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Abstract

Generative adversarial networks (GAN) have witnessed tremendous growth in recent years, demonstrating wide applicability
in many domains. However, GANs remain notoriously difficult for people to interpret, particularly for modern GANs capable
of generating photo-realistic imagery. In this work we contribute a visual analytics approach for GAN interpretability, where
we focus on the analysis and visualization of GAN disentanglement. Disentanglement is concerned with the ability to control
content produced by a GAN along a small number of distinct, yet semantic, factors of variation. The goal of our approach is to
shed insight on GAN disentanglement, above and beyond coarse summaries, instead permitting a deeper analysis of the data
distribution modeled by a GAN. Our visualization allows one to assess a single factor of variation in terms of groupings and
trends in the data distribution, where our analysis seeks to relate the learned representation space of GANs with attribute-based
semantic scoring of images produced by GANs. Through use-cases, we show that our visualization is effective in assessing
disentanglement, allowing one to quickly recognize a factor of variation and its overall quality. In addition, we show how our
approach can highlight potential dataset biases learned by GANs.

CCS Concepts
• Computing methodologies → Artificial intelligence; Model verification and validation;

1. Introduction

Interpretability is increasingly becoming an important problem for
the adoption of machine learning models in a variety of applica-
tions. For discriminative models, the ability for humans to interpret
the rationale behind a model decision, e.g., why a prediction was
made in a classification task, can help instill trust in users when
applying the model downstream [CL18, DBH18]. The manner in
which humans consume interpretations of discriminative models
is typically passive: the model makes a prediction, and then we
provide some explanation for its prediction. In contrast, for gen-
erative models [GPAM∗14, Jeb12], the problem of interpretabil-
ity is more complex, as end-users tend to be more active in using
these models, e.g., generative models are maturing as a mechanism
for design, ideation, and content creation within a number of do-
mains [PvdWR6,KALL17,ZXL∗17,LTH∗17,MSI∗18,FADK∗18,
TCAT17,Mog16]. For these use cases, the ability to understand the
latent semantics within a generative model is of high importance as
it can benefit how one ultimately controls the model for the target
applications.

Identifying distinctive semantics, i.e., disentanglement, in the
generator is the predominant approach to making sense of a genera-
tive model. Disentanglement is concerned with the discovery of di-
rections, found within the latent space of a generative model, where
a single direction tends to capture a semantic, human-nameable

concept, and only that concept. Such disentangled directions are
ideal for controlling generative models, especially considering that
a generator’s latent space is usually a dense, high-dimensional vec-
tor space that is otherwise challenging to interpret. Many seman-
tic discovery approaches have been proposed, e.g., ensuring indi-
vidual components of the vector space capture distinct concepts
[HMP∗16], supervised direction-finding given concept-annotated
datasets [SYTZ20, YSZ21], as well as unsupervised direction-
finding methods [VB20, SEBM20, HHLP20, SZ20].

Despite the rapid progress, a fundamental issue with existing
works is in evaluation: it is challenging to quantify just how
disentangled a given direction is, particularly for modern mod-
els [BDS18,GAOI19,KALL17,KLA19]. Conventionally, summary
statistics are proposed based on a predefined characterization of
disentanglement, e.g., Eastwood & Williams [EW18] propose com-
pleteness, informativeness, and distinctiveness as desirable proper-
ties, alongside heuristic measures for each. On the other extreme,
individual draws from the latent space can be shown to users for
validation [HMP∗16]. Though we see value in both, we believe
that a middle ground exists for improving our understanding of la-
tent space directions, where interactive visualization can support
the user in evaluating a given direction.

To this end, we propose a visual analytics approach for assess-
ing disentanglement within generative models. Our visualization
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Figure 1: Problems of entanglement within GANS: walks in the la-
tent space are generated from three different latent codes, but along
a "youth" direction. Note the different changes along this direction:
the first walk does not change significantly in any other attributes
but age, but the second walk does change in smiling. Eyeglasses
disappear along with age in the last example.

design is centered on walks in the latent space of a generative
model. Specifically, a walk is defined by taking a single code (a
high-dimensional vector) in the latent space, and producing a se-
quence of samples that lie along a given direction (another vector).
At a high level, our goal is to help users understand the quality of
a given direction, through visually analyzing a collection of walks,
the result of taking a collection of latent space codes and producing
a walk for each code. Our approach relies on a set of pre-trained
image classifiers that produce continuously valued scores, indicat-
ing the extent to which an image contains a particular attribute or
concept that can be easily recognized. For a single walk, and its cor-
responding generated images, we can obtain a sequence of scores
for each attribute.

