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Figure 1: Confusion Sankey design showing the same data as in Figure 4. (A) Confusion Sankey and its components; (B) Confusion Sankey
with selected instances classified as C2 by Model1; (C) Confusion Sankey focusing on misclassification patterns.

Abstract
Model comparison is an important process to facilitate model diagnosis, improvement, and selection when multiple models are
developed for a classification task. It involves careful comparison concerning model performance and interpretation. Current
visual analytics solutions often ignore the feature selection process. They either do not support detailed analysis of multiple
multi-class classifiers or rely on feature analysis alone to interpret model results. Understanding how different models make
classification decisions, especially classification disagreements of the same instances, requires a deeper model understanding.
We present ModelWise, a visual analytics method to compare multiple multi-class classifiers in terms of model performance,
feature space, and model explanation. ModelWise adapts visualizations with rich interactions to support multiple workflows to
achieve model diagnosis, improvement, and selection. It considers feature subspaces generated for use in different models and
improves model understanding by model explanation. We demonstrate the usability of ModelWise with two case studies, one
with a small exemplar dataset and another developed with a machine learning expert with real-world perioperative data.

CCS Concepts
• Human-centered computing → Visualization; Visual analytics; • Computing methodologies → Supervised learning by
classification;

1. Introduction

In the development of classification models, data scientists typi-
cally try various models. These models are built with different al-
gorithms, hyperparameters, or selection of data features. Through
model comparison, data scientists aspire to identify the best-fit
model for the task at hand, which associates with the goal of model
selection. In addition, they are interested in understanding how
different models make classification decisions. In general, model
understanding facilitates model diagnosis and yields insight for
model improvement. Particularly for multiple models, data sci-

entists can learn from well-performing models to improve a pre-
ferred target model (e.g., an intrinsic interpretable model is favored
for clinical applications). For example, the insight from the well-
performing models may be: which data features contribute most to
correct predictions in well-performing models but are not used in
the target model? To achieve such goals, it requires careful model
comparison in terms of model performance and interpretation.

Currently, performance comparison of multiple multi-class clas-
sification models is conducted mainly according to summary statis-
tics such as accuracy, precision, and recall. Although this overall
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comparison provides clues for model selection, a detailed exam-
ination is required for gaining insight into model diagnosis and
improvement. For example, even with a model having the highest
overall accuracy, data scientists need to understand when the model
fails. Detailed performance comparison at the class level helps to
understand the strengths and weaknesses of different models. Fur-
thermore, data scientists need to examine performance on different
subsets of the data, from which they can derive where the model
performs well or does not and where models agree or disagree on
the classification results. Examination of the disagreement of clas-
sification results potentially helps correct model misclassifications
by learning from the models with correct predictions.

As for interpretation, previous research relies on data and feature
analysis to interpret and diagnose classification results [ZWM∗19,
PLHL19, JZHA22]. However, understanding how models make
classification decisions, especially classification disagreements
among different models, requires the interpretation of model be-
havior. Feature values reveal the feature discriminative power be-
tween classes, while it cannot discern if models capture the under-
lying information from the data features they use. Models can only
be debugged and improved when the models themselves are inter-
preted [Mol19]. This is why XAI (eXplainable Artificial Intelli-
gence) techniques are needed to disclose the model inner-workings
by generating model explanations. But how to properly compare
model explanations to boost insight in the context of model com-
parison is an open problem.

In this paper, we present ModelWise (Figure 3), a visual ana-
lytics method to assist data scientists in analyzing and comparing
classification models wisely. It considers feature subspaces gener-
ated for use in different models and improves model understanding
by model explanation. Our work is inspired by the real needs of
data scientists who develop multiple classifiers with different char-
acteristics (i.e., algorithms, features, and hyperparameters) and ex-
pect punctilious comparison to understand the difference of model
results and how the models make classification decisions. Based
on a review of related literature and discussions with two domain
experts, we map the three domain goals to eight user tasks. All
user tasks are related to exploring the three components, feature
space, model performance, and model explanation. Our method in-
tegrates these three components and enables users to initiate explo-
ration from any of them to achieve their goals, model diagnosis,
improvement, and selection. In summary, the main contributions
of this work are:

• The design and implementation of ModelWise, a visual analytics
method for analyzing and comparing multiple multi-class clas-
sifiers. ModelWise integrates model performance, model expla-
nation, and feature space for multi-perspective exploration while
supporting multiple workflows to achieve domain goals of model
diagnosis, improvement, and selection.
• Adapted visualization and interaction strategies to support user

tasks. A Confusion Sankey is designed to achieve an effec-
tive class-based performance comparison of multiple multi-class
classifiers. It enables users to trace instances across multiple
models simultaneously. With interaction, we support subset se-
lection from any perspective: model performance, model expla-
nation, and feature space.

In the following section, we present related work on classifier
performance comparison and model interpretation. Domain goals
and tasks for model comparison are summarized in Section 3. We
introduce the design in Section 4 and demonstrate its usability with
two case studies in Section 5. Finally, we discuss our method in
Section 6 and conclude our work in Section 7.

2. Related Work

Model performance and interpretation are two main perspectives
of our model comparison work. In this section, we review relevant
work on visual designs for classifier performance comparison. We
also discuss various interpretation methods considering the eligi-
bility of corresponding explanations for model comparison.

