
Eurographics Conference on Visualization (EuroVis) 2022
R. Borgo, G. E. Marai, and T. Schreck
(Guest Editors)

Volume 41 (2022), Number 3

Barrio: Customizable Spatial Neighborhood Analysis and
Comparison for Nanoscale Brain Structures

Jakob Troidl1,3, Corrado Cali2, Eduard Gröller3, Hanspeter Pfister1, Markus Hadwiger4 and Johanna Beyer1

1Harvard University, 2University of Turin, 3TU Wien, 4KAUST

Figure 1: Customized scalable comparison of spatial neighborhoods. Barrio supports user-defined analysis scenarios (a,b) to automatically
adjust visualizations, view parameters, and the user interface for the comparative analysis of nanoscale brain structures. Barrio suggests the
comparison method that is best suited for the number of user-selected neighborhoods that are being compared in the analysis view (f). Users
first specify the biological target of their analysis (a), and define preferred visualization methods for comparisons of different cardinalities
(i.e., for two to n structures) (b). Barrio automatically adjusts the visualizations and UI, including the settings panel (c), a list view of
instances of a target type (d), the 3D overview (e), the quantitative analysis views (f), and the detailed 3D neighborhood views (g).

Abstract
High-resolution electron microscopy imaging allows neuroscientists to reconstruct not just entire cells but individual cell sub-
structures (i.e., cell organelles) as well. Based on these data, scientists hope to get a better understanding of brain function and
development through detailed analysis of local organelle neighborhoods. In-depth analyses require efficient and scalable com-
parison of a varying number of cell organelles, ranging from two to hundreds of local spatial neighborhoods. Scientists need to
be able to analyze the 3D morphologies of organelles, their spatial distributions and distances, and their spatial correlations.
We have designed Barrio as a configurable framework that scientists can adjust to their preferred workflow, visualizations, and
supported user interactions for their specific tasks and domain questions. Furthermore, Barrio provides a scalable comparative
visualization approach for spatial neighborhoods that automatically adjusts visualizations based on the number of structures
to be compared. Barrio supports small multiples of spatial 3D views as well as abstract quantitative views, and arranges them
in linked and juxtaposed views. To adapt to new domain-specific analysis scenarios, we allow the definition of individualized
visualizations and their parameters for each analysis session. We present an in-depth case study for mitochondria analysis in
neuronal tissue and demonstrate the usefulness of Barrio in a qualitative user study with neuroscientists.

CCS Concepts
• Human-Centered Computing → Spatial neighborhood analysis, Visual comparisons, Neuroscience, Scientific visualization;

1. Introduction

Neurobiologists are acquiring ever-increasing amounts of high-
resolution image data of the mammalian brain, aiming to tackle
questions regarding brain physiology, the onset of diseases, and the

emergence of consciousness. Connectomics researchers are inter-
ested in the detailed connectivity between neurons at nanoscale
resolution [LD11], as well as in the analysis and comparison of
local spatial neighborhoods around neuronal structures and cell or-
ganelles. However, mammalian brains are staggeringly complex,
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with tens of millions of interconnected neurons, dozens of cell sub-
structures (i.e., cell organelles) per neuron, and billions of synapses.
Thus, the number of interesting neighborhoods and comparisons
of neighborhoods in such a dataset is even higher, ranging from
detailed pair-wise comparisons to the comparison and clustering
of dozens, hundreds, or thousands of structures. For example, to
evaluate how spatial variations in neuronal tissue might influence
brain development and neuronal connectivity, scientists need to
compare different biological structures (such as synapses), analyze
distances and spatial correlations (e.g., between synapses and cell
organelles), and look at how certain biological features are spatially
distributed. The specific details of this analysis (e.g., the biologist’s
goals, comparison target types, measurement types) vary for each
scientist. While one expert might be interested in the distribution
of mitochondria within nerve cells, others might only focus on the
spatial neighborhoods of synapses. Therefore, in this work, we have
developed a framework that supports a highly customizable spatial
neighborhood analysis workflow of scientists and a flexible com-
parative analysis, which scales to their data sizes.

Most visualization tools for connectomics provide either 3D
views for exploring large, segmented electron microscopy (EM)
volumes [BAAK∗13, BHAA∗13, HBJP12], or focus on the anal-
ysis of synaptic connectivity [AABS∗14,SBS∗13]. Little work has
focused on the scalable visual comparative analysis of well-defined
cell neighborhoods in EM data. Furthermore, while all of these
tools target neuroscientists, none of them can adapt to the highly-
individualized and specific domain goals that neuroscientists often
have. Most tools designed to be general enough to support several
types of analyses result in complex user interfaces and unintuitive
workflows. On the other hand, tools designed for a specific analysis
task typically do not generalize well to other tasks, often summa-
rized as the expressivity vs. usability trade-off [FCOO12].

In this design study, we present Barrio, a novel tool for the inter-
active analysis of spatial neighborhoods in high-resolution 3D elec-
tron microscopy (3DEM) data. In particular, we focus on neighbor-
hoods around cell organelles. The main contribution of this work
is a customizable framework for spatial neighborhood analysis of
3DEM data, facilitating the analysis of spatial distributions, dis-
tances, and 3D morphology. Scientists can specify new, individual-
ized analysis scenarios and appropriate visualizations that support
their analysis tasks. Second, we contribute a scalable visual com-
parison method for spatial structures that allows the comparison
of a wide range of element cardinalities, e.g., ranging from two to
hundreds of structures within a single comparison. Third, we re-
port on a detailed case study of using Barrio to analyze the spatial
neighborhood of mitochondria, the novel visual encodings we de-
signed for it, and the insights gained by the scientist. Finally, we
also report on a qualitative user study with eight domain experts.

2. Related Work

Visualization for Connectomics. Visualization approaches have
been applied to the entire neuroscience and connectomics data
aquisition and analysis pipeline [HHM∗17], ranging from seg-
mentation [BSL18, GG90] and visual proofreading of segmen-
tations [AABH∗16, HKT∗18, GWB∗21] to data exploration and
analysis [BAAK∗13, AABS∗14, MAAB∗18, CBB∗16]. Data ex-

ploration typically focuses either on the original large-scale mi-
croscopy data and its segmentation, or on higher-level connec-
tivity information [PKB∗12] and uses tools that are geared to-
wards the neuroscience workflow and data rather than general
visualization systems. Structural connectivity analysis of neu-
ronal cells often relies on abstract visual metaphors such as sub-
way maps [AABS∗14] or circuit diagrams [SBS∗13] that high-
light synaptic connections. On the other hand, exploring the gen-
eral morphology of the data typically relies on scalable volume
visualization of the original or segmented electron microscopy
data [HBJP12, BHAA∗13]. Few works have focused on the vi-
sual analysis of local energy consumption [ACA∗19] and interac-
tions between cell organelles [MAAB∗18]. However, none of these
approaches analyze neighborhoods of selected neuronal structures
and also do not support comparative visualizations of them.