This detailed attribute-based information forms the basis for
our visualization design and various analyses that we aim to sup-
port. Specifically, if there exists a consistent trend across walks
for a given attribute, e.g., the attribute scores monotonically in-
crease/decrease, we believe the direction is representative of the at-
tribute. On the other hand, there may exist attribute correlation with
respect to the trends, e.g., for face images, attributes representative
of smiling and cheekbone are likely to be correlated - when one
increases, the other is likely to increase as well. Identifying when
correlation exists, and whether or not the correlation is sensible, is
critical for determining the quality of a direction, above and beyond
merely identifying distinct factors of variation. Furthermore, not all
codes in the latent space need to have an equivalent response to the
direction, giving rise to different attribute trends. This particular
matter is exemplified in Figure 1.

Determining groups of walks that have similar trends thus be-
comes essential to obtain a more comprehensive understanding
of the direction. Our visualization design is intended to help the
user probe a given direction in support of these types of analyses,
through a set of linked and coordinated views that depict attribute
scores, their trends, and more general similarity of walks.

We conduct use cases through visually exploring StyleGAN
[KLA19] using a generative model of high-resolution faces, along-
side facial attribute classifiers [SYTZ20]. Our interface allows for
the analysis of arbitrary directions, where we investigate directions
produced from supervised methods [SYTZ20], unsupervised meth-
ods [SZ20], as well as simple, vector arithmetic of latent codes.

Although we present our work only on facial attributes, this ap-
proach is generalizable to any image domain with a GAN model
and attribute classifiers. For instance, a GAN optimized to gen-
erate images of natural scenery or places [ZLK∗17] can be eval-
uated using attribute classifiers trained using a transient attribute
dataset [LRT∗14]. We contribute to two main use cases, enabling a
deeper understanding of directions in generative models:

• We show directions computed from unsupervised and supervised
methods that capture, at face value, the same predominant se-
mantic property, nevertheless differ significantly in other proper-
ties.

• We demonstrate an exploration of bias in directions, wherein
continuous semantics that are correlated across walks highlight
a learned bias in the model.

2. Related Work

There are several areas of research that are relevant to the pro-
posed approach. Major bodies of related work revolve around se-
mantic discovery in latent space that mostly originates from the
machine learning community, as well as a variety of visual analytic
approaches for exploring latent spaces that arise from the visual-
ization community.

2.1. Supervised Semantic Discovery

The ability to identify and explore high-level concepts in latent rep-
resentations is crucial for making sense of neural networks. Often,
we can identify a vector direction in the latent space that corre-
sponds to clear semantics. From the early discovery that seman-
tics can be obtained through vector arithmetic in word embedding
spaces [MSC∗13], to later work that confirmed meaningful con-
cepts can also be encoded as a linear direction in the latent space
of GANs [RMC15] and CNNs [KWG∗18], a variety of approaches
have been proposed to uncover these vector direction through su-
pervised and unsupervised means. Supervised methods typically
rely on external models or known transformations to identify mean-
ingful directions. In TCAV [KWG∗18], example images of the
concept of interests are gathered in order to train a simple linear
model to identify the concept direction in the latent space. The
"interface" work [SZ20] employs an external model that assesses
attribute scores of an image. The semantic directions are derived
from SVM classifiers that were trained on the GAN-synthesized
random images using labels generated by a pre-trained classifier.
Ganalyze [GAOI19] employs an external model that assesses the
memorability of the generated image. They find directions such
that for a given starting image, a manipulated image’s memora-
bility score results in a large change. However, they do not con-
sider a wider variety of different semantics. The GAN steerability
work [JCI19] finds a direction by first sampling an image using a
randomly sampled latent code, applying an edit such as zoom or ro-
tation to the generated image, and recording a latent code that pro-
duces an image that minimizes the loss between itself and the pre-
vious image. However, the method can be computationally heavy
and only considers coarse image manipulations.
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2.2. Unsupervised Semantic Discovery

Despite the effectiveness of supervised methods, they are limited
by the type and variety of concepts that can be identified, and more
often than not we may not have labels to utilized the supervised
method to begin with. Voynov et al. introduce an unsupervised ap-
proach [VB20], relying on the intuition that meaningful concepts
are often more disentangled with each other and therefore more
predictable. The method trains a special component called "recon-
structor" that takes two images generated by latent codes along a
vector direction (a column in a matrix that is part of the train-
able parameter). and predicts which vector/concept induces the
difference between the images and the magnitude of the change.
GANSpace [HHLP20] identifies meaningful directions in a GAN’s
latent space by applying PCA to latent codes in subsequent lay-
ers, subsequently mapping them back into the original latent space.
Shen et al. [SZ20] propose a closed-form approach, where decom-
position of a given model’s weight matrix is used for identifying di-
rections that result in large changes in the model, and consequently,
in the output images. Among both these supervised and unsuper-
vised approaches, many introduce metrics for evaluating the quality
of obtaining directions that are based on ground truth obtained from
supervised methods, the optimization objectives, and human eval-
uation. However, all these approaches focus on producing a single
number instead of providing more granularity in their evaluation,
i.e., where and how did some of these methods fail, which can be
crucial to uncover the cause of the failure and possible avenues for
improvement. The proposed work aims to address this gap in exist-
ing works.