2.1. Classifier Performance Comparison

There exist a number of visual designs for performance comparison
of two or multiple classifiers. Alsallakh et al. [AHH∗14] design a
confusion wheel that supports the performance comparison of two
probabilistic classifiers. This confusion wheel is limited to pairwise
comparison and not easily extendable to multiple models. Sugeerth
et al. [MMD∗19] build a hierarchical structure based on misclassi-
fication patterns and use treemaps to show the overall performance
of two classifiers. This hierarchical structure is difficult to discern
for multiple multi-class classifiers. Zhang et al. [ZWM∗19] pro-
pose Manifold that utilizes a scatterplot-based visual technique to
support pairwise model comparison based on model confidence.
However, with this pairwise design, users tend to lose the perfor-
mance relationship of multiple models when three or more models
are compared simultaneously. Targeting multiple classifiers, Park
et al. [PKL20, PLHL19] design a performance ranking visualiza-
tion to evaluate models at the class level. The main goal of their
system is to assist ML practitioners in selecting the appropriate
classifier based on comparison from a high-level perspective, and
thus performance examination below the class level such as cus-
tomized subset or instance level is not well supported. In contrast,
Boxer [GBYH20] is a performance comparison tool that provides
a way to specify interesting subsets and assess performance. It uses
an interactive Confusion Matrix Grid to show performance details,
but the separated matrix design makes instance tracking and per-
formance comparison of multiple classifiers difficult. Similar con-
fusion matrix-like designs for performance comparison also appear
in Confusionflow [HRS∗20] and EnsembleMatrix [TLKT09].

Some VA tools support performance comparison but are not tai-
lored towards classification models. In these tools, typical charac-
teristics of classification models such as class confusions or clas-
sification patterns among models are hardly presented. For exam-
ple, Jamonnak et al. [JZHA22] compare performance and predic-
tions of autonomous driving models using aligned bar charts and
a tabular list, while their design is unable and hard to be extended
to unveil class confusions or complex classification patterns. DF-
Seer [SFC∗20] as a model selection tool for demand forecast-
ing models supports performance analysis, particularly on differ-
ent products and time periods. Other designs that concern model
performance comparison of multiple models mostly appear in vi-
sual analytics systems for model ensembling [SJS∗21, CMKK21a,
CMKK21b, XXM∗19] and AutoML [WMJ∗19, NZL∗21].
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High-level goals
Low-level user tasks

G1 G2 G3
X X T1 [Performance] Compare performance metrics and classification results of different classifiers
X T2 [Explanation] Explore instances with similar model explanations
X X X T3 [Explanation] Compare feature importance-based explanations of different classifiers
X T4 [Feature] Explore instances with similar feature values
X X X T5 [Feature] Identify feature sets used by different classifiers
X T6 [Feature] Identify feature values of different classes for one feature
X X X T7 [Feature] Compare feature discriminative power between classes
X X T8 [Performance, Explanation, Feature] Select instance subset of interest

Table 1: Three high-level goals (G1: Model Diagnosis, G2: Model Improvement, G3: Model Selection) and eight low-level user tasks (T1-8).

Recent work employs a tabular layout to display the same la-
bel assignments in rows and show multi-label results of different
algorithms or sources in columns [KAGB21]. This tabular design
is adequate to inspect relationships of assigned labels. However,
instance numbers for assigned labels are identified by text, mak-
ing it difficult to compare the class-level performance of multiple
models. Our visual design for classifier performance comparison
builds upon the same idea of using a Sankey-based diagram similar
to InstanceFlow [PHS20]. InstanceFlow uses the flow view mainly
for temporal and individual performance analysis. In contrast, we
employ it to compare performance and distinguish (dis)agreement
patterns of multiple classifiers.

2.2. Model interpretation

Interpreting model results can be accomplished using two ap-
proaches: feature analysis and XAI methods. Most existing VA
studies are dedicated to applying feature analysis to evaluate and di-
agnose ML models for tabular data [WXC∗21,CEH∗19,ZWM∗19,
AHH∗14]. Generally, feature values are summarized and visual-
ized according to customized subgroups, which yields insight into
relationships between feature values and model results. We apply
this similar idea in our work to visualize feature values based on
user-defined instance subsets.

As the field of XAI evolves, various techniques have been pro-
posed to explain the rationale behind model results. We summarize
three requirements an XAI method should fulfill for our work: (1)
model-agnostic and post hoc to enable comparing diverse models
according to model results; (2) support model understanding at both
global and local scope; (3) interpretation results of different mod-
els should be comparable. The above requirements inspire us to use
local model-agnostic interpretation methods, with which model be-
havior interpretability of various scopes can be derived.

Different local model-agnostic interpretation methods produce
different interpretation forms. Anchors [RSG18] generates a rule-
based explanation given a prediction for one instance. Similar rule-
based methods for global model behavior understanding can be
found in RuleMatrix [MQB19] and GLocalX [SGM∗21]. Although
rules facilitate interpretation, rule-based explanations of multiple
models are difficult to compare. Other interpretation forms of ex-
planation results include contrastive explanations [DCL∗18] and
counterfactual explanations [WMR18,GHYB20,CMQ21]. The ex-
planation results of these forms are hard to summarize for a subset
or global scope and thus difficult to compare.