Visualization Specification and Generation Frameworks.
Frameworks for the specification and generation of visualiza-
tions can be classified into low level [BOH11, BH09] and high
level [SWH14, SH14, SRHH16, SMWH17] approaches, based on
the level of abstraction they provide in their interface. Many tech-
niques use declarative methods (i.e., defining what not how) to
specify data visualizations. Low-level visualization specifications
like D3 [BOH11] require users to compose a visualization pro-
grammatically by specifying its components, while high-level ap-
proaches may support interactive data binding and visualization
specification using drag and drop [SH14]. Barrio is inspired by
these approaches, but offers an interface for domain-specific vi-
sualization specification. Users can define domain-specific analy-
sis scenarios and map different visualizations to them. Our system
parses this input and automatically creates customized views.

Spatial Neighborhood Analysis. Identifying and searching for
patterns in cell neighborhoods is an active area of research. For
highly multiplex imaging data, tools such as CytoMap [SFG∗20]
and Facetto [KBJ∗20] have been proposed, which support the
search for visual patterns in cell neighborhoods and hierar-
chial clustering of cell types for phenotype analysis, respec-
tively. Other approaches focus on cell clustering based on Hidden
Markov random fields concerning gene expression and localization
data [Pet15], phenotype analysis for cellular screens [DSG∗17],
analysis of cell interactions [NDBB17], or the evaluation of pat-
terns in cell populations [FGBHOdS05]. All of these approaches
use multiplex imaging or microscopy data at a much lower reso-
lution than EM data and, therefore, focus on larger cell clusters
and areas. Jorstad et al. [JNC∗15] allow users to manually extract
quantitative measures from reconstructed meshes of cell organelles
in high-resolution EM data. However, they do not focus on neigh-
borhood analysis and comparisons between organelles.

Comparative Visualization. Comparative visualization allows
users to asses similarities and differences between multiple
data points or data sets. Visual comparisons can be classi-
fied into juxtaposition, superposition, and explicit encoding of
differences [GAW∗11], or into data-level and image-level ap-
proaches [PP95]. Comparing many structures simultaneously re-
quires scalable visualization methods and encodings, such as for
large genome matrices [LBK∗18] or trees [MGT∗03], or the com-
bination of spatial and non-spatial features [MMH∗13]. We use
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Figure 2: Structure of neurons and cell organelles. Nerve signals
are transmitted from axons to dendrites via synapses. Synapses of-
ten form between a presynaptic bouton and a dendritic spine. Neu-
rons contain cell organelles, such as mitochondria or ribosomes.

juxtaposition and superposition to compare neuronal structures and
spatial neighborhoods in a scalable way, both in spatial and non-
spatial views. For comparing scalar and flow fields, contour trees
and graph matching have been used [HSKK01, SWC∗08], as well
as graph comparison for analyzing brain connectivity [ABHR∗13].
For 3D structures, Schmidt et al. [SPA∗14] compare surface meshes
against a reference mesh. For our data, reference meshes do not ex-
ist due to the variability in neurite shapes and branching patterns.
Thus, we compare structures in both, 3D and data analysis views.

3. Background in Neuroscience

Neuroscience Fundamentals. The human brain consists of bil-
lions of interconnected nerve cells, or neurons. Neurons receive in-
put on tree-like structures called dendrites and transmit signals via
long tubular structures called axons (see Fig. 2). Axons and den-
drites (collectively called neurites) connect via synapses to neigh-
boring cells [Stu08]. The presynaptic areas of axons are called
boutons, while the postsynaptic protrusions of dendrites are called
spines. In addition to synaptic connectivity, subcellular structures
of neurons, so-called cell organelles, are also of high interest to
neuroscientists. Mitochondria, for example, are cell organelles re-
sponsible for providing energy to the cell and its synapses [SW06].
They vary significantly in their shape, size, and location within a
cell. Our approach studies the spatial neighborhoods of these struc-
tures, to gain insights into how they mutually influence each other.

Connectomics Workflow and Data. Our collaborators start data
acquisition by dissecting solid blocks of brain tissue stained for
electron microscopy. Next, they image individual slices with an
electron microscope (EM) at a pixel resolution of 5× 5 nanome-
ters [KMWL08], with a slice thickness of 15 nanometers, and reg-
ister them into a 3D volume. Scientists segment neurites, synapses,
mitochondria, spines, and boutons using semi-automatic tools like
Ilastik [SSKH11], TrackEM [CSS∗12], or VAST [BSL18]. Addi-
tionally, they measure distances between those structures (details
in Sec. 7). As with any imaging method, EM provides a snapshot
of a current physiological state that might change over time. How-
ever, it still provides a valuable glimpse into the neuroanatomy of
a specimen. Our collaborators have collected and reconstructed six
data sets of layer one of the somatosensory cortex with a focused
ion beam scanning electron microscope (FIB-SEM), which are all
five cubic microns in size. Three data sets show brain tissue of four-
month-old mice, while the other three show tissue of 24-month-
old mice [CWB∗18]. Each dataset contains roughly 900 segmented
structures (400 neurites, 300 cell organelles, and 200 synapses).

4. Goal & Task Analysis

Following a problem-driven design study approach [SMM12], we
have identified domain goals, associated analysis tasks, and gen-
eral system requirements in semi-structured interviews with four
experienced neuroscientists at the University of Turin and the Har-
vard Center of Brain Science. All scientists work with 3DEM data
and have more than ten years of experience in the field. Over the
course of several months, we regularly met with our main collabo-
rator (who is also a co-author) to iterate on design prototypes.