2.3. Disentanglement in Latent Space

Most semantic discovery methods approach the problem from a
post hoc perspective, however, we can also directly build a latent
space in which each dimension has a distinctive concept. Many ap-
proaches have been proposed, such as beta-VAE [HMP∗16] and In-
foGAN [CDH∗16], for obtaining a disentangled latent space. How-
ever, defining and estimating whether different factors are disen-
tangled is a non-trivial task. In [HAP∗18], Higgins et al. aim to
work toward a formal definition. Moreover, the inherent bias in the
data may also contribute to challenges in understanding disentan-
glement, and the fairness of disentangled representations is ques-
tioned [LAR∗19]. One analysis goal of the proposed method is to
provide a visual analytic centric alternative for examining and un-
derstanding the disentanglement between the discovered semantic
directions, whether it is from a supervised or unsupervised method
(or even a disentangled latent dimension).

2.4. Visual Exploration of Latent Space of GAN

Besides methods focusing on purely computational methods, visu-
alization approaches provide powerful and flexible alternatives for
exploring concepts in latent spaces. In the latent space cartogra-
phy [LJLH19] work, Liu et al. introduced a visualization system
that maps and compares meaningful semantic dimensions within
latent spaces. For natural language processing, the word embed-
ding latent space are explored by several visualization works that
focus on various aspects, from examining semantics encoded in

vector directions [LJLH19] to comparing the embeddings them-
selves [HKMG20]. Several visual analytics approaches specifically
focused on visualizing GAN and its training process. The GAN-
lab [KTC∗18] provides a playground-like environment for under-
standing how GANs work. By leveraging a 2D function estimation
problem, the system allows user to see how GANs evolve during
training and explore how different hyperparameters affect the out-
put. GANViz [AKBR19] aims to shed light on the complex train-
ing dynamic among different components of a GAN, to help do-
main experts evaluate and potentially improve their models. Our
work contributes towards similar, higher-level aims of understand-
ing GANs, but is instead focused on assessing directions in GAN
latent spaces.

3. Objectives & Tasks

The central goal of our work is to support users in obtaining
a deeper understanding of disentanglement, provided a direction
within the latent space of a generative model. We want to help
users assess how good the direction is, as an avenue for gener-
ating meaningful factors of variation, provided an arbitrary code
in the latent space. Forming an accepted, understood definition of
disentanglement remains challenging; nevertheless, a number of
works have introduced properties of disentangled representations
[EW18, HAP∗18, LAR∗19], and corresponding heuristics for mea-
suring these properties. We are inspired by these prior works, but
instead approach evaluating disentanglement from an exploratory
perspective.

More specifically, we would like the user to obtain a better under-
standing of disentanglement through assessing the following prop-
erties:

• [O1] Distinctiveness : how many factors of variation exist for a
given direction. A greater variation tends to indicate the direction
is not distinct.

• [O2] Consistency : how predictable the variation is for any latent
code. A direction is considered consistent if the same factors of
variation are present across codes in the latent space.

• [O3] Informativeness : the extent to which an end-user can rec-
ognize, e.g. easily name, what the direction represents.

Limiting our analysis to only the generator, the representations
that it learns, and its image output, poses significant challenges
for addressing the above objectives. This is due to the complex-
ity of the data, once provided a direction, e.g. for a walk we have
a sequence of latent codes and their corresponding generator rep-
resentations/images. To support our analysis, we rely on attribute
classifiers, ones that score an image for a prescribed, semantic con-
cept, e.g. various facial attributes. The use of attributes enables us
to simplify a walk in the latent space to a sequence of attribute
scores, similar to prior work [SZ20]. However, in our work we aim
to use attribute classifiers, alongside the generator representations,
to obtain a more comprehensive understanding of disentanglement.
Given this information, our visualization design is driven by the
following set of user tasks aimed at satisfying the above objectives:

• [T1] Distinguish salient attributes, e.g. those that have similar
trends across codes, from less salient attributes. A small number
of salient attributes suggests a distinct direction. [O1]
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Figure 2: Overview of the data generation process for a walk of
a single latent code, taking three samples along the walk: (a) a
sequence of latent codes are input to the generator, (b) from which
we extract convolutional activations as a generator representation
of the code. Next, generated images (c) are assessed by external
attribute classifiers (d), subsequently used to explain the walk in
terms of classified attributes.

