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Abstract
Vectorization is a commonly used technique for converting raster images to vector format and has long been a research focus in
computer graphics and vision. While a number of attempts have been made to extract the topology of line drawings and further
convert them to vector representations, the existing methods commonly focused on resolving junctions composed of thin lines.
They usually fail for line drawings composed of thick lines, especially at junctions. In this paper, we propose an automatic line
drawing vectorization method that can reconstruct the topology of line drawings of arbitrary thickness. Our key observation is
that no matter the lines are thin or thick, the boundaries of the lines always provide reliable hints for reconstructing the topology.
For example, the boundaries of two continuous line segments at a junction are usually smoothly connected. By analyzing the
continuity of boundaries, we can better analyze the topology at junctions. In particular, we first extract the skeleton of the
input line drawing via thinning. Then we analyze the reliability of the skeleton points based on boundaries. Reliable skeleton
points are preserved while unreliable skeleton points are reconstructed based on boundaries again. Finally, the skeleton after
reconstruction is vectorized as the output. We apply our method on line drawings of various contents and styles. Satisfying
results are obtained. Our method significantly outperforms existing methods for line drawings composed of thick lines.

CCS Concepts
• Applied computing → Fine arts;

1. Introduction

Vectorization is a commonly used technique for converting raster
images to vector format so that the image can be rescaled without
any quality loss. Comparing to raster images, vector graphics are
of relatively small file size which is suitable to be used in various
applications, such as web-compatible images and illustrations. Be-
sides, with the vector representation, one can easily edit the line
drawing, such as changing the color and thickness of each indi-
vidual line. The vector representation also benefits various appli-
cations of line drawings, such as retargeting and stereoscopization.
While vector graphics can be directly created with vector graph-
ics software (e.g. Adobe Illustrator, CorelDRAW, etc.), drawing in
raster format (either digitally or on paper) is still more natural to
humans. Moreover, even if a drawing is created in vector format,
it may be rasterized when distributed, since most of the current so-
cial communication software only supports the exchange of raster
images. Therefore, how to vectorize raster images has long been
a research interest and attracts research attempts from many re-
searchers.

† Corresponding author

During vectorization, one key challenge is in vectorizing lines
with arbitrary thickness and shapes. Various methods have been
proposed to vectorize line drawings based on different topol-
ogy extraction methods. A simple but commonly adopted method
is to first thin the lines to one-pixel thickness [ZS84, LLS92]
and then connect the pixels based on local connectivity. While
this method works for arbitrary-thickness line drawings, the re-
constructed topology usually fails at junctions and corners (Fig-
ure 1(b)). One idea for improvement is to take advantage of global
information [FLB16], but it may lead to oversimplified results (Fig-
ure 1(c)). Traditional vectorization methods estimate the topology
of the lines by fitting the lines to some pre-defined shapes [CY98,
DCP17, JV97, HT06], but these methods generally fail to resolve
lines of arbitrary thickness and shapes, especially at junctions, due
to the overlapping of lines. To reconstruct the topology at junctions,
methods have been proposed to resolve the ambiguity of junctions
based on tangential fields [NHS∗13, NS19, BS19]. However, these
methods are usually tailored for resolving junctions composed of
thin lines. They usually fail to reconstruct the topology of line
drawings composed of thick lines (Figure 1(d)). Recently, sev-
eral learning-based methods have been proposed to reconstruct the
topology of line drawings [KWÖG18, SII18, GZH∗19], but these
methods are unable to solve line drawings of arbitrary thickness

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14485

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-1242-5183
https://orcid.org/0000-0002-0868-5353 
https://orcid.org/0000-0002-1519-750X
https://orcid.org/0000-0002-0399-9089
https://orcid.org/0000-0003-2124-9799
https://doi.org/10.1111/cgf.14485


Z. Zhang & X. Liu & C. Li & H. Wu & Z. Wen / Vectorizing Line Drawings of Arbitrary Thickness via Boundary-based Topology Reconstruction

(a) Input

(e) [Guo et al. 2019]

(d) [Bessmeltsev et al. 2019](c) [Favreau et al. 2016]

(b) Thinning
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Figure 1: Comparisons with existing methods.

due to the limited receptive field (Figure 1(e)). In contrast, in this
paper, we propose a method that can reconstruct the topology of
line drawings of arbitrary thickness, as shown in Figure 1(f).

To analyze the topology of junctions composed of thick lines,
we observe that, the boundaries of the lines can always provide
useful hints in making the decisions. Figure 2 (a) and (b) show two
similar line drawings where (a) is composed of two curves and (b)
is composed of three curves. While it is not easy to differentiate the
two cases using either flow-based or learning-based methods, the
top boundary curve actually shows clear hints on the topology of
this junction. In (a), the top boundary curve is a smooth curve which
indicates that the horizontal curve should also be composed of only
one curve. In (b), the top boundary curve has a sharp turn which
indicates that the horizontal curve should be composed of more
than one curve. Figure 2 (c) and (d) shown another pair of similar
line drawings where the only difference is that there contains a very
short spike curve in (d). While these two cases are also challenging
for flow-based and learning-based methods, the topology is clearly
indicated by the boundaries that (d) has an additional spike, while
(c) doesn’t.

In this paper, we propose a boundary-based topology reconstruc-
tion and vectorization method that converts a line drawing of arbi-
trary thickness to the vector representation. We first extract a rough
skeleton of the input line drawing via a classic thinning method.
The advantage of a thinning method is that it can deal with lines of
arbitrary thickness. However, the extracted skeletons are not pre-
cise, especially in junctions and corners. Therefore, we propose
to first identify whether a skeleton pixel is precise or not by ana-
lyzing the reliability of the skeleton pixels. Then we preserve the
topology of reliable skeleton points and reconstruct the topology
of unreliable skeleton points. We rely on the hints suggested by
the boundaries to make the reconstruction. Through analyzing the
mapping between the skeleton and the boundary, we may recon-
struct the topology of junctions composed of arbitrary-thickness
lines. We apply our method on line drawings of various shapes and
styles. Convincing results are obtained.

2. Related Works

Vectorization methods can be classified into two types: region-
based vectorization and stroke-based vectorization. The region-
based vectorization methods target for mimicking the color re-
gions in the raster images using parametric representations,
such as gradient-filled cubic splines [LL06] and diffusion
curves [OBW∗08]. The stroke-based vectorization methods target
for representing the raster image (usually line drawings or sketches)
using vector strokes, such as lines, arcs, and Bézier curves. Our
method belongs to the latter type.