4.1. Domain Goals

Our collaborators’ main objective is the detailed analysis of local
neighborhoods in their neuronal 3DEM data sets. In particular, they
want to analyze, compare, and correlate morphological features of
interest in selected cells, such as spines, boutons, or mitochondria,
to discover previously unknown biological patterns. Interactive ex-
ploration is crucial, as our collaborators need to investigate the de-
tailed 3D morphology to recognize subtle patterns or areas of in-
terest that cannot be easily detected with automatic methods. The
particular domain-specific goals of the neuroscientists are:

G1 - Proximity Analysis for Cell Organelles. The collaborators
are concerned with the spatial aspects of how cell organelles relate
to each other. On the one hand, they are interested in analyzing dis-
tances between a varying number of structures (e.g., What are the
distances of the closest three synapses to a mitochondrion?). On the
other hand, they are interested in distributions (e.g., What percent-
age of a mitochondrion is closer than 30 nm to the cell boundary?).
Combined with 3D spatial exploration of the dataset, our collabora-
tors want to investigate whether there are any patterns that indicate
connectivity strength based on the underlying spatial arrangement
of cell organelles. Our initial interviews showed that distances and
distance distributions are important as a metric for neuroscientists,
since the influence of cell organelles and synapses is spatially re-
stricted to their immediate neighborhood.

G2 - Comparative Analysis of Neuronal Structures. In addition
to looking at a single spatial neighborhood, our collaborators need
to compare neighborhoods and structures of interest. Their goal is
to perform comparisons with different biological targets, to com-
pare between: a) different data sets, b) different instances of a struc-
ture of interest (e.g., dendrites), or c) different attributes of a single
structure of interest (e.g., synapse distances to a single mitochon-
drion). Additionally, they need to be able to perform comparisons
of different cardinalities, ranging from a detailed comparison of
two structures to comparing hundreds of structures at the same
time. This feature allows them to test whether local findings also
apply to a larger data set and, conversely, allows them to drill down
from a larger perspective to highly-detailed local instances.

G3 - Customizable Analysis of User-Specific Hypotheses. Our
scientists want to fine-tune their visual analysis to their current sci-
entific objective. In addition to general comparisons and proximity
analysis in their data, they want to customize analyses steps and
define which visualizations to use for the domain-specific tasks.
Therefore, their system should be easily customizable to allow for
different views, UI elements, and interactions, and guide the users
through their analysis based on their scientific objectives.
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4.2. Analysis Tasks

Based on the above goals, we have derived a set of analysis tasks
scientists need to perform:

T1 - Explore original EM image data and segmented structures.
Before diving into a detailed analysis, scientists first need to get an
overview and verify the correctness of the segmentation (G1).

T2 - Explore the spatial neighborhood of a single structure.
Once a structure of interest has been identified, domain scientists
explore its spatial features and 3D morphology (G1, G3).

T3 - Quantify single distances and distance distributions in
a spatial neighborhood. After their initial exploration, scientists
need to analyze proximity and distances more accurately (G1, G3).

T4 - Compare the spatial neighborhoods of several structures.
Analyzing the variability of certain features in different local spatial
neighborhoods is essential for discovering trends and patterns when
studying biological features (G2, G3).

T5 - Compare neighborhoods of different data sets. Scientists
want to compare different specimens to analyze the stability of cer-
tain neighborhood features and differences between them (G2, G3).

4.3. Higher-Level Requirements

To support the domain goals and analysis tasks for many differ-
ent users and their individual domain questions, we have extracted
some higher-level design requirements that Barrio must fulfill:

R1 - Flexibility and Expandability. While all of our collabora-
tors want to analyze and compare spatial neighborhoods, the de-
tails vary for each scientist. For example, one scientist is interested
in mitochondria, another one in endoplasmatic reticula. To support
both (and other) usage scenarios, Barrio has to be customizable and
expandable to allow scientists or technicians to adjust the provided
visualization capabilities for specific domain questions (G3).

R2 - Scalable Comparisons. To support the visual comparison of
different biological targets and at different cardinalities, our system
needs to provide comparisons at different scales and allow users to
switch between them easily (G2).

R3 - Ease of Use and Automatic Guidance. In addition to being
flexible and expandable, the system must also support neuroscien-
tists with little or no programming experience. Biological data is
inherently complex. Therefore, we need to limit the cognitive load
for users by employing methods that automatically guide and sup-
port them in their data exploration. Hence, Barrio should provide
a human-readable interface and file format for customization and
automatically guide users in their specific analysis tasks (G1-3).

R4 - Shareable Analysis Configuration. After discovering an in-
teresting observation in a data set, experts often want to recreate
their results later or share them with colleagues. Results often rely
on complex user settings that are hard to reproduce in other en-
vironments. Hence, Barrio should support saving and sharing of
user-specific analysis configurations.

5. Barrio Toolkit Design

The design of Barrio tackles the requirements R1 and R3 by sup-
porting user-defined analysis scenarios and subtle automatic guid-

Figure 3: Barrio workflow and automatic user guidance. Bar-
rio automatically initializes and updates the user interface, adjusts
views and view parameters, and adapts the level of detail (LOD)
for visual neighborhood comparison based on the user-specified
analysis definition, while the user interactively explores the data.

ance throughout the analysis. Based on the custom user-defined
analysis scenario, Barrio suggests fitting visualizations, adjusts
view parameters, and offers different comparison modes. Sec. 6 de-
scribes our visual neighborhood comparison approach (R2).

5.1. User Workflow

The user starts by loading a custom analysis scenario and its data.
The specification of the scenario is done prior to the interactive
analysis (see Sec. 5.2). Users perform an initial exploration in 3D
and select structures of interest for further investigation. Next, users
can perform a detailed analysis, such as comparing user-selected
structures in detail to extract distances, detect distribution patterns,
or test hypotheses. In all these steps, users are supported and guided
by Barrio to streamline the analysis process and minimize the
mental load. For instance, Barrio selects appropriate visualizations
based on the current data cardinality or displays 3D views of the
specified neighborhood automatically. Fig. 3 shows the user work-
flow and which parts of the framework are adjusted automatically.

5.2. Custom Analysis Scenarios

Barrio allows users to define custom analysis scenarios that fine-
tune the general neighborhood analysis (R1).

Scenario Specification. Conceptually, a scenario defines the anal-
ysis a neuroscientist wants to perform and breaks it down into indi-
vidual and concrete scenario subtasks (see Fig. 1a). Each scenario
subtask is defined in terms of data mappings, default visualizations,
comparison modes, and supported user interactions. We will refer
to the tasks in a user-defined analysis scenario as scenario subtasks
to distinguish them from the general analysis tasks identified in our
goal and task analysis in Sec. 4. Below, we describe the concrete
elements comprising a scenario.