• [T2] Identify trends in attributes with respect to walks, e.g. for a
given walk, which attributes monotonically increase/decrease in
score. Such trends signal consistency in directions. [O2]

• [T3] Analyze correlations between attributes. A set of attributes
might change in consistent ways, but may be unrelated to one
another, indicative of uninformative directions. [O3]

4. GAN Latent Space Analysis

In this section we discuss the generator model that we study in our
work, as well as corresponding data we extract from the generator
for visual analysis.

We focus our analysis on the StyleGAN [KLA19] model, due to
its ubiquity within the machine learning community, and its capa-
bility to produce realistic, high-resolution images. StyleGAN syn-
thesizes images by first drawing a high-dimensional vector, whose
components are independently sampled from a (truncated) normal
distribution, and feeding this vector through a multi-layer percep-
tron (MLP), yielding what is colloquially known as the W space.
Unless otherwise stated, this latent space is the focus of our anal-
ysis, where we denote a sample in the latent space as a code, a
d-dimensional vector (c.f. Figure 2(a)). The code is fed through a
series of convolutional layers (c.f. Figure 2(b)), whose activations
are modulated by style-based features, to ultimately produce an im-
age (c.f. Figure 2(c)).

We are further provided a direction in the latent space, denoted
as a unit-norm vector a ∈ W . Given a code z ∈ W , we sample a

sequence of m equal-spaced steps along the direction, centered at a
direction-neutral transformation of the code, denoted z̃ ∈W , found
by projecting the original code onto the orthogonal complement of
the direction, namely, z̃ = (I −aa⊤)z.

This provides us a sequence of codes z(t) ∈W where t indexes
over steps. We denote this sequence as a walk in the latent space,
and we may obtain a sequence of images by feeding each code
through the rest of the StyleGAN model. Ideally, the further that a
code lies along a direction a, relative to the neutral code z̃ ∈ W ,
then a single, recognizable concept will become more prominent in
the image. The converse should also hold for codes that point in the
opposite direction, e.g. if a direction captures the facial property
"closed eyes", then such codes result in faces with eyes wide open.

We are interested in understanding a collection of walks, formed
by sampling codes in the latent space, and for each, generating a
sequence of samples as described above. To aid in the analysis of
walks, we assume the existence of a set of pretrained classifiers
optimized to predict the presence of attributes - semantic, recog-
nizable concepts that describe an image. We use the raw outputs of
these pretrained models, rather than their binarized classification
decisions, to obtain continuously-valued scores and thus a means
of quantifying the presence/absence of an attribute. Thus, for each
code along a given walk, we take its synthesized image and run the
attribute classifier to obtain a score for this image (c.f. Figure 2(d)).

Although informative, a sequence of raw scores for each attribute
is not the most concise way of describing a direction’s relationship
with respect to a given attribute. This is more so when analyzing
a large collection of walks and comparing them across attributes.
Thus, we summarize a sequence of attribute scores by fitting a lin-
ear regression model to a given walk’s sequence of attribute scores.
Our assumption is that attribute scores will largely either monoton-
ically increase, decrease, or remain constant, as the walk progresses
along a direction, indicating a salient change (or lack of change) in
the attribute. Specifically, the slope of the resulting model suggests
the type of trend, while the R2 coefficient indicates the goodness
of fit (confidence) - we use both of these values to summarize a
sequence of attribute scores.

Last, in order to ensure that our analysis is not biased by the
predefined collection of attributes, we would also like to have a
more general notion of similarity between walks, in order to bet-
ter understand their distribution. To this end, we extract repre-
sentations from the generator as a proxy for similarity - indeed,
most (un)supervised walk finding methods are based on features
of the generator, and so we expect this to encode semantically-
meaningful information. Specifically, given a walk, for each of its
codes, we take the convolutional output at a given layer in the gen-
erator, typically a layer somewhat close to the latent space , in or-
der to complement the attribute classifiers which operate on im-
ages. We further justify our decision on generator layers in supple-
mental material. For each output we perform max spatial pooling
to obtain a series of vectors [v0,v1, ...,vt−1] where t is a number
of latent codes in a walk. Then vectors along the walks are sub-
tracted [v1 − v0,v2 − v1, ...,vt−1 − vt−2]. Subtraction is followed
by concatenating all of the difference vectors. Concatenation yields
a feature representation for the walk. Last, we perform UMAP
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Figure 3: An overview of our visualization interface. (1) The re-
gression plot shows the absolute slope and R2 coefficient of the
sampled walks’ attribute scores. At-a-glance, this helps convey
whether a direction is worth investigating in detail. (2) The at-
tribute view shows a summary of selected walks on each attribute.
Users can assess relationships between attributes via this view. (3)
The UMAP projection shows the structure of sampled latent code
walks. This is useful in identifying and selecting clusters of walk
that correlate to an attribute differently e.g., has a negative corre-
lation when most of the samples have a positive correlation. (4)
On-demand generated images are available for verification i.e.,
whether the assessment made by attribute classifier models are in-
deed correct. This can instill user trust in the visualization.