To vectorize the strokes in a raster image, one straight-forward
and classic approach is to first extract the skeleton of the strokes
using the thinning method, and then fit the skeleton with paramet-
ric curves. The most well-known and classic method is the Zhang-
Suen thinning algorithm [ZS84], further improved by much later
research. One of the improved versions [LLS92] is still the built-in
function in Matlab. An in-depth survey of the thinning algorithms
can be found in [GV16]. Donati et al. [DCP19] proposed to change
erosion strategies at concave angles to improve refinement perfor-
mance, but it has limited applicability. The thinning methods usu-
ally do not focus on reconstructing the topology of the lines and
only estimate a rough topology of the input line drawing. So, these
methods generally fail to extract precise skeletons at junctions and
corners, as shown in the second row of Figure 2.

To better estimate the topology of the line drawings, tradi-
tional vectorization methods proposed to fit the black pixels in
the line drawings with pre-defined parametric primitives, such as
lines [JV97], arcs [HT06], and cubic Bézier curves [CY98,FLB16,
DCP17], via optimizations. However, these methods generally fail
to reconstruct the topology of line drawings of arbitrary thickness,
especially at junctions and corners, due to the uncertain thickness
of lines. To better reconstruct the topology at junctions, de Goes
et al. [dGCAD11] proposed to first construct a triangulation of the
black pixels as the input point sample set using Delaunay trian-
gulation and then reconstruct the topology of lines based on the
optimal transport measurement between the reconstruction and the
input point set. Noris et al. [NHS∗13] proposed to reconstruct the
topology of junctions in clean line drawings by searching for the
best topology in all potential topology settings via reverse draw-
ing. Chen et al. [CLMP15] extended this method for sketchy input.
Recently, methods have been proposed to reconstruct the topology
and vectorize line drawings based on frame fields [BS19], multi-
scale edge detection [NS19], and global drawing-aligned integer
grids [SBBB20]. However, these methods are usually tailored for
resolving junctions composed of thin lines, and they usually fail to
reconstruct the topology of line drawings composed of thick lines.

Lately, several learning-based methods have also been proposed
to reconstruct the topology of line drawings [KWÖG18, SII18,
GZH∗19]. Kim et al. [KWÖG18] proposed to segment line draw-
ings into semantic line segments. Simo-Serra et al. [SII18] pro-
posed to convert sketches into clean line drawings in an interac-
tive way. Guo et al. [GZH∗19] proposed to reconstruct the topol-
ogy of line drawings in a junction-tailored two-step approach. Mo
et al. [MSSG∗21] proposed to use a dynamic window around a
virtual pen to draw lines. However, the major problem of these
learning-based methods is either classification (with BCE loss) or
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Figure 2: Hints suggested by boundaries.

regression (with MSE loss) of the centerline will be burdened by
the failure of smooth mapping between the image space and the
Cartesian space. Another problem lies in the failure of deep neural
networks to both understand global trajectories from higher-level
semantics (larger receptive fields) and extract precise centerline lo-
cations from lower-level semantics (smaller receptive fields). In
contrast, in this paper, we propose a method that can reconstruct
the topology of line drawings of arbitrary thickness.

3. Overview

The overview of our method is illustrated in Fig. 3. Given a raster
input line drawing (Fig. 3(a)), we first binarize it into a black-
and-white image to map each pixel into either a line pixel or a
background pixel. Then we extract the skeleton of the line pix-
els via a classic thinning algorithm [ZS84], as shown in Fig. 3(b).
Though the extracted skeleton pixels may not be consistent with the
human-perceived centerline and topology, they can already provide
good approximations to the ground-truth. Despite the imprecision
of the extracted skeleton, we find that the boundaries of the input
line drawings can be precisely extracted and provide significantly
valuable hints to obtain the precise skeleton location and topol-
ogy. To extract the boundaries, we capture the pixels with at least
one 8-connected neighbor that is a background pixel, as shown in
Fig. 3(c).

With the obtained skeleton pixels and boundary pixels, we can
refine the skeleton based on the boundaries. We first construct seg-
ments from pixels for both the skeleton (Fig. 3(d)) and the bound-
ary (Fig. 3(e)). These constructed segments and their mutual con-
nectivity actually show an initial guess of the topology of the
line drawing. However, this initial topology is usually incorrect at
spikes, close lines, junctions, corners, sharp turns, and so on. So, we
further refine the skeleton and reconstruct the topology based on
the boundary. We first filter out all unreliable skeleton segments,

such as falsely predicted spikes and connectors (Fig. 3(f)), based
on our proposed skeleton-boundary tangent consistency constraint
and boundary-guided skeleton completeness constraint to refine the
topology. Then we reconstruct the skeleton segments at junction lo-
cations, corners, and sharp turns based on the boundaries again to
obtain precise skeleton segments (Fig. 3(g)). The reconstructed line
topology can well conform to the human’s perception. Our skeleton
extraction and topology reconstruction process are detailed in the
following section.

4. Method

Our method contains four main steps: 1) extracting skeleton pix-
els and boundary pixels (introduced in Section 3); 2) constructing
skeleton topology and boundary topology by constructing skeleton
segments and boundary segments from pixels; 3) refining skeleton
topology by removing unreliable skeleton segments; 4) reconstruct-
ing skeleton segments to obtain precise skeleton locations. We will
introduce the details of the last three steps in this section.

4.1. Skeleton and Boundary Topology Construction

With the extracted skeleton and boundary pixels as stated in the
previous section, we group the pixels into segments and construct
segment-based topology diagrams for both the skeleton and the
boundary. The constructed topology will be used for further refin-
ing the skeleton topology and reconstructing the skeleton segments.

4.1.1. Skeleton Topology Construction

To construct a segment-based topology of the skeleton, we first de-
tect all endpoints (valence-1) and junction pixels (valence≥3) from
the skeleton pixels. We then identify the skeleton segments as a
connected list of pixels if they are: (a) between two junction pix-
els; (b) between two endpoints; or (c) between an endpoint pixel
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Figure 3: An overview of our methods.
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Figure 4: Line topology construction for skeleton and boundary.

and a junction pixel as the skeleton segments. Fig. 4(b) visualizes
the identified skeleton segments where each line segment is color-
coded with a different color. Due to the discrete nature of raster
pixels, the identified skeleton segments are not smooth. They may
provide incorrect information of local properties, such as tangent
and curvature. Therefore, we fit each raster skeleton segment with
an optimization-based smooth spline [DB78], where the smoothing
parameter is set to 0.05. The obtained vector skeleton segments are
visualized in Fig. 4(c).