Scenario: An analysis scenario represents a higher-level ques-
tion a specific domain scientist might have, such as “How do mito-
chondria influence their spatial neighborhood?”.

Scenario Subtasks: Each analysis scenario comprises one or sev-
eral scenario subtasks, which are specific analysis steps a user
needs to perform to answer the higher-level scenario question. For
example, a scenario subtask in a mitochondria analysis scenario
would be to analyze the synaptic neighborhood of a single mito-
chondrion, i.e., synapses in close proximity to the mitochondrion.
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Figure 4: Structure and example of an analysis definition file
(ADF). The ADF defines analysis scenarios, scenario subtasks, tar-
get types, visualizations and UI parameters.

To support these steps, each scenario subtask can define visualiza-
tions, comparison modes, and interaction parameters that help the
user in the analysis. A high-level view of a scenario, its subtasks,
and visualization specifications is shown in Fig. 4.

Target type: Each scenario subtask can define a target type,
which refers to the type of biological structure that is under investi-
gation for the task. Target types can be any biological structures that
have been segmented or labeled in the original EM dataset. Note
that the target type refers to a biological class (e.g., all synapses)
and not to a specific instance of that class (e.g., synapse x). During
the interactive analysis, users can then select specific instances of
the target type for further investigation. Defining a target type en-
sures that visualizations and user interface elements automatically
focus on that type (e.g., show a list of all instances of that type, or
automatically center 3D views on those instances).

Visualizations and data mappings: Each scenario subtask can
specify customized visualizations that are best suited to complete
the task. Barrio supports a set of standard information visualiza-
tion views, such as bar charts, scatterplots, or violin plots, as well
as several custom information visualization views for neuroscience
tasks. Each view can be customized by changing the specific data
mapping, such as which attributes to show on the axes of a scat-
terplot. For example, to see information about the proximity of a
structure to the nearest cell membrane, we can color code the dis-
tance onto the surface of the structure, or show a violin plot of the
same data. Furthermore, Barrio is extensible and allows to imple-
ment and plug in additional views that are not part of the original
framework (see Sec. 7). Finally, we can define comparative views
for different data cardinalities (i.e., different numbers of objects
in a comparison). This means that we can specify a high-detailed
view for low-cardinality comparisons, and overview visualizations
for high-cardinality comparisons (R2). We describe our scalable
comparison approach in Sec. 6.

Interaction parameters: In addition to specifying visualizations
and tasks, a scenario can also define interaction parameters, such as
user-adjustable sliders for filtering data prior to visualization.

Analysis Definition File. Custom analysis scenarios are defined
by users in the form of analysis definition files (ADFs), as shown in
Fig. 4. ADFs are written in a human-readable JSON format and
do not require programming skills (R3). Barrio reads the ADF
upon startup and configures the user-interface accordingly. The

JSON based format allows domain experts to easily store, edit,
and share analysis configurations, which supports the reproducibil-
ity of their analysis results (R4). We provide sample ADFs that
users can further fine-tune. Barrio’s documentation includes de-
tailed information about supported visualizations and their param-
eters [VCG22b].

5.3. Automatic User Guidance

Based on the analysis scenario defined in the ADF, Barrio auto-
matically adjusts the user interface, views, and interactions to help
experts in their analysis (R3). Our goal is to minimize the users’
mental load during the interactive analysis, so that they can focus
on their domain science rather than on operating the analysis inter-
face. Barrio includes the following guidance features (see Fig. 3):

User Interface Initialization: Barrio automatically adjusts the user
interface based on the user-specified analysis scenario in the ADF.
This includes updating the view arrangement and adding necessary
user input elements such as sliders or checkboxes. For example, for
analyzing mitochondria, scientists might want a slider to interac-
tively change the distance threshold of what they consider a “close”
synapse. Furthermore, we automatically show preview icons of the
three different comparison levels for each scenario subtask (see
Fig. 1c). The icons allow users to choose their current scenario sub-
task quickly and to switch comparison mode manually, if desired.

View and View Parameter Adjustment: Barrio automatically up-
dates the list of available visualizations and adjusts views and view
parameters whenever a new scenario or scenario subtask is selected
by the user. For example, whenever a scenario defines biological
target types (e.g., mitochondria), we automatically highlight all in-
stances of that type throughout the system. We show all instances of
that type in the list view and blend out other structures (see Fig. 1d).
Additionally, spatial neighborhood views and every spatial neigh-
borhood analysis will automatically be centered around the speci-
fied target type. When users switch between scenario subtasks with
different target types, the views and UI adjust accordingly.

Level of Detail for Visual Comparisons: Barrio can automatically
adjust the level of detail in our scalable comparison approach, de-
pending on the number of structures selected for comparison (see
Sec. 6). This allows us to adjust the level of detail and abstraction
level in a comparative visualization based on data cardinality.

6. Visual Neighborhood Analysis

Analyzing and comparing spatial neighborhoods is challenging, es-
pecially in biological tissue that is highly variable and exhibits a
complex three-dimensional structure. Looking at not just one but
multiple neighborhoods solely in 3D, easily leads to cognitive over-
load and does not provide quantitative comparisons. Therefore,
Barrio offers two complementary visualization methods. First, we
can show juxtaposed high-detail 3D renderings of the selected local
neighborhoods. This allows neuroscientists to explore the original
3D data and get an intuition about the morphology and spatial ar-
rangement of interesting structures. In addition, we have developed
a comparison approach for the linked analysis views that scales
from small to large comparisons and that supports a more quan-
titative analysis of neighborhoods, described below.
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We define a spatial neighborhood as a sub-volume centered
around a chosen structure of interest (e.g., a mitochondrion). By de-
fault, the neighborhood contains the structure of interest and its sur-
rounding cell (see Fig. 6). Alternatively, the user can determine the
size of a neighborhood by interactively adjusting a distance thresh-
old with a maximum of 6 microns around a structure of interest.

6.1. Scalable Comparison Approach

Our comparison method supports two levels of comparison, orthog-
onal to each other. On the one hand, we support different biolog-
ical target types. On the other hand, we support comparisons of
different cardinalities (i.e., a varying number of objects). Both ap-
proaches together allow comparisons to range from overview to de-
tail in a variety of different usage scenarios (R2). The scalable com-
parisons are integrated into the custom analysis scenarios, where
Barrio suggests and adjusts comparative views based on the cur-
rent scenario subtask and the number of selected structures.