[MHM18] to obtain a 2D projection for the set of walks, e.g. each
2D position will correspond to a single walk.

5. Visualization Design

Our visualization is designed for users to interactively explore a
provided direction, and assess disentanglement, built around the
tasks and data described above. Our design is comprised of four
main views (c.f. Figure 3): (1) a detailed view of linear regression
models, (2) a depiction of attribute scores and summary of attribute
trends, (3) a general similarity view on walks, and (4) detailed in-
spection of individual walks.

5.1. Visual Encodings

Regression Plot [Figure 3-1]: Within the scatterplot, the points
correspond to all combinations of walks and their attribute-specific
linear regression models, where we encode the model’s slope on the
x-axis and its R2 coefficient on the y-axis. This allows the user to
see, at-a-glance, the quality of a selected direction (c.f. Figure 4).
For instance, if all points are concentrated around the centerline,
then this suggests the direction is not reflective of any of the pro-
vided attributes. On the other hand, points that spread out near the
upper right of the plot suggest a subset of walks that consistently
decrease or increase along with certain attributes.

Figure 4: Regression scatterplot: here users can assess if a direc-
tion is worth investigating i.e, there exist numerous highly-relevant
and confident walks. Brushing is supported to select walks, linked
and coordinated with the attribute view to support further investi-
gation.

Figure 5: We allow the user to see, for a given attribute, a sum-
mary of slopes over linear regression fits as a histogram, alongside
detailed attribute scores for all walks.

Attribute View [Figure 3-2]: We draw score of walks for each
attribute as a single line in the attribute view. Next to the line plots,
we show a summary of the slopes as a histogram. Here, positive
slopes are colored as red bars and negative slopes as blue. Attributes
are sorted in a descending order of R2, so most relevant attributes
for a given direction can be quickly determined. Please see Figure
5 for an illustration.

UMAP Projection [Figure 3-3]: We show UMAP projection of
walks’ generator representation in this view. The view’s role is to
act as a window for selecting walks in terms of similarity in their
activations. This representation of the walks is decoupled from the
information that is generated through attribute classifiers, which al-
lows for the cross-examination of walks using two different de-
scriptions of walks.

Generated Images [Figure 3-4]: Last, we let users to inspect
walks in detail by showing a walk’s corresponding sequence of syn-
thesized images. Inspecting actual images is a confirmation of find-
ings made in other views - generator representation and attribute-
based quantitative information. Showing a sequence of images can
reveal whether a selected walk indeed captures expected changes
with respect to the identified attributes. Reassurance gives user con-
fidence, which is a by-product of revealing detailed information.

When users choose to visualize a large number of samples, the
visualization can suffer from over-plotting. Although over-plotting
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Figure 6: The figure shows three main interactions that a user can
perform. A user can brush on a UMAP projection and a regression
plot to view the selected walks’ attribute scores and their corre-
sponding slope in a form of a histogram. Hovering over attribute la-
bels highlights the corresponding attribute regressions in the scat-
terplot and reveals each latent code’s correlation with the attribute
in the Umap projection. Clicking on an attribute label locks other
plots with respect to the clicked attribute, this prevents users from
having to memorize other views.

can hinder readability of some views, we chose our current en-
codings for several reasons. First, line marks in the attribute view
could be substituted by an averaged trend. However, this will lead
to a loss of information such as the detection of outliers. Second,
a regression plot could be represented as a density plot. However,
dense regions would need to be highlighted using an appropriate
color channel, introducing interference with our remaining views
and interactions, e.g. using brightness would interfere with our
choice of brushing. Therefore, we chose to preserve the individual-
ity of points to let them stand out amidst our supported interactions,
which we detail next.

5.2. Interactions

The individual views are linked and coordinated through a set of in-
teractions that users may perform (c.f. Figure 6). Our visualization
is broadly designed to be exploratory, and effective workflows can
differ from person to person depending on their goals. Here we de-
tail our interaction design, and illustrate how the interactions may
be used in practice.