4.1.2. Boundary Topology Construction

To construct the segment-based topology of the boundary, we first
adopt a similar approach as identifying raster skeleton segments

to identify the raster boundary segments, as shown in Fig. 4(d).
However, the extracted boundary line segments may be com-
posed of two different semantic boundary lines. For example, in
Fig. 4(e), the magenta boundary segment is composed of two se-
mantic boundary segments which are the boundaries of different
circles. Therefore, we further subdivide each boundary segment
based on the forward directions of the boundary pixels.

The straightforward idea is to calculate the turning angle for
all boundary pixels and subdivide the boundary segments at pix-
els with a large turning angle. We first vectorize the raster lines
to obtain precise tangents at all points. Directly adopting the gra-
dient in the raster image may not give precise tangents at pixels
near corners, junctions, or crowded lines. To vectorize the raster
lines, we apply curve fitting to fit curves for the raster lines. During
curve fitting, we subdivide the raster lines at sharp corners to avoid
smoothing out the corners. To detect the corners, we identify the
point on the fitted curve that deviates most from the raster line with
more than 1-pixel offset as the pivot. Then we subdivide the raster
line at the pivot and fit curves for the subdivided lines respectively.
This process is repeated until no pivot is identified. The final vector
boundary segments are visualized in Fig. 4(f).

4.2. Unreliable Skeleton Segment Removal

With the constructed skeleton topology (Fig. 5(b)), we can observe
that some skeleton segments are not expressing the actual geome-
try of the raster line inputs. These unreliable line segments can be
categorized as spurious spikes and spurious connectors, as shown
in Fig. 5(c). The root cause of the problem is due to the design

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

436



Z. Zhang & X. Liu & C. Li & H. Wu & Z. Wen / Vectorizing Line Drawings of Arbitrary Thickness via Boundary-based Topology Reconstruction

(a) (b) (c) (d)

Figure 5: Spurious spike removal (top row) and spurious connector
removal (bottom row). (a) Input. (b) Skeleton topology. (c) Refined
skeleton topology. (d) Output.

flaws in the original thinning algorithm [ZS84]. The algorithm may
squeeze the skeleton estimation at the corners or the locations with
varying thicknesses. Consequently, the estimated skeleton may join
earlier than the actual closing point of the raster lines and lead to
spurious spikes. On the other hand, the algorithm will create spuri-
ous connectors as part of the skeleton if two thick lines are getting
too close. We propose to eliminate these unreliable line segments
based on two geometry constraint assumptions and elaborate the
following procedures.

4.2.1. Spurious Spike Removal

To detect and remove spurious spikes, we first search through all
skeleton segments to filter out ones with a valence-1 endpoint and
a valence≥3 endpoint as the spurious spike candidates. To classify
the spurious spikes, we formulate two criteria: skeleton-initiated
tangent consistency and boundary-guided skeleton completeness. If
the line segment matches any either criterion, it will be eliminated
from the skeleton topology.

4.2.1.1. Skeleton-initiated Tangent Consistency One critical
observation at the spurious spike locations is that the tangent di-
rection between the boundaries and the skeleton is usually incon-
sistent, as illustrated in the second and fourth columns of Fig. 6(c),
where we can see the tangent directions of spikes are entirely in-
consistent. On the contrary, we also illustrate consistent tangent di-
rections between the boundaries and skeleton in the first and third
columns of Fig. 6(c).

Based on this observation, we propose the skeleton-initiated tan-
gent consistency at all spike candidate locations as a measurement
to classify spurious spikes. To do so, we first extract a dense point
list {c1,c2, · · ·} for each candidate skeleton segment c by sequen-
tial sampling in the vector domain with a step size of 0.5 pixels, i,e.,
the distance between two consecutive points is always less than or
equal to 0.5 pixels. Compared to the original raster representation
of the line segment pixels, this dense point list is of float value co-
ordinates, providing higher resolution for better spike estimations.
Similarly, we can also extract a dense point list for each boundary
line segment as {b1,b2, · · ·}. With the point lists extracted, for each

Real spike Spurious spike Spurious spikeSpurious spike

bl

br

ci

bl

br

ci

bl

br

ci

(a)

(b)

(c)

(d)

(e)

(f)

(g)

bl br

ci

Figure 6: The procedure of spike removal. (a) Input. (b) Line
segmentation results. (c) Per-point tangent consistency estimation.
(d) Per-line-segment tangent consistency estimation. Line segments
with all points labelled as tangent inconsistent will be removed
(shown in red color). (e) Boundary-guided skeleton completeness.
The spike candidate in red color is to be removed, as it corresponds
to the same boundary with its neighbors. (f) The final decision of
line segment removal by summing up (d) and (e). The red color indi-
cates removal. (g) The final output of our whole procedure, serving
as a reference of the ground truth.

skeleton point ci in the list, we can find the corresponding bound-
ary points by casting a line to the normal direction at the location
of ci. We label the left and right intersections to the boundaries as
bl(ci) and br(ci) according to the normal direction of ci, as shown
in Fig. 6(c). Based on this skeleton-boundary correspondence, we
calculate the tangent consistency between ci and its corresponding
boundary points as

Dskeleton(ci) = max(
t(ci) · t(bl(ci))

|t(ci)| · |t(bl(ci))|
,

t(ci) · t(br(ci))

|t(ci)| · |t(br(ci))|
) (1)

where t is the tangent operator computed as (pi+1, j+1 − pi, j), and
pi, j is the coordinate of point p.

If the tangent consistency of all points on a spike candidate c are
smaller than a fixed threshold, i.e.

∀ci ∈ c, Dskeletonci < tc, (2)

this spike candidate will be classified as a spurious spike and
deleted from the topology. tc is set to 0.99 in all our experiments.

We illustrate the tangent consistency based classification of spu-
rious spikes in Fig. 6(d), where the red color in (f) indicates the line
segment to be removed.
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Figure 7: Spurious connector removal. (a) Input. (b) Skeleton-
initiated tangent consistency. (c) Boundary-initiated tangent con-
sistency. Green and red colors represent per-point consistency. We
remove the line segment whose points are all tangent-inconsistent
to form the result (d). The top row is a real connector case that
contains tangent-consistent points at the connector. The bottom
row is a spurious connector case where all points are tangent-
inconsistent. Note that the result will be further refined in the next
reconstruction part.