Comparison Targets. Barrio supports comparing different in-
stances of the same biological target type (e.g., comparing two den-
drites). It also supports the comparison of cellular substructures of
the same structure of interest (e.g., synapses of the same dendrite).
In addition, Barrio realizes the comparison of different data sets
(e.g., data sets of neuronal tissue in different developmental stages)
(see Fig. 9). Users can define comparison targets in the ADF by
setting the target type and specifying the data mapping for compar-
isons. Barrio then automatically adjusts the UI and views based on
the specified comparison target.

Cardinality of Comparisons. In their analysis, scientists can move
from a single interesting structure to many, to verify whether iden-
tified features correspond to trends or patterns. Alternatively, they
can start with an overview of many structures and then drill down
to see more details. A highly detailed comparison takes up more
screen space and only supports a low number of objects. Compar-
ing a high number of objects would not be ideal with a high-detail
comparison view. We have designed a scalable comparison ap-
proach to support comparisons of sets with different cardinalities,
and have integrated our method into Barrio. In particular, Barrio
provides comparisons at three different scales, as shown in Fig. 5.
In our visual design, we use either a single visualization, a single vi-
sual element, or a single visual mark per neighborhood for the low-,
medium-, and high-cardinality views, respectively. This follows the
intuitive notion of adjusting the amount of data we show per neigh-
borhood, depending on the number of neighborhoods we compare.
The low-cardinality comparison mode is designed to compare a
handful of objects (two to five) and offers detailed juxtaposed views
on the objects being compared, arranged as small multiples. The
medium-cardinality comparison mode supports up to a dozen struc-
tures, while the high-cardinality comparison view scales up to hun-
dreds of objects. The latter view is an overview visualization and
makes trends, patterns, and outliers visible.

Barrio can either automatically switch between comparison
modes, depending on the number of selected objects, or let users
choose the desired comparison mode. The actual visualization for
each comparison mode is based on the scenario subtasks specified
in the ADF. Fig. 7 and Fig. 8 show the different cardinality views
for the analysis scenario described in Sec. 8.

Figure 5: Scalable comparisons at three different cardinalities.
Low-cardinality comparisons (top row) analyze a small number
of spatial neighborhoods and use juxtaposed small multiples.
Medium- and high-cardinality comparisons support increasingly
larger numbers of neighborhoods and encode a single neighbor-
hood as a single visual element (i.e., a violin in a violin plot) or a
single visual mark (i.e., a dot in a scatterplot), respectively.

6.2. Visual Elements

Next, we describe the visual elements of our research prototype
(see Fig. 1) and how they support visual neighborhood analysis.

3D Neighborhood View. The neighborhood view (see Fig. 1g) is
the starting point of many analyses and examines the local spatial
neighborhood of a user-selected structure of interest in detail (T2).
Neuroscientists can analyze the morphology and three-dimensional
anatomy of the selected structure while at the same time seeing
nearby cellular substructures. Detailed three-dimensional visual-
izations of neighborhoods are essential for understanding the spa-
tial arrangements and also provide context for the abstract anal-
ysis views, which quantify neighborhood features. For example,
in the neighborhood view, we can show a selected mitochondrion,
its surrounding dendrite, as well as nearby synapses. We display
the selected structure of interest and the surrounding region in a
high-resolution 3D surface rendering and support different render-
ing styles (see Fig. 6). We support focus and context rendering by
displaying surrounding neuronal structures as silhouettes to high-
light cell organelles located inside a cell. In addition, users can en-
able a slice view of the original EM data and move it through the
neighborhood view (T1). With the slice view users proofread seg-
mentation accuracy on-the-fly. They can analyze features in the EM
data that have not been segmented and reconstructed yet, such as
the distribution of individual glycogen granules.

We have implemented the neighborhood view as small multiples
(see Fig. 1g). We juxtapose views of multiple local neighborhoods
next to each other (T4, T5). Small multiples can be linked to each
other for a synchronized navigation between all views.

Spatial Context View. This view provides an initial overview of
currently selected neighborhoods and all its segmented structures
(see Fig. 1e). Scientists can see the spatial location of selected
structures in the context of the entire volume and they can examine
how different local neighborhoods are related to each other, and
whether they share synapses or exhibit clusters of certain struc-
tures (T1). The spatial overview is linked to all other views so that
hovering over a structure in the neighborhood view highlights the
respective structure in the spatial context view and vice versa.

Analysis View. While the 3D neighborhood views are great for
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Figure 6: Detailed 3D neighborhood view. The dendrite (green)
and close synapses (red). (a) 2D slice overlay of the original EM
data to show biological context. (b) Silhouette enhancing, and
semi-transparent surface rendering to highlight how enclosed mi-
tochondria (blue) are positioned within the dendrite. (c) Color-
coding of a mitochondrion showing the distance between the mi-
tochondrion and its surrounding cell membrane.

getting a spatial understanding of a neighborhood, it is still hard
to compare multiple neighborhoods in a more quantitative way.
Therefore, Barrio offers analysis views (see Fig. 1f) that abstract
certain neighborhood characteristics and support direct compar-
isons between neighborhoods (T3, T4, T5). Fig. 5 shows examples
for the different chart types in Barrio, such as violin plots, or scat-
ter plots. A complete list is given in the documentation [VCG22b].
The actual visualization in the analysis view is based on the number
of selected neighborhoods (i.e., the cardinality of the current com-
parison) and on the specific analysis scenario. Analysis views and
3D neighborhood views are connected by brushing and linking.

Segmentation Tree List View. To easily select structures of inter-
est, we provide a hierarchical tree list view of all segmented objects
in the data set. Scientists can quickly select structures by navigating
the data hierarchically (e.g., from a neuron to its cell organelles).
Alternatively, users can choose to only see the list of objects of the
current biological target type (see Fig. 1d), to quickly select struc-
tures of interest for their comparative analysis.

6.3. Interaction

Brushing & Linking: Barrio supports brushing and linking between
analysis views, neighborhood views, and spatial context views.
Hovering over a region in the analysis view highlights the corre-
sponding neighborhood view, which is helpful when comparing
many structures. We also highlight structures like synapses or den-
dritic spines in the 3D views when selected in the analysis view
so that users can connect the insight they gained from the analysis
view to the detailed 3D representation.