Upon selecting a direction to investigate, users can brush over the
Regression Scatterplot. Brushing results in the selection of a subset
of walks S ⊂ D that are within a range of slopes and goodness-
of-fits of interest. Note the set S is comprised of pairings of latent
codes with their attributes, those that satisfy the brushed query. In
response to the brush, we update the Attribute View, limiting the
line marks to those in S, and superimposing the histograms with
darker-hued bars reflecting the counts arising from the selection S.
We further update the UMAP Projection, highlighting a point if it
belongs to a code in S, regardless of its subset of attributes. We view
this brushing action as a suitable starting point for analysis, e.g. one
can select codes and attributes that have high R2 coefficients to ob-
serve trends in the attribute score line plots, thus allowing users to
assess the distinctiveness and informativeness of the selected direc-
tion [T1, T3]

Next, users can either hover or click on the attribute text labels in
the Attribute View. Both actions have the same effect where click-
ing locks attribute selection as opposed to a non-persistent effect
from hovering. Linked updates are made to both the Regression
Scatterplot and UMAP Projection. In the Regression Scatterplot, all
walks that correspond to the selected attribute will be highlighted
– this helps to contextualize the selection (S) focus. In the UMAP
Projection, walks not present in the selected attribute in the regres-
sion plot selection will be filtered out. Those walks whose latent
codes are present in S, and limited to the selected attribute, will be
updated by using the slope and R2 coefficients. Here, a magnitude
of a slope is encoded by the radius of circles and the slope’s sign
encoded by the color, consistent with the color scheme of the his-
togram. R2 coefficients are encoded via stroke thickness of circles.
Through selecting attributes, consistency of the direction can be
studied - to verify whether groups of walks that are in close proxim-
ity in the UMAP Projection also have related, and confident, trends
for the chosen attribute [T2].

After choosing an attribute, users can brush on the UMAP Pro-
jection, prompting linked updates back to the regression and at-
tribute views in accordance with selected walks across all attributes,
de-aggregating the previous selection from the Regression Scatter-
plot. In turn, the Attribute View is updated for a new subset of walks
S′ ⊂ D that resides within the brushed area of the UMAP projec-
tion. This interaction is useful for determining whether groups of
walks that have a similar generator representation are consistent in
their attribute score [T2].

Last, clicking on a point in the UMAP projection will bring up
the sequence of synthesized images that correspond to the selected
walk. Based on findings made through using the interface, inspect-
ing individual images of walks can support the user in verifying
hypotheses they might have formed through the prior sequence of
interactions.

6. Experimental Results

We show how our visualization can be used to perform a vari-
ety of analyses for better understanding directions in GANs. Our
current interface supports a StyleGAN model optimized on the
FFHQ dataset [KLA19], and use the CelebA dataset [LLWT15]
for attribute analysis. However, we note that the interface can be
used on any modern GAN model with attribute classifiers. Our
interface is available via the link https:observablehq.com/d/
58f90c0a153bd534.

Our interface supports three different types of direction finding
methods:

• Vector arithmetic: we manually construct directions by identi-
fying a pair of latent codes whose images differ by a semantic
concept, and take their difference. For robustness, we average
three latent codes with the attribute and another three without
the attribute.

• Unsupervised direction finding: we use the approach of SeFA
[SZ20] to find directions directly from the StyleGAN style layer
mappings, e.g. directions that result in large change in the linear
maps. This provides us with directions that depend on (a) the
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Figure 7: In this figure we compare two directions to contrast their distinctiveness. (A) is a walk along the "Smiling" direction, and it is
associated with the top image row. (B) is a walk along the "No Beard" direction, and it is associated with the bottom image row. Attributes
that are highly relevant are the ones with a red bounding box. It can be said that the "Smiling" direction is more distinctive than the "No
beard" direction because it is related to less attributes.

layer under investigation and (b) their overall influence on the
style layer.

• Supervised direction finding: we use the approach of Shen et
al. [SYTZ20] to find directions in the latent space that are dis-
criminative of predefined attributes, measured in the correspond-
ing synthesized images. The attributes we use for analysis are
also used for supervised direction finding.

In our analyses we compare directions found for a given su-
pervised method, comparison between different direction-finding
methods, and assess potential bias that exists within a given direc-
tion

6.1. Direction Assessment

We assess directions with respect to the main properties of disen-
tanglement: distinctiveness, consistency, and informativeness.

We first show how to verify whether a direction is distinct
and consistent. We expect a direction to be distinct if its fac-
tors of variation can be described by a small set of attributes,
and for it to be consistent if most attribute scores monotonically
increase/decrease across all codes. To help us understand these
properties, we take two directions found through the supervised
direction-finding method that are based on "Smile" and "No Beard"
attributes.

Figure 7 shows a comparison between these two directions.
Within the Regression Plot, we brush all walks that have a high
R2 coefficient, in order to limit our analysis to regression fits that

are confident. Through this interaction, we observe that the "Smile"
direction can be described by a small number of attributes, whereas
the "No Beard" direction results in a larger number of attributes
(see annotated red rectangles), indicating that the "Smile" direction
is more distinct. Furthermore, consistency of the "Smile" direction
can be verified via the linked highlight of the histogram plots, in-
dicating a high concentration of large slope values across the most
confident regression fits - this is further indicated by the group of
points in the upper-right quadrant of the Regression plot, namely
those fits that are confidently increasing.