4.2.1.2. Boundary-guided Skeleton Completeness The bound-
ary information is also helpful to distinguish spurious spikes. The
traditional thinning algorithm tends to squeeze the extension of
skeletons at corner locations. Under such a circumstance, the two
skeletons near the corner will be combined unexpectedly, causing
the creation of a spurious spike. We illustrate this issue in the last
three cases in Fig. 6(e). Tangent consistency is not enough for re-
moving such spurious spikes as the spikes may be long and contain
tangent-consistent skeleton pixels, as shown in the third column of
Fig. 6(e). To remove this spurious spike, we further examine the
continuity of the skeleton segment to its corresponding boundaries.
If a single boundary segment near the corner is correlated to mul-
tiple skeleton segments, these skeleton segments are likely to be
related to a spurious spike. Specifically, we define a skeleton seg-
ment c and a boundary segment b are correlated, if only for any
point ci in c we can find its counterpart point bi on b on the normal
direction of ci. We then check all boundary segments in the topol-
ogy to find if more than one skeleton segment is correlated to it,
i.e.

|unique(Ind(c(br(ci))))|> 1∧|unique(Ind(c(bl(ci))))|> 1, (3)

where c(bi) indicates the skeleton point which is correlated to bi,
bl(ci) and br(ci) are the left and right intersections to the bound-
aries according to the normal direction of ci as defined in Section
4.2.1.1, Ind(x) indicates the segment index of x, unique(·) is the
duplicate removal operator, and |·| is the cardinality operator. If so,
we label all these skeleton segments as failing the boundary-guided
completeness criteria.

If the skeleton segment fails the skeleton-initiated tangent-
consistency criteria or the boundary-guided completeness crite-
ria (∀ci ∈ c, Dskeletonci > tc ∨ |unique(Ind(c(br(ci))))| > 1 ∧

|unique(Ind(c(bl(ci))))| > 1), it will be classified as a spurious
spike and removed.

4.2.2. Spurious Connector Removal

Besides the spurious spikes, we also handle the mistakenly esti-
mated spurious connectors during thinning-based skeleton extrac-
tion when two thick lines are too close to each other. To identify
the spurious connectors, we first find all the skeleton segments with
two valence>1 endpoints as candidates. For each candidate, we dis-
tinguish a spurious connector by two kinds of tangent consistency
estimations: one is the previously mentioned skeleton-initiated tan-
gent consistency, and the other is a new boundary-initiated tangent
consistency, as shown in Fig. 7(b)&(c) respectively. The boundary-
initiated tangent consistency is computed similarly to the skeleton-
initiated one, but the computation originated from the boundary line
segment points. For each skeleton point ci, we search through all
boundary point bi where the normal direction of bi will cast to ci
and compute the boundary-initiated tangent consistency score as

Dboundary(ci) = max(
t(ci) · t(bi)

|t(ci))| · |t(bi)|
),∀bi casting to ci (4)

where t is the tangent operator. The reason for adopting a new
boundary-initiated tangent consistency is because connectors are
usually very short and very likely to deviate from the actual lo-
cation during the thinning. With skeleton-initiated tangent consis-
tency only, one may not be able to find the correct boundary points
correlated to this skeleton point and therefore is unable to determine
whether it is a spurious connector. With the additional boundary-
initiated tangent consistency, this short-segment problem can be
well resolved.

In this way, we can compute the two tangent consistency scores
for each skeleton point ci. If both tangent consistency cannot be
satisfied, the skeleton segment will be classified as a spurious
connector. In our experiment, if Dboundary(ci) is lower than 0.95
and Dcentered(ci) is lower than 0.99, we shall regard this point
as tangent-inconsistent. If all points of the skeleton segment are
tangent-inconsistent, we will label this skeleton segment as a spu-
rious connector and remove it from the topology, as shown in
Fig. 7(d).

4.3. Skeleton Segment Reconstruction

After removing the spurious spikes and spurious connectors, we
expect the topology of the lines to be correct. However, we still ob-
serve distorted curvature and imprecise skeleton points, especially
at corners, junctions, and sharp turns. For example, the remaining
green skeleton in Fig. 6(f) after the spurious spike removal is still
not reflecting the ground-truth. The issue is more severe in Fig. 7(d)
after the spurious connector removal. Moreover, these artifacts are
more random and cannot be determined on a segment basis. As a
result, we propose to classify the skeleton pixels that may be devi-
ated from the ground-truth. Then we replace these unreliable pixels
with more accurate ones derived either from the boundary or the
adjacent reliable skeleton pixels.

To be specific, skeleton pixels that are skeleton-initiated tangent-
inconsistent are classified as the unreliable pixel. Moreover, for a
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(c)(a) (b) (d)

Figure 8: Boundary-aided reconstruction. We first find out the ref-
erence boundary line segment in (a) and remove the unreliable
points by checking the tangent consistency in (b). We then copy
a segment of the reference in parallel to the removed skeletons in
(c), translate and paste it back to complete the skeleton in (d).

skeleton pixel with no corresponding boundary point, we also la-
bel it as unreliable. In this manner, we remove all unreliable skele-
ton pixels. So, most of the mistakenly estimated skeletons will be
removed, and most of the junctions will be disconnected. Finally,
we propose a boundary-aided reconstruction to repair the skeletons
with corresponding solid boundaries and a topology-aided recon-
struction to repair the remaining skeletons, whose reconstruction
cannot be derived from the boundaries.

4.3.1. Boundary-aided Reconstruction

As shown in the top row of Fig. 8(a), the thinning algorithm may
create fluctuated curves near the junction by its nature, which is
a false estimation. A good skeleton extraction should eliminate
the fluctuation and correctly connect the two line segments with
smoothly changing tangents near the junction. However, it is chal-
lenging to make a reasonable assumption of the junction location
and the tangent value at each skeleton point by only observing the
thinned skeleton segments. Fortunately, we can still recover almost
accurate junction locations and tangent values from the boundaries.
For example, in the top row of Fig. 8(b), we can recover the ac-
curate skeleton from the boundary segments corresponding to the
removed unreliable pixels.

Concretely speaking, for each junction, we find all skeleton seg-
ments connected to this junction. Then for each of these skeleton
segments, we find the closest reliable point to the junction as the
cut-off point. If any two cut-off points have the same corresponding
boundary segment, i.e., the two skeleton segments are continuous
in boundary, we connect these two skeleton segments at the cut-off
points by copying the segment from the boundary. As illustrated
in the top row of Fig. 8(c), we intercept part of the boundary seg-
ment corresponding to the cut-off point, translate and rescale it as
a new segment and paste it back to the missing locations to finish
the patching. The two skeleton segments will be merged into one
skeleton segment in the topology after the connection. Similar op-
erations are performed at the unreliable part near the line endpoints,
as shown in the bottom row of Fig. 8(c).