Compared to the interpretation forms mentioned above, feature
importance-based explanation can be easily summarized for model
understanding at various scopes and model behavior comparison.
Local Interpretable Model-agnostic Explanations (LIME) [RSG16]
is a widely-used feature importance-based interpretability tech-
nique. It explains individual predictions by training a local surro-
gate model around a given prediction. LIME is unified into the class
of addictive feature attribution methods by Lundberg et al. [LL17].
According to cooperative game theory, Lundberg et al. show that
there is a unique optimal explanation approach in the class, the
Shapley values, that satisfies three essential properties: local ac-
curacy, consistency, and missingness. They propose a unified mea-
sure of feature importance named SHapley Additive exPlanation
(SHAP) values to approximate the Shapley values. They demon-
strate the effectiveness of using SHAP values to promote model
understanding with a clinical application [LNV∗18] and propose
a modified version of SHAP specifically for tree-based ML mod-
els [LEC∗20]. In this paper, we use SHAP values. However, other
methods that satisfy the requirements described in this section
would also apply. A detailed summary of XAI methods can be
found in Linardatos et al. [LPK21] and Vilone et al. [VL21].

3. Domain Goals and Tasks

Our work is inspired by the real needs of data scientists who de-
velop multiple multi-class classifiers for tabular data and need to
compare these models. Model comparison is not solely used to
identify the best-fit model. The potential of learning from well-
performing models to facilitate model diagnosis and improvement
is also vital, however, difficult to explore. Furthermore, analysis re-
sults of model diagnosis and improvement directly guide model se-
lection. Concisely, the domain goals for comparing multiple multi-
class classifiers are to support model diagnosis, model improve-
ment, and model selection.

Based on related literature [SSSEA20, CMJ∗20, LFC∗20] and
several rounds of informal discussions with two domain experts,
we map the three high-level domain goals (G1-3) to a set of con-
crete low-level user tasks (T1-8) summarized in Table 1. Each high-
level goal is associated with several user tasks. Note that all low-
level user tasks are related to exploration from three perspectives:
Performance, Feature, and Explanation. These three perspectives
correspond to three kinds of data generated during the machine
learning modeling phase: feature space including all the feature
attributes and feature values from the given set of data (Feature),
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Figure 2: Schematic representation of ModelWise components.
The three kinds of data, feature space (Feature), model perfor-
mance metrics and classification results (Performance), and model
explanations (Explanation) are input to ModelWise. Through model
analysis and comparison in ModelWise, users achieve the three
high-level goals, model diagnosis, improvement and selection.

performance metrics and classification results (Performance), and
derived feature importance-based explanations (Explanation), see
Figure 2. Data scientists can achieve the three domain goals through
model comparison from these three perspectives.

During model diagnosis, data scientists aim to analyze model
performance and understand how the models make decisions, espe-
cially where and why the errors are made [CBME16]. In the context
of multiple models, their concerns include: What are performance
differences of different models? How do different models make clas-
sifications? Where and why do different models (dis)agree with the
classification results of the same instances?

To answer these questions, they need to inspect model perfor-
mances, model explanations, and features from a global view. The
summary performance metrics and class-based performance com-
parison provide a quick overview of model strengths and weak-
nesses (T1). Model explanations help understand model rationales
to determine if one model works as expected (e.g., how does the
model work for different instances? Does the model treat instances
of different classes similarly?) (T2). Effective alignment of expla-
nations of multiple models boosts model comparison from the view
of model inner workings (T3). In addition, data scientists typically
trace back to features to determine whether models capture the un-
derlying structure of the data. They generally compare the selected
features used by different models, look up feature values, or ex-
plore instances with similar feature values (T4-6). Analyzing fea-
ture values can disclose the discriminative power of features, which
enables data scientists to conclude whether model errors can be cor-
rected by using appropriate features (T7).

Data scientists also select instance subsets for detailed diagno-
sis [KDS∗17,GBYH20] (T8). The examination of instance subsets
narrows the analysis space and facilitates focused diagnosis. Data
scientists consider instance subset selection across three perspec-
tives. First, from the view of performance, they are interested in
instances with different classification results for different models.
Insights can be gained from models with correct classification re-
sults (e.g., to correct the errors made by lesser performing mod-

els). Second, from the perspective of model explanation, instances
of different classes but with similar model explanations are worth
further analysis. Last, in terms of feature, starting from instances
with similar feature values is another angle to analyze and diagnose
model results. After identifying the subset of interest, data scientists
can examine the subset in detail from all three perspectives.

While model diagnosis emphasizes identifying and analyzing the
errors in the model results, model improvement targets produc-
ing direct insight to enhance model performance. Generally, model
diagnosis reveals the potential ways to improve the models. For
instance, model errors caused by imbalanced data or unrepresenta-
tive instances can be remedied by improving data quality. Here, for
model improvement we only consider direct insights about feature
usage such as Which features are helpful for the classification task?
Are the features used appropriately by the models?

We argue that these insights can be derived from two perspec-
tives, explanation and feature. From the explanation perspective,
data scientists identify important features appropriate to use in the
final model by comparing feature importance-based explanations of
different features in one model. By comparing feature importance-
based explanations of the same feature in different models, data
scientists detect if some models use this feature appropriately (T3).
From the feature perspective, feature importance can be inferred
by comparing feature usage and the corresponding model perfor-
mance of different models (T5). Additionally, feature discrimina-
tive power between classes reveals the actual feature importance
to the classification task (T7). Features with a high discrimina-
tion power tend to be helpful for the classification task. Combin-
ing these two perspectives with domain knowledge about models,
data scientists can select the appropriate feature set, or adjust model
parameters or architecture, to improve the models. The process of
gathering insights can be done from the global or subset scope (T8).

Model selection is the process of selecting a final model from a
collection of candidate models [HWN18]. The question it relates to
is: Which model is the best fit for the classification task? However,
this is not simply picking the model with the highest accuracy. It in-
cludes selecting the most predictive or less costly feature set (T7),
choosing the appropriate algorithm and hyperparameters. By com-
paring model performances, explanations, and features usage, data
scientists evaluate “best-fit” from different aspects (T1, T3, T5).

