduce disparity and clear structures emerge in

tiles (b). Additional passes refine this further (e, f), but the summary

presented at h = 6 in (f) remains largely stable as predominantly

fine-granular, local adaptations occur.

An important property is stability, and for this the results of six-

teen independent runs are compared in Fig. 4: while there naturally

is some variation, the basic structures are very similar and demon-

strate no significant impact of stochastic factors in the result. This

is also reflected in the respective Γ-values as can be seen from the

respective line chart in the main paper.

LDG is now compared against two state-of-the-art distance-

preserving grid techniques—Kernelized Sorting [QSST10] and Iso-

Match [FDH∗15]—as well as a hierarchical extension to IsoMatch.

Caltech and Stock with a subset of |T |= 1024 members is used as

both aforementioned techniques exhibit approximately cubic com-

plexity regarding |T | and computationally cannot efficiently handle

larger ensembles (see performance discussion below).

We consider disparity to quantitatively assess how well aggre-

gate representations at a node are suited to convey their members.

Fig. 5 shows that LDG yields significantly lower disparity across all

levels, confirming that branches are more homogeneous (as could

be expected). IsoMatchHG significantly improves over IsoMatch’s

disparity, underlining what has been found above through visual in-

spection. Comparing the two use cases, Caltech yields much higher

node disparities than Stock, which is due to both the more diverse

i00 i01 i02 i03 i04 i05 i06 i07 i08 i09 i10 i11 i12 i13 i14 i15

Figure 4: Aggregate representations of sixteen individual runs i00–

i15 at height h = 7 . Results are similar throughout despite using

different seeds.

ensemble and the richer feature representation (2048 versus 23 en-

tries). However, there are subsets of both ensembles with different

properties. In Caltech, there are outliers toward lower scores, indi-

cating larger homogeneous groups (most notably, faces, airplanes,

and motorbikes). The opposite is true for Stock: here the outliers

showing higher disparity reflect the extreme cases of falling and

rising prices.

While the primary focus of this work is to achieve visual scal-

ability for large ensembles, computational scalability is naturally

a necessary requirement. For Isomatch and Kernelized Sorting we

used the default implementations provided by the authors, and nei-

ther is able to generate results beyond thousands of members and

grid cells due to strongly increasing runtimes (Fig. 6). For hierarchi-

cal clustering, we employed the implementation of agglomerative

clustering with default parameters (i.e., using Ward linkage) pro-

vided by scikit-learn [PVG∗11] (0.24.2). Runtimes are comparably

fast, although also exhibiting polynomial scaling: 11 thousand mem-

bers of Stock→2.8 s, 22 k→12.6 s, 45 k→65.2 s). Unfortunately, we

were not able to produce results beyond ≈ 45000 members due to

© 2022 The Author(s)
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Figure 5: Disparity distribution of nodes at different levels across

methods (lower is better).
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Figure 6: Both Isomatch and Kernelized Scaling exhibit polyno-

mial scaling with the number grid cells (using a random subset of

members of the same size in this experiment).

prohibitively high memory requirements. This issue could poten-

tially be addressed by one of the numerous variants with different

properties and recent work focusing on scalability (e.g. [MKK∗19]).
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