Linked 3D Navigation: To facilitate fast and intuitive visual analy-
sis of multiple neighborhoods, users can link zooming and naviga-
tion for all 3D neighborhood views.

Neighborhood Selections: Based on initial user feedback, Barrio
supports two main approaches to select neighborhoods for further
investigation. Users can either start with a high-level comparison of
all neighborhoods (using a high-cardinality comparison view). Sub-
sequently they can select interesting neighborhoods based on out-
liers or clusters in the analysis view. This interaction mode is pri-

marily used by scientists to look at new datasets that they have not
analyzed before. Alternatively, users can select individual neigh-
borhoods in the tree list view and look at them in small multiple
3D neighborhood views before starting a more quantitative anal-
ysis. This mode is particularly useful if scientists already have a
neighborhood or region of interest in mind that they want to inves-
tigate. To further aid the user in finding interesting neighborhoods,
when selecting one structure in the tree list view, we automatically
highlight spatially close structures in the list view as well.

7. Data Processing and Implementation

Barrio Architecture. Barrio is a modular application that separates
the Barrio-core from the user interface and the visualization stack.
The visualization stack provides a general API for all visualiza-
tions in our system. Whenever a new analysis scenario is loaded,
the core module re-initializes and updates the user interface and
different views of the visualization stack, as specified in the ADF.
For flexibility, Barrio’s visualization stack is extensible. Additional
D3-based data visualization modules have to implement our visu-
alization interface and can then be further customized via the ADF.
Since Barrio already supports standard visualizations (e.g., scatter-
plots, bar charts, etc.), this feature is primarily meant to support
novel custom visualizations specific to a particular usage scenario.

Data Preprocessing. We display surface meshes of the recon-
structed structures as well as the original EM image volume. There-
fore, we use a standardized file format [VCG22b] to store surface
meshes, imaging volumes, any manually labeled meta data, and
automatically computed measures such as distances. We extract
meshes from human proofread segmentation volume with Neu-
romorph [JNC∗15] and store them in wavefront format [Wav21].
Synapses are stored as meshes of the segmented postsynaptic den-
sities. Additionally, labeled mesh attributes provided by domain
scientists, such as spine lengths, spine volumes, or surface areas
are stored in JSON format and can be used as visualization param-
eters in the ADF. Finally, we pre-compute and store the closest dis-
tances between neuronal structures as well as distance distributions
to neighboring structures based on evenly sampled reconstructed
surface meshes using the CGAL library [FGK∗00]. To compute
the distance between two structures, we use the distance between
their two closest surface points (i.e., minimum distance), as this is
of biological significance to our collaborators. To compute a dis-
tance distribution for structure A in relation to structure B, we com-
pute the minimum distance of each surface point of structure A to
B. CGAL uses an axis-aligned bounding box (AABB) tree to effi-
ciently compute distances. Since we use meshes generated from hu-
man proofread segmentation masks for the distance computations,
the distances can be considered accurate. We used a Windows 10
machine with a AMD Ryzen 9 3900X CPU, a GeForce RTX 2080
Super GPU, and 128 GB RAM for preprocessing and for the user
study. Preprocessing 1GB of data takes about one hour.

Implementation. Barrio is implemented in C++ 17, OpenGL 4.3,
and Qt5. The information visualizations are using D3.js [BOH11]
and Phylotree.js [SWKP18]. We have implemented a state-of-
the-art real-time transparency rendering algorithm using per-pixel
linked lists [Wol11] for the rendering of semi-transparent surfaces,
which requires a current GPU. Barrio is open-source [VCG22a].
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Figure 7: Analysis views generated for ST1: Synaptic neigh-
borhood of mitochondria. (a) to (c): low-, medium-, and high-
cardinality comparison views. (a) distance tree for mitochondrion
’Mito 1’ showing its surrounding synapses (red) and their closest
mitochondria (blue), (b) bar chart showing three mitochondria and
the spatial distance of their surrounding synapses, (c) distance ma-
trix of all mitochondria and their neighboring synapses.

Scalability. We precompute all distances and store them in a hash
table. Our current datasets contain roughly 1,100 segmented struc-
tures, where each structure is stored as a mesh. For rendering local
neighborhoods, we only need to load the meshes of the structures
inside that neighborhood onto the GPU. Our local neighborhoods,
in practice, contain between 1-30 structures whose meshes need to
be rendered. We currently load the entire hash table into memory
and perform rendering in-core. When comparing multiple datasets,
we load one hash table per dataset. For significantly larger datasets,
we envision an initial filtering step prior to Barrio, to limit the num-
ber of structures being compared. Filtering could be done in our
high-cardinality views (e.g., selecting elements in a scatterplot) or
by querying systems such as ConnectomeExplorer [BAAK∗13]. Fi-
nally, the number of side-by-side comparison views is limited by
the available screen space. When comparing many neighborhoods,
users should either switch to a higher cardinality comparison mode,
or perform filtering prior to looking at juxtaposed views.

8. Case Study: Mitochondria Analysis

We demonstrate the utility of Barrio based on a case study with one
of our collaborating domain experts (also a co-author) who per-
formed a detailed spatial neighborhood analysis of mitochondria.
The visual encodings used in this scenario were developed over the
course of several months in collaboration with our collaborators,
to create custom views for the comparison of neuronal structures.
After a one-hour training session, the expert operated Barrio inde-
pendently and also updated the default ADF based on his analysis
interests. The corresponding ADF is included in the supplemen-
tal material. Due to the COVID-19 pandemic, the case study was
performed remotely, with our collaborator steering the user inter-
face via the TeamViewer software. The case study consists of the
user-defined analysis scenario ’Mitochondria Analysis’ and exam-
ines different aspects of mitochondria neighborhoods. The first two
subtasks ST1 and ST2 are described in Sec. 8.1 and Sec. 8.2. De-
tails on the third subtask are given in the supplemental material.

8.1. Synaptic Neighborhood of Mitochondria (ST1)

Domain Goal: Here, the scientist wanted to analyze the spatial re-
lationships of mitochondria and their surrounding synapses (i.e.,
synapses connecting to the mitochondrion’s cell) to understand the
role of mitochondria in synapse formation and strengthening.