We aim for a visual design and interaction that supports users in
achieving the three high-level goals, model diagnosis, model im-
provement, and model selection (see Figure 2).

4. ModelWise

Based on Figure 2, we design ModelWise, a visual analytics solu-
tion, to support model comparison of multiple multi-class classi-
fiers. As shown in Figure 3, (A) the Overview provides a summary
of the classification task and allows users to choose the models for
detailed analysis. Then users explore the selected models in global
and subset scopes through coordination of the four major views,
(B) the Projection View, (C) the Classification View, (D) the Fea-
ture View, and (E) the Explanation View. Users can save the in-
stance subsets of interest in (F) the Subset View for later analysis
and comparison during the analysis process.

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

100



L. Meng et al. / ModelWise: Interactive Model Comparison for Model Diagnosis, Improvement and Selection

Figure 3: The interface of ModelWise. (A) The Overview shows basic information about the classification task and enables users to select
models for further analysis; (B-E) The four major views support the detailed comparison of multiple classifiers from different perspectives;
(F) The subset view enables users to save the instance subset of interest for later analysis.

As discussed in Section 3, all user tasks pertain to exploration
from three perspectives: Performance, Explanation, and Feature.
The corresponding three kinds of data, feature space (Feature),
performance metrics and classification results (Performance), and
model explanations (Explanation) are the pre-computed input to
ModelWise. To generate feature importance-based explanations of
all evaluation instances, we use a model-agnostic approximation
of SHAP values called Kernel SHAP [LL17] (see Section 2.2). It
assigns a contribution value for each model-feature-instance pair.
Computing local explanations across all instances enables model
interpretability from the global and subset scope.

Furthermore, these three perspectives directly guide the inter-
face design of ModelWise. All four major views address one or
two perspectives. More precisely, the Classification View visualizes
performance information for performance comparison of multiple
models. The Explanation View summarizes the derived local expla-
nations for explanation comparison. The Feature View enables data
feature exploration. In addition, the Projection View supports anal-
ysis of the high-dimensional feature and explanation space using
projection techniques.Through model comparison from these three
perspectives, data scientists derive the knowledge concerning the
three high-level goals to update their models for the next develop-
ment iteration or select the final model for deployment.

ModelWise enables multiple workflows for the exploration to
achieve the three high-level goals. Users can start from any major
view to compare models or select instance subsets for further anal-
ysis from specific perspectives. The subset selection from any of
the three perspectives also reflects this flexibility.

4.1. Classification View

The Classification View (Figure 3C) visualizes performance met-
rics and classification results of multiple models to support model
comparison and subset selection from the performance perspective
(T1, T8). Summary metrics provide a quick summary of model per-
formance, while closer examination of model classification patterns
requires class-level or instance-level performance display based on
the specific classification results. We design a Sankey-based dia-
gram to align multiple model classification results and name it Con-
fusion Sankey. A list of aligned bar charts is presented on the right
side for quantitative performance comparison regarding classifica-
tion results, accuracy, precision, recall, and F1 measure.

During earlier design iterations, we considered several design
alternatives. As discussed in Section 2.1, separated confusion ma-
trices are not effective for performance comparison and instance
tracking, i.e., tracking classification results of instances in differ-
ent models. To facilitate classification result comparison of multi-
ple models, we combined classification results of multiple models
into one confusion matrix with a bar chart in each cell (Figure 4A).
Yet this design cannot show the relations of classification results
through models. We also designed confusion matrices combined
with contingency tables (Figure 4B). In this design, each confu-
sion matrix on the diagonal axis displays the classification results
of one model, and each contingency table shows the classification
result relations of two models. Although pairwise classification re-
lations are precise, identifying classification relations through mul-
tiple models by comparing separated matrices is challenging. We
considered a tabular design alternative to summarize the classifi-
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Figure 4: Design alternatives for performance analysis of multiple
classes and models, showing the same data as in Figure 1 : (A) A
confusion matrix design; (B) Confusion matrices with contingency
tables; (C) A tabular form design.

cation results of multiple models (Figure 4C). This tabular design
displays all the classification patterns in a list view, with each row
representing classification results of the same instances in different
models. However, it is hard to get a quick overview of the class-
level performance of multiple models and requires more effort to
search for particular classification patterns through models.

In Confusion Sankey (Figure 1), classification results of the
models are summarized in terms of predicted class and laid out
in parallel. This summarization and layout enable simultaneous
class-level performance comparison of multiple models. We use the
position-related channel to encode the model and class, which helps
users compare class-level performance and locate models or classes
of interest. As shown in Figure 1A, the y-axes that are sorted by
model accuracy by default correspond to the classification results of
the same instances of different models. Each y-axis is divided into
several nodes according to the predicted classes in the Model axis.
The height of a node is proportional to the number of instances cor-
responding to the node. Confusion Sankey enhances the traditional
Sankey diagram by splitting nodes to represent true positives (TPs)
and false positives (FPs) per class. Each node comprises a wide
middle bar and narrow side bars on both sides. Each node repre-
sents an instance set with the same predicted class encoded in color
hue on the side bars. The middle bar is divided into several rectan-
gles colored by their corresponding actual classes. The rectangles
with the same color as the side bars represent TPs, while others
imply FPs. To help users identify classification patterns among the
models, we use links colored by the actual class to connect the same
instances between y-axes, which guides the tracking of classifica-
tion results through multiple models. The width of links is propor-
tional to the number of corresponding instances. In addition, we
enable users to reorder the y-axes with drag and drop interaction.
This flexible reordering facilitates performance comparison and in-
stance tracing among models of interest.