4.3.2. Topology-aided Reconstruction

Even though we can recover most of the accurate skeleton with
the boundary-aided reconstruction, there are still some skeleton
estimation mistakes that cannot be recovered due to the absence
of boundary correspondence. For example, in the top row of
Fig. 8(d)), the straight line segment cannot be connected to the re-
constructed skeleton curve, as there is no boundary line to guide
the reconstruction of the missing skeleton segment. This problem
is also obvious at the X-junction locations (Fig. 9(a)), where the
initially estimated skeleton is twisted and should be reconstructed.
However, there are barely any boundary cues that can be used
for this X-junction skeleton reconstruction. We propose to apply
a blind skeleton reconstruction from the broken skeleton itself.
Firstly, we eliminate all skeleton segment points around junctions
if: a) it is not skeleton-initiated tangent consistent to its correspond-
ing boundary; b) it is not even corresponding to a boundary line
segment, as shown in Fig. 9(a), where red color indicate a point
removal.

To recover the topology from the remaining broken lines, we
first detect the tangent direction of the cut-off points. If the tangent
directions of two cut-off points are co-linear (within a 0.01 cosine
distance between two tangents, as with Eq. 4), we instantly connect
the cut-off points with a straight line to recover the topology and
merge the corresponding skeleton segments into one segment, as
shown in the first row of Fig. 9(b).

For those non-matched skeleton segments near the junction, as
shown in Fig. 10(a)&(b), we propose to enforce the topology recon-
struction with a skeleton extrapolation strategy. To do so, we use
the same vector-based skeleton sampling approaches to construct
a point list of the currently broken skeleton segment. After that,
we apply polynomial curve fitting to the point list to approximate
the analytical representation of the skeleton segment. In our experi-
ment, we set the degree to 2, which is enough for our objectives. Af-
ter the line fitting, we extend all broken skeletons from the cut-off
point until they reach the boundaries, as shown in Fig. 10(c). Dur-
ing the extension, the broken topology is automatically restored,
with the skeleton extension reconstructing the junctions. Moreover,
the analytical curve fitting also ensures smooth varying tangents at
all skeleton locations. Finally, we clean up all over-extended skele-
tons from the farthest extended junction point to the boundary to
conclude the topology reconstruction, as shown in Fig. 10(d). At
this stage, all skeletons are extended and cut off based on curva-
ture and intersection only. Cut-off points that are very close will be
merged into one junction point for beautification purposes at a later
stage.

A complete centerline extraction process is shown in Fig. 11.

5. Results and Discussions

5.1. Dataset Preparation

Since there is no publicly available dataset with line drawings of
different thickness and the corresponding ground-truth skeletons,
we hereby prepare such a dataset to evaluate our skeleton extrac-
tion performance. To do so, we first rasterize arbitrarily constructed
Bézier curves into 1-pixel-wide strokes in a canvas as ground-truth

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

439



Z. Zhang & X. Liu & C. Li & H. Wu & Z. Wen / Vectorizing Line Drawings of Arbitrary Thickness via Boundary-based Topology Reconstruction

(a) (b) (c)

Figure 9: Topology-aided skeleton reconstruction with matched
tangents at cut-off points. (a) Per-point skeleton-initiated tangent
consistency, with inconsistent points shown in red. (b) Tangent di-
rection matching at cut-off locations. (c) Result.

(a) (b) (c) (d)

Figure 10: Blind topology reconstruction with unmatched tangents
at cut-off points. (a) Per-point skeleton-initiated tangent consis-
tency, with inconsistent points shown in red. (b) The remaining
skeleton segments and the cut-off points after inconsistent point
removal. (c) Skeleton extension based on curve fitting. The newly
formed junctions are also illustrated. (d) Skeleton reconstruction
by extending the skeleton to the farthest junction.

skeletons. Then, we synthesize line drawings from the ground-truth
skeletons with different thickness based on three rules: a) Some
lines are synthesized with fixed thickness; b) Some lines are syn-
thesized as constantly width-growing or width-reducing; c) The rest
lines are synthesized with smoothly changing thickness controlled
by a polynomial function. For all these strategies, we use a param-
eter w to control the average thickness for synthesis and we expect
the average thickness for all lines in the image will distribute uni-
formly centered at w. In this way, we have more intuitive and tar-
geted test data and ground-truth. All test images are synthesized
on a canvas size of 512 by 512. The average count of synthesized
curves for each image is 2.1. To test the robustness of centerline ex-
traction under the condition of different line widths, we separately
generate three subsets, with w set to 10, 20, and 30, respectively.
For each subset, we synthesize 150 images.

Moreover, to observe the centerline extraction quality in real-life
cases, we collect around 100 internet line drawings with varying
stroke widths. Based on the hybrid dataset of both synthetic and
real line drawings, we compare our method to a list of competitors,
including three traditional methods [FLB16, BS19, ZS84] and one
learning-based method [GZH∗19], qualitatively and quantitatively.

5.2. Qualitative Evaluations

We conduct visual comparisons in skeleton extraction on high-
quality internet images, including fixed-thickness images (e.g.,

(f)(e)(d)

(a) (b) (c)

Figure 11: A complete flow of our method. (a) Input. (b) Skeleton
segments after removing unreliable skeleton pixels. (c) Boundary-
aided reconstruction of unreliable skeleton pixels at junctions. (d)
Boundary-aided reconstruction of unreliable skeleton pixels at end-
points. (e) Topology-aided reconstruction of unreliable pixels via
the tangent-based connection. (f) Topology-aided reconstruction of
unreliable pixels via curve extension.

Fig. 12) and varying-thickness images (e.g., Fig. 13). The fixed-
thickness images are obtained from rasterized vector graphics and
the varying-thickness images are obtained from hand-made draw-
ings.

Favreau’s method [FLB16] tends to output over-segmented
skeleton segments. Moreover, it cannot handle complex junctions
and non-closed strokes without user interaction, as highlighted in
the red boxes of Fig. 12(b). Bessmeltsev’s method [BS19] can-
not handle thick line strokes properly, causing double estimation
of skeletons, as shown in the first row of Fig. 12(c). Moreover,
this method cannot handle closed strokes and tends to output over-
segmented results with spurious spikes.

Guo’s method [GZH∗19] is learning-based. Hence, the overall
skeleton extraction performance is highly dependent to the model
architecture and the training set. We find that their model architec-
ture is unable to handle very thick strokes for two main reasons. The
first reason is that their skeleton extraction model has limited recep-
tive field and cannot handle thick strokes well. The second reason
is that the junction of thick strokes will confuse their line order-
ing model, so the topology reconstruction will also fail. The same
problem occurs with Simo-Serra’s method [SII18], which cannot
output lines with a width of 1 pixel when the input is thick lines,
as shown in Fig. 12(e). We attempted to re-train their model with
our dataset. However, we found that the overall quality is severely
reduced regardless of the average width of strokes. Thus we keep
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(a) Input (b) Favreau (c) Bessmeltsev (d) Guo (f) Thinning (g) Ours(e) Simo-Serra

Figure 12: Comparison to existing method on the fixed-width line drawing. The red boxes show part of the inaccuracies.

using the original model weight shipped in [GZH∗19, SII18] and
illustrate their results in the comparison.