Figure 9 further verifies the "Smiling" direction for informative-
ness, or whether the set of attributes related to the direction reflect
the dominant factor of variation. Histograms highlighted for "High
Cheekbones", "Smiling", "Bags Under Eyes", and "Narrow Eyes"
indicate a correlation amongst these attributes, and these attributes
indeed tend to change as one smiles. However, we note that the
strength of correlation between certain attributes differ. Indeed, the
"Bags Under Eyes" and "Narrow Eyes" attribute shows a smaller
correlation with the brushed set of examples, indicating that this
direction mixes less with attributes that do not correlate with the
semantic that it captures.

Outside of verifying directions found through supervised meth-
ods, we can also use our interface to assess directions found through
simpler schemes, namely vector arithmetic. In Figure 10, we have
built a direction based on the extremes of smiling i.e., a bag of latent
codes that generates bigger smiles and a bag of codes that generates
frowns. Directions built from vector arithmetic are more suscepti-
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Figure 8: Comparing direction finding methods: in (a) we show the basic procedure for assessing a direction. Hovering over the cheekbone
attribute prompts a response to the scatterplot in (b) and (c), while hovering over the smiling attribute prompts a response in (d) and (e). We
can immediately observe that the supervised direction finding method results in far more consistent trends, encoded as the sizing of points
int he scatterplot. However, we can also spot some outliers in the supervised method for certain walks that behave differently (blue circles –
decreasing trend).

Figure 9: Informativeness of the "Smile" direction. We find that a
"Smile" direction results in correlation of attributes that can be eas-
ily understood. However, the direction may not be informative for
a small set of codes, e.g. shown here as the "Young" attribute can
also consistently decrease for certain portions of the latent space.

ble to larger variation due to the more localized, hand-crafted ap-
proach. Hence, we see that the direction is less distinctive – more
attributes’ involved with the direction. Simply comparing related
attributes in Figure 10 and Figure 7 (A), we can see that the latter
is more distinctive.

Figure 10: We show the types of variations produced when using a
direction corresponding to extreme smiling, built from vector arith-
metic method. We see a very similar correlation to attributes that
were seen with the "Smiling" direction built from the supervised
method.

6.2. Comparing Direction Finding Methods

Here we study the differences that may exist between direction-
finding methods, given the same predominant variation found in
both. Namely, we compare the "Smiling" direction found through
the supervised and unsupervised method. For the unsupervised
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method, we manually selected the direction via manual inspection
of directions found at different layers.

Figure 8(a) shows our interface for the direction found via the
unsupervised method. In "Middle-1-3" direction, middle-1 means
that the direction is found in the second convolutional block of
StyleGAN generator, the last number 3 means that the direction
corresponds to a fourth singular vector. In this direction, we observe
consistent trends in "High Cheekbones", "Smiling", and "Bags Un-
der Eyes" for confident regression fits (see: brush in the Regres-
sion Plot), further supporting our identification of this direction
as "Smiling". Additionally, we find that "High Cheekbones" and
"Bags Under Eyes" are attributes that have confident fits in the su-
pervised direction as well. Hence, we use both of these attributes as
a basis for comparison (Figure 8 - right). Specifically, we highlight
these attributes for both directions, and show the resulting scatter-
plots.

From here, we can draw two conclusions. First, the supervised
method finds a more salient direction for smiling, given the corre-
lated attributes have more consistent trends (Figure 8(c)) in com-
parison with the unsupervised method (Figure 8(b)), e.g. walks in
the UMAP projection tend to have a larger, red circle with bold
stroke, indicative of confident and increasing trends. Secondly, al-
though the unsupervised direction is less salient, the grouping in
the UMAP projection is helpful for identifying what portions of
the latent space give us a salient change in smiling, e.g. the group
of points in the center-right portion of Figure 8(b) correspond to
children smiling.

The supervised direction is not without its limitations, however.
In Figure 8(d) we can observe a small amount of walks which con-
tain a decrease with respect to "Bags Under Eyes". Upon closer
inspection, we find these walks introduce glasses as the presence
of smiling increases. These types of walks are not present in the
unsupervised direction.

6.3. Bias in the Latent Space

Since GANs learn to generate images that follow the data distribu-
tion of the provided dataset, they are prone to biases present in the
dataset. Our interface can be used to study these biases - how se-
mantics are represented in the latent space. We study bias using two
supervised directions - age and pale skin - the interactive example
is available through links given in the figure description.