To enable instance subset selection from the performance per-
spective, we extend Confusion Sankey for subset selection by click-
ing on the rectangles in the middle bars. Once one rectangle is
clicked, the instance set represented by the corresponding rectan-
gle is selected. Then the Classification View is updated to show
only the classification results of the selected instances, as shown
in Figure 1B where the instances classified as C2 in Model1 are
selected by clicking on the corresponding rectangles in succession
in the union selection mode. Specifically, the selected instances are
highlighted while other parts are occluded with white-line textures
in the middle bars. Links are updated only to show the connections

of the selected instances among the model axes. The right-side bar
charts display the performance metrics of the selected subset.

Confusion Sankey enables users to get an overview of the class-
level performance between models. It also reveals model perfor-
mance strengths and weaknesses for different classes and guides to
discern (dis)agreement patterns among the model results. For ex-
ample, in Figure 1A, Model2 performs well for C1 and C2, yet
poorly for C3. On the contrary, Model1 and Model3 show their
strength in the classification for C3 but confuse some instances of
C1 or C2. With instances predicted as C2 by Model1 selected (Fig-
ure 1B), it can be seen that these misclassified instances are also
misclassified by Model3. The above information cannot be easily
obtained from any of the designs presented in Figure 4.

In general, TPs are less interesting compared to FPs. Misclas-
sification patterns of the models are salient for deeper evaluation
and diagnosis. However, in some cases, especially for unbalanced
data, most space is taken by TPs, and rectangles in the middle bars
representing FPs may be too short to discern. To enhance the visi-
bility of FPs, we introduce a misclassification mode of Confusion
Sankey (Figure 1C). All the rectangles representing TPs are col-
lapsed into the same height in this mode. To avoid confusion and
indicate that the height no longer encodes information, the rectan-
gles are blurred [KMH01]. The associated links between TPs are
also blurred to indicate that the width of the lines is not encoding
any information. There are many approaches possible to convey
uncertainty. Apart from applying blur, we considered others, e.g.,
texture or the use of color luminance. Blur is chosen since it guides
user attention to the rectangles representing FPs through the seman-
tic depth of field effect [KMH01]. This compression creates space
to better show model FPs and facilitates selection.

4.2. Feature View

In the Feature View (Figure 3D), all features are organized in a
vertical feature list to show feature distribution per class (T6). We
use histograms to show the frequency for numerical features and
apply bar charts for categorical features. To avoid the obscurity of
some classes in the case of unbalanced data, we provide the prob-
ability distribution display option (Figure 3 d ). It normalizes the
frequency, thus enhancing the distribution comparison among dif-
ferent classes. When an instance subset is selected, the distribution
chart of the subset will be overlaid on the original chart with darker
colors (Figure 5D). Users can toggle the Subset button to show only
the subset distribution chart to reduce visual clutter. To fulfill T5,
we use equally divided bars below the feature distribution chart
to indicate feature usage. Each bar represents one model, and the
gray-filling bar represents that model uses this feature. The order
of the bars is the same as the model order in Confusion Sankey.

To support T7, we define per feature discriminative power be-
tween classes to sort feature rows. To be specific, we use Bayes
minimum error rate [DHS01] to measure the feature ability of class
separation. Compared to some other distribution difference mea-
sures that only support the comparison of two distributions such as
Kullback–Leibler divergence [KL51], Bayes minimum error rate,
P(ε), computes the probability of making an error, ε. It enables
the consideration of the distributions of multiple classes simultane-
ously. We let wi where 1≤ i≤ c, denote the finite set of c classes.
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Given the class-conditional probability distribution p( f |w) of a cat-
egorical feature f with n discrete values or a numerical feature f
discretized into n equal-size bins, we compute Bayes minimum er-
ror rate to measure the discriminative power of feature f as

P(ε) =
n

∑
j=1

P(ε| f j) · p( f j) = 1−
n

∑
j=1

max(p( f j|wi) ·P(wi): i = 1, ...,c)

Since Bayes minimum error rate can be skewed for unbalanced
classes, we put the prior probability P(wi) of each class as 1/c in
actual implementation to magnify feature distribution differences
between classes. Feature with a lower P(ε) has more discriminative
power. Sorting features based on their corresponding P(ε) of the se-
lected instances is provided. In addition, features can be sorted by
the model use frequency to identify rarely used features.

4.3. Explanation View

The Explanation View displays feature importance-based explana-
tions in a tabular manner to assist users in comparing explanations
of different classifiers (T3). In the aligned layout, each row rep-
resents a feature, and each column represents a model consistent
with the y-axis of the Confusion Sankey, as shown in Figure 3 e1 .
Each cell summarizes the feature importance-based explanations
of selected instances for the corresponding feature and model. The
corresponding feature cell is empty if the model does not use the
feature. This layout facilitates the comparison of model usage.