Visualizations: Fig. 7 shows the visualizations defined in the ADF
by the domain expert for comparing mitochondria (and their synap-
tic neighborhod) at low-, medium-, and high-cardinality. For low-
cardinality comparisons, our collaborator used juxtaposed synap-
tic distance trees (Fig 7a), one tree for each mitochondrion under
investigation. Inspired by phylogenetic trees [SWKP18], the tree
encodes the mitochondrion (root, blue), its surrounding synapses
(red), and any mitochondria in cells connected to these synapses
(leaves), as well as the distance between structures (edge length).
This view gives a quick insight into the synapse arrangement of the
immediate neighborhood, while abstracting complex 3D morphol-
ogy. The medium-cardinality comparison uses a grouped barchart
and gives a compact view on several mitochondria and their dis-
tances to synapses (Fig 7b). The high-cardinality view uses a dis-
tance matrix to compare dozens to hundreds of mitochondria simul-
taneously (Fig 7c). Rows correspond to mitochondria and columns
to synapses. Distances between mitochondria and synapses are
color-coded, darker colors representing closer distances.

Interactive analysis: The expert started his analysis by using the
list view to select an axonal mitochondrion, as well as a spatially
close dendritic mitochondrion. Next, he compared both in the dis-
tance tree, looked at their synapses in the 3D neighborhood views,
and found a distant synapse of the dendritic mitochondrion that was
particularly large. He enabled the EM slice to study the surround-
ings of this synapse and spotted glycogen granules, cell organelles
responsible for providing energy, in its vicinity. He hypothesized
that these glycogen granules might be responsible for the genesis
of a large synapse otherwise distant from its related mitochondrion
(i.e., energy provider). After this initial discovery, our collabora-
tor extended his analysis to four axonal and four dendritic mito-
chondria, which led Barrio to show the medium-cardinality visu-
alization. Using the grouped bar chart, he could confirm his hy-
pothesis that axonal mitochondria have much closer synapses than
dendritic mitochondria. However, he discovered a close synapse to
a dendritic mitochondrion in the bar chart (see highlighted bar in
Fig. 7b), which he confirmed to be a shaft synapse by using the
3D view. Shaft synapses are not formed at dendritic spines but are
directly located on the cell membrane of the dendrite, and their
functionality is not fully understood yet.

8.2. Mitochondria Placement (ST2)

Domain Goal: Here, neuroscientist wanted to investigate how close
mitochondria come to the cell membrane of their neurite and if cell
regions with close proximity to mitochondria differ from other ar-
eas. Since mitochondria provide energy to the cell, such morpho-
logical influences are of biological interest but are difficult to ana-
lyze with previous tools that give no quantitative feedback.

Visualizations: For this task, the expert needed to look at the de-
tailed 3D position of a mitochondrion, but also at quantitative visu-
alizations of the distance distribution (Fig. 8), which he defined in
the ADF. Barrio supports color-coding structures in the 3D views,
based on user-defined attributes. For this task, the scientist defined
that each point on a mitochondrion’s surface encoded its distance to
the closest point on the cell membrane. Red regions indicate close
proximity, while blue areas reveal regions more distant to the cell
membrane (Fig. 6c). For low-cardinality comparisons, the expert
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Figure 8: Analysis views generated for ST2: Mitochondria place-
ment. (a) to (c): low-, medium-, high-cardinality comparison views.
(a) cumulative histogram showing the percentage of a single mito-
chondrion’s surface that is within a certain distance to the sur-
rounding cell membrane (red means close, blue means far), (b) vi-
olin plots for four mitochondria, each showing the distance distri-
bution of the mitochondrion’s surface to the surrounding cell mem-
brane (color and vertical position encode the distance, the width of
the plot encodes the number of surface points with that distance),
(c) scatter plot showing many mitochondria (dots) and their volume
correlated to their distance to the cell membrane.

used small multiples of cumulative histograms for each mitochon-
drion, encoding the distances from each surface point of the mito-
chondrion to the cell membrane (Fig. 8a). This view allows users
to judge whether a mitochondrion follows closely the cell mem-
brane, or whether it only comes close in a small area. The medium-
cardinality comparison uses juxtaposed violin plots, where each
violin shape corresponds to a single mitochondrion (Fig. 8b), al-
lowing a more scalable comparison of several structures. The high-
cardinality comparison is based on a scatterplot where each dot
represents a single mitochondrion (Fig. 8c). The horizontal axis
represents the percentage of a mitochondrion surface that is a user-
defined distance (here: 50 nm) or closer to the cell membrane. On
the vertical axis, we encode the mitochondrion’s volume.

Interactive analysis: The expert started his investigation by com-
paring two axonal and two dendritic mitochondria. First, he stud-
ied the immediate proximity of the mitochondria using the EM slice
view (see Fig. 6a). Next, he observed a steeper curve in the cumu-
lative histogram for the axonal mitochonria, indicating that axonal
mitochondria are in general closer to the cell membrane. The sci-
entist used the violin plots to identify mitochondria with a wider
variety in their distance distributions, which all turned out to be
dendritic mitochondria. He studied these mitochondria in the 3D
view to find other neuronal structures close to them. He discovered
some synapses, which he marked for further investigation. In a last
step, the scientist searched for mitochondria neighborhoods by ex-
amining outliers in the scatterplot. While analyzing these outliers
in the 3D views, he discovered that boutons often develop synapses
in regions where the mitochondrion is distant from the cell mem-
brane. This pattern has not been observed before, and the domain
scientist is now studying this behavior in a follow-up analysis.

Case Study Findings: During this case study, the scientist made new
discoveries in the dataset that he had worked with for months. He
is now performing in-depth follow-up analyses on bouton develop-
ment close to mitochondria (ST2) and mitochondric spine coverage
(ST3). He was also able to adjust the ADF file without prior pro-
gramming experience, and was comfortable steering and conduct-
ing the analysis session in Barrio after a one-hour training session.

Figure 9: Comparing synapse locations in two different mouse
data sets (purple and green). The 3D views show the four selected
mitochondria neighborhoods. Grouped bars show the distances be-
tween mitochondria and their neighboring synapses. Hovering over
a bar highlights the corresponding synapse in the 3D neighborhood
view (orange). The young mouse (green, right) exhibits a wider va-
riety of mitochondria-synapse distances than the adult mouse (pur-
ple, left), indicating synaptic pruning over time.