Bias can be studied by examining consistent attributes for a di-
rection. Therefore, we use the same interaction used in assessing a
direction - brushing the regression plot in a well-fit region. Once
we identify consistent attributes, we can reason whether these at-
tributes can be explained.

Figure 11 shows bias for the "Young" direction. We can observe
several attributes that are unrelated to youth, e.g. "Wearing Lip-
stick", "Male". Indeed, we find that as we walk along the young
direction, many walks end up with female gender. This suggests a
gender bias in the dataset: more older men than older women. Fur-
ther, we also find that older people end up with glasses along this
direction. A direction that exclusively varies along age should not
be entangled with glasses, further suggesting a bias in the dataset
wherein older people tend to wear eyeglasses for corrective vision.

Figure 11: Bias in the "Young" direction. The "Male" attribute’s
negative relationship with the "Young" attribute is the least explain-
able bias, relative to other correlations such as less "Gray hair" or
less "Bags under eyes" which are attributes that we can easily ex-
pect to see from younger people in general. Additionally, in this
example, we identify an interesting group of latent codes (right rim
vs left rim indicated by a dotted line), which is divided by some
artifacts around the eye and mouth area. Interaction available in
https:observablehq.com/d/6e85931d8e12c156.

In Figure 12 we show the Pale Skin direction, along with a de-
fault highlighted attribute for "Smiling". We find an age and smil-
ing bias here from studying attributes brushed in (A). However,
unlike the previous example in figure 11 the bias is not strong
and widespread. This suggests that the bias is contained to a small
group of latent codes which can be seen in (B).

When the bias is caused by a small group of codes in the latent
space, it is often interesting to see what attributes the biased sam-
ples have in common. This is because the space that these codes
reside might have some interesting properties such as insensitiv-
ity to certain factors of variation. A staged investigation can help
researchers discover common attributes of the biased samples. In
Figure 12, we can observe a cluster of biased samples found in the
UMAP projection (B) - latent codes whose smiling becomes less as
their skin color lightens. Common attributes (A∩B) of the walks in
the cluster can be studied in the attribute view. In our example, most
people who smile less are people who do not get younger. Also, as-
suming from the lack of consistency in "Male" attribute along with
"Heavy Makeup" and "Wearing Lipstick" attributes, the codes in
the cluster are likely to be females. Overall, we can conclude that
this cluster contains codes of younger people (boys and girls whose
gender is difficult to tell) who smile less.

7. Discussion

In this work we have shown how our visualization can enable users
to understand the latent space of generative models from different
angles. It can be used to discover directions and determine direc-
tion saliency, in turn assessing the distinctiveness of a direction.
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Figure 12: Bias in the "Pale Skin" direction. From the set of codes selected in (A), we can see that there exists a bias in the pale skin direction
that tend to generate people who smiles less. One would normally not expect smiling to be associated with a skin tone. However, this bias is
not widespread like in figure 11, but is present in a cluster of latent codes. The presence of an isolated bias calls for a deeper investigation
as the cluster’s common attributes can help researchers explain itself. The common attributes can be observed from an intersection of codes
(A∩B). We can observe that the brushed latent codes in UMAP projection generate walks that are insensitive to the age direction (always
young) while smiling less. Interactive example available in https:observablehq.com/d/96f7594e43466ca9

It can also be used to determine if multiple attributes are consis-
tently related, and if there exists correlation in the related attributes.
Last, informativeness of a direction can easily be assessed through
interactions that let users quickly reason about trends across at-
tributes. The visualization can also be used to compare different
directions, permitting the understanding of how different walking
methods treat similar directions.

Beyond studying well-defined disentaglement properties, we
showed that our visualization can be used to compare different
walking methods, for which researchers studying direction finding
methods may benefit from. Studying bias in the latent space is an-
other use-case of our visualization, which benefits data scientists
and general GAN community. Finally, we take a step further into
the generator representation by linking projected convolutional ac-
tivations with namable attributes.

One limitation of our research is that the quality of the latent
space study hinges on the quality of attribute classifiers. Studying
various aspects of a direction would be difficult without semantic
attribute-based classifiers. We plan on studying how to use acti-
vations in the generator and discriminator to free the dependency
on attributes. The second limitation comes from the fact that our

visualization is primarily built to understand walks given a single
direction. Although not impossible, it is more difficult to compare
multiple directions at the same time. The ability to compare dif-
ferent directions is an important step in assessing disentanglement
more broadly, e.g. ensuring a set of directions are distinct, yet com-
pletely describe the generative model.

Moving forward, we plan to refine our visualization to enable
a comparison between multiple directions, as opposed to multiple
attributes. This lets researchers understand a single latent code in-
depth to reveal whether the latent code might fail to respond to di-
rections, or has a strong property that cannot be altered via walking
along directions. We believe such an interface can become useful
for the purposes of image editing and content creation.
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