We also provide the results of the classical thinning algorithm.
We would like to highlight their major flaws, including the early
centerline combination, spurious spikes and distorted centerline
orientation near junctions. Finally we show our results in Fig. 12(f)
and Fig. 13(f). Our method successfully extracts clean and accurate
skeletons and is free from common structural estimation mistakes
such as spurious spikes, spurious connectors, and double-edge ex-
traction. Moreover, our method is considerably more precise at
junctions, compared to all other competitors. We also show more
complex examples in Fig. 14.

5.3. Quantitative Evaluations

We also perform quantitative evaluations with our synthetic dataset,
as the real-life images are usually not shipped with the ground-truth
skeleton. To evaluate the extraction quality, we first compute the
Chamfer distance between the extracted centerline and the ground
truth. Chamfer distance is intuitively conforming to human percep-
tion and is widely used as the distance metric in shape matching.
Compared to pixel-wise metrics such as PSNR and MAE, Chamfer
distance is much more robust to subtle spatial drifts (referred to as
“nudges”). That is, due to the grid nature of rasterization (i.e., alias-

ing), the 1-pixel-wide estimated centerline pixels might not be fully
overlapping the ground truths but with a slight drift. In this case of
nearly precise estimation, the pixel-wise PSNR metric will drasti-
cally increase, while Chamfer distance will maintain the numerical
stability. The Chamfer distance is defined as:

C(A,B) =
1

2|A| ∑
i, j∈A

DTB[i, j]+
1

2|B| ∑
i, j∈B

DTA[i, j] (5)

where A and B are two binary images representing the prediction
and the ground truth. DTA is the normalized distance transformation
of A. The perfect matching distance of the Chamfer distance is 0,
and two maximally dissimilar images have a distance of

√
2.

While the Chamfer distance is an effective perspective to esti-
mate the centerline extraction quality, it may sometimes give in-
accurate distance estimation if some components of B do not ex-
ist in A and vice versa. Due to the sensitivity of shape complete-
ness in Chamfer distance, we compute an occupancy metric as the
other perspective of the skeleton extraction precision. The occu-
pancy counts the relaxed precision score of skeleton prediction with
the ground-truth skeleton dilated to 3-pixel-wide. Specifically, we
define the occupancy as

Occupancy(A,B) =
A∩d3(B)

d3(B)
(6)
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(a) Input (b) Favreau (c) Bessmeltsev (d) Guo (f) Thinning (g) Ours(e) Simo-Serra

Figure 13: Comparison to existing method on the variable-width line drawing. The red boxes show part of the inaccuracies.

Figure 14: More Results.

where A is the precision, B is the ground truth, dk(I) is the dilation
operator to image I with a kernel size of k.

We show the quantitative comparison results in Table 1. Even
though the pixel-wise metrics may not faithfully reflect the pre-
cision of centerline extraction, we keep it here as a supplement.
We can see our method outperforms the competitors under almost
all conditions, except for slightly worse pixel-wise metrics on thin
lines. We believe the aliasing problem causes this. Also, our method
manages to maintain a comparable high precision on thick lines,
while the competitors are imprecise or even refuse to work.

Besides an averaged quantitative study of extraction precision,
we also perform a targeted study to investigate the skeleton extrac-
tion quality at junction locations. Most of the unreliable skeleton
estimations happen on the junction location because the junctions
are of complex topology, which increases the estimation ambigu-
ity. Additionally, there are fewer boundary cues near the junction
locations, which further increases the estimation ambiguity. Thus,
we present an evaluation on the skeleton extraction performance in
regard to the distance of the prediction skeleton pixel to its nearest
junction. As shown in Fig. 15, our method achieves mostly the best
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Table 1: Quantitative analysis of different methods with datasets of different average line widths. For PSNR, SSIM and occupancy scores,
higher is better. For MAE and Chamfer distance, lower is better. The numbers in brackets stand for the standard deviation.

Method
Average line width = 10 Average line width = 20 Average line width = 30 All line widths

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

Favreau
22.59
(1.08)

0.933
(0.019)

1.45
(0.36)

42.78
(0.41)

0.06609
(0.03661)

22.77
(0.97)

0.935
(0.017)

1.38
(0.27)

46.95
(0.41)

0.06319
(0.02917)

22.40
(1.03)

0.929
(0.023)

1.51
(0.38)

40.20
(0.37)

0.06619
(0.03893)

22.59
(1.03)

0.932
(0.020)

1.45
(0.34)

43.31
(0.40)

0.06516
(0.03490)

Bessmeltsev
23.00
(0.83)

0.954
(0.008)

1.30
(0.25)

0.77.32
(0.08)

0.00229
(0.00081)

21.82
(0.75)

0.935
(0.012)

1.70
(0.29)

48.90
(0.15)

0.00752
(0.00521)

22.04
(0.59)

0.936
(0.006)

1.61
(0.22)

31.18
(0.09)

0.00835
(0.00386)

22.29
(0.72)

0.942
(0.010)

1.54
(0.023)

52.47
(0.08)

0.00605
(0.00329)

Guo
26.99
(2.32)

0.976
(0.011)

0.58
(0.28)

90.54
(0.11)

0.00314
(0.00353)

21.10
(0.91)

0.911
(0.018)

2.02
(0.42)

0.01
(0.00)

0.01922
(0.01124)

21.10
(0.92)

0.885
(0.023)

2.03
(0.42)

0.00
(0.00)

0.02737
(0.00780)

23.06
(1.38)

0.924
(0.017)

1.54
(0.37)

30.18
(0.04)

0.01658
(0.02257)

Thinning
26.12
(1.30)

0.975
(0.007)

0.65
(0.20)

93.83
(0.06)

0.00111
(0.00102)

25.13
(1.01)

0.969
(0.007)

0.80
(0.19)

87.40
(0.08)

0.00242
(0.00183)

24.17
(1.17)

0.961
(0.012)

1.02
(0.31)

79.92
(0.12)

0.00371
(0.00289)

25.23
(1.16)

0.968
(0.009)

0.82
(0.23)

87.05
(0.08)

0.00241
(0.00191)

Ours
26.26
(1.38)

0.975
(0.007)

0.64
(0.21)

95.45
(0.06)

0.00105
(0.00104)

25.40
(1.17)

0.971
(0.007)

0.76
(0.21)

91.09
(0.08)

0.00223
(0.00200)

24.46
(1.21)

0.963
(0.011)

0.95
(0.29)

85.45
(0.11)

0.00335
(0.00308)

25.28
(1.25)

0.970
(0.008)

0.78
(0.24)

90.66
(0.08)

0.00221
(0.00204)

accuracy on all occasions. Moreover, our method is the most robust
among all methods.