In this work, we use SHAP values as feature importance-based
explanations (see Section 2.2). SHAP values are computed per in-
stance for each model and give an attribution value of each used
feature per class. To extract global information, we use the distri-
bution of SHAP values of each class for each feature among the
evaluation instances. Thus each feature cell contains rows of dis-
tribution information of SHAP values of the corresponding feature
for each class. To present distributions and facilitate comparison,
we consider three design alternatives: box plots, violin plots, and
bar charts (Figure 3 e2 ). Although the box plot is commonly used
to show statistical summaries and is effective for comparing sev-
eral groups of data sets, it can be misleading when, for example,
the distribution is not unimodal. Actual explanation distributions
are valuable because they reflect model behavior more precisely.
For example, as shown in Figure 3 e3 and e4 , the same feature
behaves differently in the two models in terms of SHAP values of
the same feature for the same class. In e3 , SHAP values mainly re-
side on the edges of positive and negative effects, meaning that for
most instances, the feature has a high effect, positive or negative, in
the classification for this class. Yet in e4 , the distribution of SHAP
values is centered around 0, which means this feature has little at-
tribution for most instances of this class. The bar chart is an extra
aggregation showing one statistical value per class. It is useful to
compare a single metric (e.g., average). It is also a good resource
when only one instance is selected and there is no distribution in-
formation. Considering the respective advantages of the three kinds
of plots, we enable users to switch between these plot types.

Apart from feature use differences among models, another con-
cern is which features are more important per model and feature
importance differences between models. To answer this question, it
requires feature importance ranking per model. However, there is

no unique way to decide this ranking. Therefore, we define several
criteria to sort feature cells per model according to various summa-
rized metrics of SHAP values of the corresponding model. These
metrics are average, extreme value, median, and standard deviation,
which reflect feature importance from different aspects. For the av-
erage and extreme value metrics, we compute the absolute values
of average or extreme values for positive and negative values sep-
arately and use the bigger one of the two for sorting. In addition,
data scientists are concerned with feature importance for a specific
class. Suppose that one model misclassifies instances of C1 as C2,
and the question would be which features are responsible for the
classification result of C2 and which features are contributable to
the actual class C1. Thus we include class selection in the sorting
criteria so that users can decide to compare SHAP values of the se-
lected class. By default, SHAP values of all classes are compared to
achieve an overall comparison of feature importance. To facilitate
the comparison of SHAP values for different classes for each fea-
ture cell, we use the background color of the positive and negative
sides to encode for which classes the feature has the most effect on
different sides. This encoding is only applied when the average or
extreme value metric is selected (Figure 3E), otherwise, the back-
ground is grey as shown in Figure 6D.

In the aligned layout, one model column is selected for feature
cell sorting. Feature cells in other columns are aligned with it. How-
ever, this layout cannot show the most contributing features for dif-
ferent models simultaneously. Thus we provide a compact layout
in which feature cells are sorted per model column. To facilitate
the comparison of the same feature in this layout, we highlight as-
sociated feature cells when hovering on a feature cell, as shown in
Figure 5E where the feature cells of island_Dream are highlighted.

4.4. Projection View

A limitation of the Feature View (Section 4.2) and the Explanation
View (Section 4.3) is that they show the variables per feature inde-
pendently. Relations between multiple features and model explana-
tions cannot be discovered easily, as well as the instance similarity
in the high-dimensional feature space and model explanation space.
The model explanation space is formed by considering the dimen-
sions of SHAP values for all classes and features. The Projection
View (Figure 3B) enables this multi-feature exploration. It allows
users to visually inspect instance similarity based on feature val-
ues in the feature projection view b2 (T4) or feature importance-
based explanations in the explanation projection view b1 (T2). It
also serves as an entry point for users to select instances of interest
based on feature and explanation similarity (T8).

We apply t-Distributed Stochastic Neighbor Embedding (t-
SNE) [vdMH08] with Euclidean distance to reduce the dimension-
ality of the model explanation space, as well as the feature space,
to two dimensions. We plot the instances as 2D points colored by
their actual classes in the Projection View. We choose the t-SNE
algorithm because it is adequate to preserve local information and
identify patterns (e.g., clusters) within the data [LS19]. Specifically,
we use a GPGPU implementation of the gradient descent linear
tSNE [PTM∗20] for fast real-time calculation. The fast computa-
tion enables users to interactively change the feature space used for
the dimensionality reduction, for example, selecting the features
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Figure 5: Model comparison process with ModelWise to facilitate model diagnosis and improvement. (A) One instance cluster with mixed
actual classes in the explanation projection view of NN_2 is selected. (B) Users evaluate performance differences in the Classification View.
Users explore useful features to classify the instances of this subset from the perspectives of (C)(D) feature space and (E) model explanation.

that one model uses. It also enables interactive exploration of dif-
ferent selected spaces. For model explanation projection, once one
model is selected, SHAP values of all instances for all classes for
this model are used to compute the projection result. Specifically,
let v be a vector of SHAP values of one instance for the selected
model, v can be represented as v = (φ1, ...,φ j, ...,φm) where φ j is
SHAP values of the jth feature and φ j = (φ j,1, ...,φ j,c) for a clas-
sification task of c classes. In the explanation projection view, in-
stances with similar SHAP values are expected to be close to each
other, implying the features are used similarly for these instances.
Thus, the model more likely assigns the same classification results
to them. To improve the interpretability of projection results, users
can color instance points according to feature values of the features
selected in the Feature View (Figure 5C).

4.5. Interaction

We design three main interaction strategies to support user tasks:
selection & filtering, sorting, and coordinated views. First, selec-
tion & filtering can be conducted based on models, features, or
instances. For example, users can select models to analyze in the
Overview, and then information about the selected models is shown
in the four major views. For subset selection, except for creating
a new subset each time, we provide two other kinds of selection
modes a corresponding to two set operations: union and intersec-
tion. These selection modes enable users to build more complex
instance subset selections (e.g., FP instances in one model but TP
in others). Next, sorting can be applied to models and features. Fea-
ture sorting is supported in both the Feature view and the Explana-
tion View, as illustrated above. Last, coordinated linked views are
implemented to support navigation and assist user exploration.