9. Qualitative User Study

In addition to the case study, we conducted a qualitative user study
with eight experts to assess the effectiveness and usefulness of Bar-
rio. To demonstrate the ease of sharing analysis scenarios using our
ADF format, and to be able to compare the analysis sessions of dif-
ferent users, we asked each expert to use the ’Mitochondria Analy-
sis’ ADF file as a starting point. We describe the related subtasks in
Sec. 8 and the supplementary material. After their initial analysis,
each expert fine-tuned Barrio to their individual analysis needs. For
example, one scientist loaded two datasets of brain tissue at differ-
ent ages to analyze the change of synaptic neighborhoods over time
(see Fig. 9). Others focused on synapses as target types, or analyzed
synapses that were spatially close to, but unconnected to selected
neurites, which required minor modifications to the ADF.

Participants. We evaluated Barrio with eight experts (P1-P8, 1
male, 7 female) from the Neuroscience Institute at the University
of Turin and the Center for Brain Science at Harvard University.
All experts (three professors, one postdoctoral researcher, two se-
nior Ph.D. students, and two undergraduates) are experienced in
analyzing 3DEM data of mice brains.

Setup. We met with each participant for a two-hour session re-
motely over Zoom video conferencing. After a one hour introduc-
tion to Barrio and its user interface, we started a data exploration
session. In the study, we used a data set provided by the domain
experts showing layer one of the somatosensory cortex of a four-
month-old mouse with 1,088 segmented structures.

Feedback. Fig. 10 shows user ratings for general real-world appli-
cability, tool effectiveness, and relevance for each of the three sce-
nario subtasks. Seven out of eight participants rate questions Q1-Q4
positively, with the remaining participant being neutral. All partic-
ipants agreed that our tool improved the analysis of 3DEM data.
This is not surprising; other than Barrio, no study participant cur-
rently has visual tools available to analyze spatial neighborhoods of
brain tissue. Prior to Barrio, P2 used Blender for visual exploration
and manually computed distances between structures. P2 did not
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Figure 10: Barrio user ratings on the three case study subtasks
(ST1 - ST3). We show neutral responses (3) in gray, positive re-
sponses (4, 5) on the right side in teal and the percentage of partic-
ipants who responded positively.

have any support for visual comparisons other than taking screen-
shots. P6, P7, and P8 previously wrote small Python scripts to ana-
lyze brain tissue visually.

9.1. Findings

Combining EM data with reconstructed data is essential. Do-
main experts highly appreciated overlaying the 3D meshes with the
EM image data. It allowed them to verify segmentation accuracy
and enabled them to spot unsegmented properties of brain tissue.

Experts use high-cardinality comparisons to spot trends. Most
participants looked at the high-cardinality visualization first to gain
an overview and to spot outliers or neighborhoods of interest, which
they then examined more closely in the neighborhood view.

Larger data sets could improve neighborhood analysis. Due to
the high resolution of EM data, currently, our data sets do not in-
clude full reconstructions of nerve cells, but only small parts of
them. Neurites and cell organelles can get cut off, which limits the
quantitative analysis of those incomplete structures.

Custom analysis scenarios simplified the workflow. By being
able to fine-tune the analysis in the ADF file, scientists were able
to focus on their specific analysis needs and interests. Therefore,
participants were immediately engaged in the tool, as they saw po-
tential benefits, even for their highly individualized scientific goals.

Barrio improves the state of the art. All participants indicated
that Barrio is useful (four rated it useful, and four rated it very use-
ful) and that the software has a high potential as a visual analysis
tool for 3DEM data. P1, P2, P3, P6, and P7 plan to specify addi-
tional analysis scenarios for their data sets.

10. Discussion

Additional features. During the user study, participants suggested
a couple of additional features for Barrio. For instance, it would be
interesting to extend Barrio with visualizations for analyzing the
texture of mitochondria in greater detail. Domain experts P6 and
P7 have classified mitochondria based on their texture in EM im-
ages into bright, dark, and combined mitochondria, and they are in-
terested in relating these categorizations with our spatial neighbor-
hood analysis. Additionally, P6 and P7 pointed out that knowledge
about spatial neighborhoods of cell organelles such as mitochon-
dria could help to classify cell types in the future.

Limitations. First, some preprocessing steps, such as segmenta-
tion, currently still require manual work. For instance, the dendritic
spines and the cell body of all axons and dendrites were manually
labeled. However, manual data preprocessing makes the analysis of
larger data sets difficult. Second, for specifying ADFs, we offer a
human-readable format that does not require programming. How-
ever, it still requires manual editing and a technical description of
analysis scenarios. In the future, we could further simplify the ADF
specification for users by offering a visual interface to it.

Expressivity vs. Usability Trade-off. An important lesson learned
were the nuances in the expressivity/usability tradeoff. On the one
hand, our tool is fine-tuned to specific data and the 3DEM work-
flow (i.e., high in usability), but at the same time, Barrio is flexi-
ble enough to reflect the needs of individual researchers (i.e., high
in expressivity). This flexibility is crucial to accommodate various
neuroscientists working on 3DEM data. However, it comes with
the additional burden of modifying or defining custom scenarios
and ADFs. To ease this burden, we provide template ADFs, a tu-
torial, and guidelines on writing custom scenarios [VCG22b]. Fur-
thermore, ADFs are human-readable, allowing scientists to share
their analysis scenarios or start from a provided template.

Flexibility is key. In addition to the flexibility afforded by custom
scenarios, we found that flexibility in terms of data size and the
size of visual comparisons is crucial. Barrio adjusts its views based
on the user-defined scenario and the number of neighborhoods in a
comparison. These automatic adjustments based on data and user
goals simplify and streamline a users’ workflow and can be applied
far beyond the domain of neuroscience.

11. Conclusions and Future Work

We plan to extend Barrio to more usage scenarios involving other
cell organelles, such as ribosomes and neuromuscular junctions. So
far, our collaborators are not segmenting and reconstructing those
structures, which limits their usage in Barrio. We further plan to
use the neighborhood characteristics discovered in Barrio to in-
vestigate the extent to which they allow us to automatically label
neuronal structures (e.g., to differentiate excitatory and inhibitory
synapses). We also plan to incorporate topology-centered methods
for the classification of neurites.

We believe that our neighborhood analysis approach is generaliz-
able to other areas, such as single-cell analysis or the exploration of
neighborhoods in city models. Supporting customized analysis sce-
narios can provide helpful functionality in many domain-specific
visual analysis tools where users have varying analysis goals. Fi-
nally, we believe that Barrio can advance neuroscience research,
not just for the presented usage scenario of mitochondria analysis,
but also for future novel domain questions that have yet to be spec-
ified by neuroscientists.
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