We evaluate the robustness of different image sizes and differ-
ent tangent-consistency thresholds. We select the data with size
512×512 and line width of 20 pixels and resize them to size
256×256 and 1024×1024 to evaluate the performance of our
method on images of different resolutions. The evaluation results
are shown in Table 2. We can see that our method performs stably
on the input with different resolutions. To evaluate the influence of
the tangent-consistency threshold on the results, we performed ab-
lation experiments with three different tangent-consistency thresh-
olds of 0.95, 0.99, 0.9999 at the size of 512×512 and the line width
of 20 pixels for the experiment, as shown in Table 3. When the
threshold is too small, the reliability standard is very lax, and many
pixels that are not accurate will be included in the reliability seg-
ment and retained. When the threshold is too large, the reliability
standard is so strict that most and even all pixels will be classi-
fied as unreliable and the basis for reconstruction cannot be found.
From the perspective of occupancy and Chamfer distance, a too-
large threshold may have a larger effect on our method than a too-
small threshold. Still, we can see from the statistics that our method
is generally stable under different thresholds.

We also perform a time analysis with a testbed with an Intel i7-
9700K @ 3.0GHz CPU and 16GB RAM. Note that our method
does not require GPUs. For the learning-based method [GZH∗19],
we perform model inference with a single NVIDIA 2080 Ti GPU.
We compute the average time on the combined dataset of various
average line widths. Moreover, we rescale our dataset to different
resolutions to study the computational complexity. We illustrate the
study results in Table 4. Our method is fairly efficient with the sec-
ond fastest overall computational time on CPU, and is of linear
complexity to the side of the image. While [FLB16, BS19] takes a
significantly longer time to complete the vectorization.

5.4. Limitations

While the boundaries of the line drawings are usually smooth and
give clear hints on the topology of the lines, it happens that bound-
aries of the lines are not smooth because of artistic styles or low-
quality images. Since our method is highly dependant on bound-
aries to obtain the correct topology with precise skeleton locations,
it will fail when the boundaries are not smooth and unable to give

correct hints, as shown in the first row of Fig. 16(a) and (b). More-
over, some very short and tangent-inconsistent skeleton segments
might be mistakenly classified as spurious spikes and removed, as
shown in the nose of the bear in Fig. 16 (c) and (d). Our method
is not designed for sketchy images. Sketches require semantically
simplified lines, and our method preserves each curve faithfully, as
shown in Fig. 16 (e) and (f), an input from Yan’s benchmark of
sketch cleanup [YVG20] and its result.

6. Conclusions

We propose a vectorization method of line drawings via boundary-
based topology reconstruction. The key of our method is to con-
struct and refine the topology based on boundary. In particular, we
propose to first obtain the initial topology by extracting the skele-
ton segments. Then we remove the unreliable skeleton segments
based on the guidance of the boundaries. Finally, both the skele-
ton segments and topology are refined based on the boundary in-
formation again. Compared to the existing methods, our method
performs better both visually and quantitatively, especially in line
drawings composed on thick lines. Our method is more efficient
than the other traditional methods and can be easily run in almost
any experimental environment. We will further explore to apply our
method on more stylized line drawings in future research.

Acknowledgments

This work was supported partly by National Natural Sci-
ence Foundation of China (No. 62002232 and No. 61973221),
Natural Science Foundation of Guangdong Province, China
(No. 2019A1515011165), the COVID-19 Prevention Project of
Guangdong Province, China (No. 2020KZDZX1174), the Ma-
jor Project of the New Generation of Artificial Intelligence
(No. 2018AAA0102900), the Research Grants Council of the
Hong Kong Special Administrative Region, China (Project No.
UGC/FDS11/E01/21), and the Institutional Development Grant of
Caritas Institute of Higher Education, Hong Kong Special Admin-
istrative Region, China (Project No. IDG200107).

References
[BS19] BESSMELTSEV M., SOLOMON J.: Vectorization of line drawings

via polyvector fields. ACM Trans. Graph. 38, 1 (2019), 9:1–9:12. 1, 2,
8, 11

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

443



Z. Zhang & X. Liu & C. Li & H. Wu & Z. Wen / Vectorizing Line Drawings of Arbitrary Thickness via Boundary-based Topology Reconstruction

0

0.002

0.004

0.006

0.008

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Average line width = 10

0

0.005

0.01

0.015

0.02

0.025

0 4 8 12 16 20 24 28 32 36 40 44 48 52 56 60 64 68 72 76 80 84 88 92 96 10
0

Average line width = 20

0

3

6

9

12

15

18

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

Ours Thinning Guo Bessmeltsev

Average line width = 30

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

Average line width = 10

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

Average line width = 20

0

0.2

0.4

0.6

0.8

1

0 3 6 9 12 15 18 21 24 27 30 33 36 39 42 45 48 51 54 57 60 63 66 69 72 75 78 81 84 87 90 93 96 99

Ours Thinning Guo Favreau Bessmeltsev

Average line width = 30

Visual Paradigm Online Free Edition

Visual Paradigm Online Free Edition

Figure 15: Chamfer distance (left column) and occupancy (right column) are in regard to the distance from junctions. Ours stays the most
robust among all method. The x-axes stand for the distance from any point to its nearest junction and the y-axes stand for the occupancy and
Chamfer distance respectively.

Table 2: Robustness evaluation of our method with datasets of different resolutions. For PSNR, SSIM and occupancy scores, higher is better.
For MAE and Chamfer distance, lower is better. The numbers in brackets stand for the standard deviation.