5. Evaluation

This section demonstrates the effectiveness of ModelWise with two
case studies, one with a small exemplar dataset and another devel-
oped with a data scientist with real-world perioperative data.

5.1. Case Study - Penguin Species Classification

We use the penguin dataset [GWF14] to showcase the use of Mod-
elWise and describe how different perspectives are incorporated in
ModelWise to achieve the three domain goals. The dataset contains
data for 342 penguins of 3 species (C0, C1, and C2). The task is
to classify penguin species. We randomly partition the dataset into
a training and test set (both 50%) and train 8 models with a com-
bination of four algorithms, neural network (NN), support vector
classifier (SVC), decision tree (DT), and logistic regression (LR),
and two feature sets (s1 and s2). We evaluate these models on the
test set and generate the data needed for our method (see Figure 3).

Model Diagnosis: What are the performances of different models?
How do models make different classification decisions? As shown
in Figure 3C, the models using feature set s2 (with name suffix 2)
are in front and have fewer and shorter FP rectangles, which rep-
resents that their performances are better than the others. Perfor-
mance differences indicate that some features in s2 are rather im-
portant for the classification, whereas s1 misses them. By compar-
ing feature importance and usage in the Explanation View, we find
that culmen_length_mm is an important feature in s2 but missed
in s1 (Figure 3E). We further examine the models using the same
feature set s2 but giving different classification results and want
to understand why. First, we compare the explanation projection
view of different models. As shown in Figure 5A, there are three
obvious clusters in the explanation projection view of NN_2, each
of which corresponds to one classification result of NN_2. The in-
stances clustering together represent they have similar model ex-
planations. However, why are some instances of different actual
classes treated similarly by NN_2? We select the instances of one
cluster representing the classification result of C1 but including in-
stances with the actual class C0 by brushing on the projection view.
The classification results of these instances are shown in Figure 5B.
From the explanation projection view of DT_2, we see that the se-
lected instances are scattered into various clusters. The difference
in the explanation projections implies that different algorithms use
different classification strategies, which explains the differences of
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Figure 6: User exploration in use case perioperative deterioration prediction. The user examined (A) model performance in misclassification
mode and compared (B) model explanations in explanation projection view. To seek insight into model improvement, the user selected (C) an
instance subset representing classification disagreement of models and then explored (D) feature space and model explanations.

classification results between the models. Even for the same algo-
rithm NN_1, the instances of different classes are in different clus-
ters. This result implies that some features in NN_1 contribute to
distinguishing the two classes for the selected instances, although
there are different misclassifications in NN_1. Further examination
on what classification strategies are for different clusters in terms
of model explanations can be conducted in the Explanation View.

Model Improvement: Which features are helpful to improve the
final model? We first project all the instances in the feature projec-
tion view with all the features selected (Figure 5C). Instances of dif-
ferent classes are scattered into different clusters, which indicates
that existing features contain enough information to distinguish dif-
ferent classes. In addition, clusters of the same class are separated
into two or more clusters. By coloring the instances using other fea-
tures, we find that the separations of clusters of the same class are
mainly due to the feature attribute sex. Thus it is probably a super-
fluous feature for this classification task. Since NN_2 is the model
with the best performance, we try to identify which features are
helpful to improve NN_2. With the above-mentioned instance sub-
set selected, we sort the feature rows according to subset feature
discriminative power (Figure 5D). The island features rank at the
top, and the instances of different classes distribute into different
islands. We also examine the corresponding feature importance-
based explanations in the models that use island-related features
(Figure 5E). These features have relatively high feature importance
for these models. Further examination of the instances of differ-
ent classes in that cluster proves that island-related features have
opposite contributions to different classes. We retrain models with
a new feature set that adds an island-related feature based on s2.
Compared with the models trained on s2, the new models have an
average accuracy increase of 2%, in which LR improves the most
with 7%.

Model Selection: Which model may be the best fit? Based on the
above analysis, we conclude the NN model with suitable features is
a good fit. Despite being a black-box model, it shows the best per-

formance and uncomplicated classification strategy regarding the
explanation projection. SVC and LR are also good candidates.

5.2. Case Study - Perioperative Deterioration Prediction

This case study has been developed with a data scientist. His goal is
to predict patients with a normal recovery (negative) versus patients
with a potential unplanned ICU admission (positive) after being ad-
mitted to the ward. The dataset comprises 44 variables related to
preoperative screening, surgery, or recovery room. The distribution
of labels is very unbalanced, with 21257 negatives and 179 posi-
tives. He built four models with different algorithms, random forest
(RF), support vector machine (SVM), Bayesian network (BN), and
logistic regression(LR). Each of them uses different feature sets.
BN is preferred since it permits incorporating domain knowledge
and is more understandable for clinicians. However, the overall per-
formance of BN is relatively low. Therefore, the data scientist wants
to investigate these models to understand why BN is inferior to
some models and derive knowledge by model comparison to im-
prove it. We explained and gave a demo to the data scientist before
he took control and managed ModelWise himself. We performed a
screen recording and asked him to think aloud during the session.