256 × 256 512 × 512 1024 × 1024

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

23.55
(1.62)

0.955
(0.015)

1.21
(0.48)

90.85
(0.09)

0.00114
(0.00101)

25.40
(1.17)

0.971
(0.007)

0.76
(0.21)

91.09
(0.08)

0.00223
(0.00200)

27.03
(0.92)

0.980
(0.004)

0.52
(0.11)

91.10
(0.08)

0.00370
(0.00374)

[CLMP15] CHEN J., LEI Q., MIAO Y., PENG Q.: Vectorization of line
drawing image based on junction analysis. Sci. China Inf. Sci. 58, 7
(2015), 1–14. 2

[CY98] CHANG H., YAN H.: Vectorization of hand-drawn image using
piecewise cubic bézier curves fitting. Pattern Recognit. 31, 11 (1998),
1747–1755. 1, 2

[DB78] DE BOOR C.: A practical guide to splines, vol. 27. springer-
verlag New York, 1978. 4

[DCP17] DONATI L., CESANO S., PRATI A.: An accurate system
for fashion hand-drawn sketches vectorization. In 2017 IEEE Inter-
national Conference on Computer Vision Workshops, ICCV Workshops
2017, Venice, Italy, October 22-29, 2017 (2017), IEEE Computer Soci-

ety, pp. 2280–2286. 1, 2

[DCP19] DONATI L., CESANO S., PRATI A.: A complete hand-drawn
sketch vectorization framework. Multimedia Tools and Applications 78,
14 (2019), 19083–19113. 2

[dGCAD11] DE GOES F., COHEN-STEINER D., ALLIEZ P., DESBRUN
M.: An optimal transport approach to robust reconstruction and simpli-
fication of 2d shapes. Comput. Graph. Forum 30, 5 (2011), 1593–1602.
2

[FLB16] FAVREAU J., LAFARGE F., BOUSSEAU A.: Fidelity vs. sim-
plicity: a global approach to line drawing vectorization. ACM Trans.
Graph. 35, 4 (2016), 120:1–120:10. 1, 2, 8, 11

[GV16] GRAMBLICKA M., VASKY J.: Comparison of thinning algo-

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

444



Z. Zhang & X. Liu & C. Li & H. Wu & Z. Wen / Vectorizing Line Drawings of Arbitrary Thickness via Boundary-based Topology Reconstruction

Table 3: Ablation experiment of our method with different tangent-consistency threshold. For PSNR, SSIM and occupancy scores, higher is
better. For MAE and Chamfer distance, lower is better. The numbers in brackets stand for the standard deviation.

tangent-consistency threshold = 0.95 tangent-consistency threshold = 0.99 tangent-consistency threshold = 0.9999

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

PSNR SSIM MAE
Occu-
pancy

Chamfer
Distance

25.56
(1.20)

0.973
(0.008)

0.74
(0.21)

90.06
(0.08)

0.00205
(0.00184)

25.40
(1.17)

0.971
(0.007)

0.76
(0.21)

91.09
(0.08)

0.00223
(0.00200)

25.41
(1.33)

0.970
(0.009)

0.77
(0.25)

87.92
(0.11)

0.00251
(0.00240)

Table 4: Timing statistics on differnt image resolutions.

256*256 512*512 1024*1024
Favreau 88s 209s 351s

Bessmeltsev 257s >2000s -
Guo(GPU) 0.19s 0.24s 0.4s
Guo(CPU) 0.6s 2.3s 7.6s

Simo-Serra(CPU) 0.08s 0.7s 1.6s
Simo-Serra(GPU) 0.06s 0.3s 0.5s

Thinning 0.1s 0.3s 0.6s
Ours 0.9s 1.7s 2.9s

(c)(a) (b) (e) (f)(d)

Figure 16: Limitations. (a)&(b) Our method fails when the bound-
aries are not smooth and unable to give correct hints. (c)&(d)
Our method occasionally mis-classify very short and tangent-
inconsistent skeleton segments as spurious spikes. (e)&(f) Our
method is not designed for sketch cleaning, so it cannot extract
centerlines that need to be semantically simplified.

rithms for vectorization of engineering drawings. Journal of Theoretical
and Applied Information Technology 94, 2 (2016), 265. 2

[GZH∗19] GUO Y., ZHANG Z., HAN C., HU W., LI C., WONG T.:
Deep line drawing vectorization via line subdivision and topology re-
construction. Comput. Graph. Forum 38, 7 (2019), 81–90. 1, 2, 8, 9,
11

[HT06] HILAIRE X., TOMBRE K.: Robust and accurate vectorization
of line drawings. IEEE Trans. Pattern Anal. Mach. Intell. 28, 6 (2006),
890–904. 1, 2

[JV97] JANSSEN R. D. T., VOSSEPOEL A. M.: Adaptive vectorization
of line drawing images. Comput. Vis. Image Underst. 65, 1 (1997), 38–
56. 1, 2

[KWÖG18] KIM B., WANG O., ÖZTIRELI A. C., GROSS M. H.: Se-
mantic segmentation for line drawing vectorization using neural net-
works. Comput. Graph. Forum 37, 2 (2018), 329–338. 1, 2

[LL06] LECOT G., LÉVY B.: Ardeco: Automatic region detection and
conversion. In Proceedings of the Eurographics Symposium on Render-
ing Techniques, Nicosia, Cyprus, 2006 (2006), pp. 349–360. 2

[LLS92] LAM L., LEE S., SUEN C. Y.: Thinning methodologies - A
comprehensive survey. IEEE Trans. Pattern Anal. Mach. Intell. 14, 9
(1992), 869–885. 1, 2

[MSSG∗21] MO H., SIMO-SERRA E., GAO C., ZOU C., WANG R.:

General virtual sketching framework for vector line art. ACM Trans-
actions on Graphics (TOG) 40, 4 (2021), 1–14. 2

[NHS∗13] NORIS G., HORNUNG A., SUMNER R. W., SIMMONS M.,
GROSS M. H.: Topology-driven vectorization of clean line drawings.
ACM Trans. Graph. 32, 1 (2013), 4:1–4:11. 1, 2

[NS19] NAJGEBAUER P., SCHERER R.: Inertia-based fast vectorization
of line drawings. Comput. Graph. Forum 38, 7 (2019), 203–213. 1, 2

[OBW∗08] ORZAN A., BOUSSEAU A., WINNEMÖLLER H., BARLA P.,
THOLLOT J., SALESIN D.: Diffusion curves: a vector representation for
smooth-shaded images. ACM Trans. Graph. 27, 3 (2008), 92. 2

[SBBB20] STANKO T., BESSMELTSEV M., BOMMES D., BOUSSEAU
A.: Integer-grid sketch simplification and vectorization. In Computer
graphics forum (2020), vol. 39, Wiley Online Library, pp. 149–161. 2

[SII18] SIMO-SERRA E., IIZUKA S., ISHIKAWA H.: Real-time data-
driven interactive rough sketch inking. ACM Trans. Graph. 37, 4 (2018),
98:1–98:14. 1, 2, 8, 9

[YVG20] YAN C., VANDERHAEGHE D., GINGOLD Y.: A benchmark
for rough sketch cleanup. ACM Transactions on Graphics (TOG) 39, 6
(2020), 1–14. 11

[ZS84] ZHANG T. Y., SUEN C. Y.: A fast parallel algorithm for thinning
digital patterns. Commun. ACM 27, 3 (1984), 236–239. 1, 2, 3, 5, 8

© 2022 The Author(s)
Computer Graphics Forum © 2022 The Eurographics Association and John Wiley & Sons Ltd.

445