Model Diagnosis: How does BN perform compared to other mod-
els? How does BN make classifications? The data scientist loaded
all models and projected all instances in the explanation projection
view based on SHAP values of BN. Since the dataset is very unbal-
anced, he switched the Confusion Sankey to misclassification mode
to enlarge misclassification patterns (Figure 6A). At first glance, he
found that BN has more FPs than SVM and RF. However, the TP
rate of BN is the highest. The explanation projection shows many
dispersed clusters representing different classification strategies of
BN. In the Explanation View, he noticed that the most contributing
features of BN are all recovery room related. He was curious about
how BN makes classifications for different classes. He selected all
the instances predicted as positives by BN by clicking on the corre-
sponding rectangles of the Confusion Sankey in the union selection
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mode. As shown in Figure 6B, these instances group into specific
clusters in the explanation projection view, which indicates that BN
generates clear separate classification strategies for two classes. In
contrast, the explanation projection view of SVM does not show
such separation between different classification results of SVM. He
noticed that most clusters containing the FPs have mixed instances
of different actual classes in the explanation projection view of BN.
The possible correction method is to identify which features can
separate these two classes of instances in these clusters.

Model Improvement: What can be learned from the other models
to improve BN? The data scientist was interested in comparing BN
with other models to get insights into improving BN. He focused on
the instances of FPs (i.e., normals detected as ICU admissions) of
BN that are TPs in other models. These instances show disagree-
ment between BN and all other models and thus should be more
likely to be corrected by incorporating the knowledge learned from
other models. In the intersection mode, he selected the correspond-
ing rectangles to make this subset selection (Figure 6C). He first
noted that most of the contributing features are still recovery room
related. By sorting the features cells according to the median of
SHAP values of negative class in the Explanation View, he identi-
fied some features listed on the top such as surgery group, Narco-
sis_type, and ASA that contribute most to the correct classification
in other models but have little attribution for BN, as shown in Fig-
ure 6D. He then checked the feature distribution of these features in
the Feature View. These features show the relevance to the classes
in terms of the actual feature distributions. They are also ranked
high considering feature discriminative power between the selected
negative subset and all positive instances. Both the explanation and
feature views prove the importance of these features. He also men-
tioned that "These features should have an influence on the classi-
fication according to clinical expert knowledge. For example, ASA
(American Society of Anesthesiology) score is an important health
metric.". However, BN captures little information from them. The
data scientist realized he needed to refine the BN structure by en-
hancing these important features. Through further exploration, he
identified some features not used by BN but possibly important for
the classification, which might be helpful for the construction of
BN. Some other features used by BN but having little effect on the
classification were also identified. These features could be removed
to simplify the BN structure. After the exploration, the data scien-
tist updated the BN model based on the above insights. First, the
features identified as irrelevant were removed from the original BN
model. After training, the model showed unchanged performance
compared to the original one. This result implies that the BN model
is simplified by removing non-contributing features but maintains
the original performance. Secondly, the scientist changed the archi-
tecture to add new features, still removing the features that showed
little effect. The new model showed 91% training accuracy, which
is 16% higher than the original model. However, the danger of over-
fitting comes with this type of analysis and newly added nodes and
edges in the new BN model. The current training and analysis with
Modelwise were based on the whole dataset. The next step would
be to test the model with an independent dataset.

The data scientist commented that "I think it is a very nice way
to explore what your model is doing. It gives you insight on model
improvement, especially if you have different models to compare."

6. Discussion

This section discusses scalability issues of ModelWise and poten-
tial extension of the explanation projection view.

Modelwise is able to deal with the scale of often occurring real-
world model comparison analysis; however, scalability issues arise
as the number of classes, models, features, and instances grows.
There are mainly two aspects to consider: visual scalability and
computational performance. ModelWise aims to support 2-10 class
classification tasks with up to 10 models. Although ModelWise
provides model filtering and a misclassification mode to improve
the visual scalability of Confusion Sankey, the problem of a po-
tentially large number of links and their crossings requires further
study. Additionally, the aggregation of feature values and explana-
tion results, and the tabular design are scalable to large data, while it
may be overwhelming for users to conduct effective studies when
too many features, classes, and models are considered. Computa-
tional performance issues arise with respect to real-time dimension-
ality reduction when the size of instances and features increases.
Furthermore, currently, we precompute and store SHAP values for
use in ModelWise considering the long computation time. We leave
it as future work to reduce the computation time of model explana-
tions so as to integrate ModelWise into a real-time ML pipeline.

The explanation projection view aims to show instance expla-
nation similarity and reflect model inner-workings. Instances clus-
tered together share similar feature importance-based explanations.
Each cluster can be seen as a specific model decision strategy. The
ideal result is that instances of different classes fall into different
decision strategies. During experimentation, we try to project in-
stances using the combination of SHAP values of multiple models.
For the penguin classification case, an interesting finding is that
even though projection results of each model cannot separate the
classes well, that of combinations of some models show clear sepa-
rations for different classes. This result may imply that these mod-
els are complementary and thus appropriate for model ensembling.
It needs further analysis on how these findings could be exploited.

7. Conclusion

In this work, we abstract low-level users tasks for data scientists to
achieve three high-level domain goals, model diagnosis, improve-
ment, and selection, in the context of comparing multiple multi-
class models. These user tasks are related to the exploration of fea-
ture space, model performance, and model explanation. We present
ModelWise with adapted visual encodings to address these tasks.
For example, Confusion Sankey allows the performance compar-
ison of multiple multi-class models in ways not possible before.
ModelWise supports rich interaction and multiple workflows to ex-
plore and compare feature space, model performance, and model
explanation. Two case studies show that ModelWise yields insights
into model diagnosis, improvement, and selection. We plan as fu-
ture work to conduct a formal study about task abstraction for
model comparison and solve the scalability issues of ModelWise.
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