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Abstract
We propose an interactive method to edit a discrete Chebyshev net, which is a quad mesh with edges of the same length. To ensure
that the edited mesh is always a discrete Chebyshev net, the maximum difference of all edge lengths should be zero during the
editing process. Hence, we formulate an objective function using ℓp-norm (p > 2) to force the maximum length deviation to
approach zero in practice. To optimize the nonlinear and non-convex objective function interactively and efficiently, we develop a
novel second-order solver. The core of the solver is to construct a new convex majorizer for our objective function to achieve
fast convergence. We present two acceleration strategies to further reduce the optimization time, including adaptive p change
and adaptive variables reduction. A large number of experiments demonstrate the capability and feasibility of our method for
interactively editing complex discrete Chebyshev nets.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

Discrete Chebyshev nets are quad meshes with all edges of equal
length, which are inextensible along the edge directions. The equal
edge length of Chebyshev nets makes it possible to simulate the
characteristics of quadrilateral meshes built from grids of flexible,
nearly inextensible rods. Hence, they have been widely used in
many fields, such as architecture, textiles, and art (Figure 1). Many
former methods focus on the generation of discrete Chebyshev
nets for various 3D models [Aon94, Mas17, SFCBCV19, LLZ∗20,
GSFD∗14]. Different from them, we focus on the editing of the
existing discrete Chebyshev nets (Figure 2), i.e., the edge lengths of
discrete Chebyshev nets are preserved during deformation.

The motivations for deforming Chebyshev meshes are twofold.
First, since such nets are very useful in practice (Figure 1), it is
desired to edit and design them in a short time, e.g., less than
0.5 seconds. However, the state-of-the-art methods [Aon94, Mas17,
SFCBCV19, LLZ∗20] for automatically generating a Chebyshev
net from a triangular mesh take lots of time (Figure 3). Second,
the automatic generation methods may violate the users’ design
intentions, e.g., the singularities may not be placed at the desired
positions (Figure 3). Therefore, it is challenging to deform triangle
meshes and then generate new Chebyshev nets to achieve interactive
and effective editing of the Chebyshev nets.

Our goal is to edit discrete Chebyshev nets via a handle-based
interface interactively. There are three basic requirements for achiev-
ing this goal. First, the mesh after editing is still a discrete Chebyshev
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Figure 1: Left: a physical discrete Chebyshev net created by artist
Edoardo Tresoldi. Middle: a wire mesh designed by [GSFD∗14].
Right: a discrete Chebyshev net generated by [LLZ∗20].

Input Output

Figure 2: A discrete Chebyshev net (left) containing 3462 vertices
is edited by our system. Given the target positions of the handles,
our method takes 0.164 seconds to generate the result (right).

net. As an approximation, we require the maximum difference in
edge length to be small enough, rather than strictly constraining all
edges to the same length. Second, the editing process is fast enough
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(a) (b) (c) (d)
Figure 3: Generating a Chebyshev net from a deformed triangle
mesh. We deform the input triangular mesh (a) by [SA07] to generate
a deformed mesh (b). The method in [LLZ∗20] is used to generate
discrete Chebyshev nets. The net with 37 singularities (colored
vertices) in (c) is from the input triangular mesh, and the net with
28 singularities in (d) is from the deformed mesh. It takes about ten
minutes to generate each net. The implementation of [LLZ∗20] is
kindly provided by the authors.

Input [SPSH∗17] Ours [SA07]-ours
Figure 4: Shear degrees of freedom. We deform a Chebyshev net
using three methods: (1) the method in [SPSH∗17] solving our prob-
lem (4), (2) our method, and (3) our method initialized by [SA07].
Since we only preserve edge lengths, there is freedom on shearing,
and different resulting nets are produced.

to achieve an interactive rate. Third, handles reach the positions
specified by the users after deformation.

Several methods have been proposed to optimize the edge lengths
to the targets [DBD∗15, LLZ∗20, LBOK13]. In general, their ob-
jective function is the nonlinear least squares of the difference in
edge length. To optimize it, an elegant and efficient local-global
solver [BDS∗12] is developed. Consequently, their methods work
at an interactive rate; however, they cannot constrain the maximum
edge length deviation to be very small (Figure 5). Besides, deform-
ing Chebyshev nets have shear degrees of freedom (Figure 4), so this
problem cannot be explored using the standard “as-rigid-as-possible”
and “nearly isometric” deformation approaches (Figure 17).

To satisfy the first requirement, we can use a hard constraint to
control the maximum edge length deviation to be smaller than a
tiny bound or a soft constraint to penalize the maximum edge length
deviation to approach zero. No matter which form is used to con-
struct the optimization problem, it is a nonlinear and non-convex
problem that is difficult to solve. It is even more challenging to solve
this optimization problem at the interactive rate. Taking the soft
constraint strategy as an example, common numerical optimization
solvers can be used, such as first-order approaches, quasi-Newton
solvers, and Newton’s method [NW06]. Due to the slow conver-
gence rate, it is difficult to achieve our goal using a first-order or
quasi-Newton solver. As for Newton’s method, although it has a
second-order convergence rate, the Hessian matrix in each iteration
should be modified to be positive semi-definite to obtain a valid
descent direction. In addition, different modifications lead to dif-
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Figure 5: Comparison with [BDS∗12]. The color of each edge
e encodes the edge length deviation dLe (defined in (1)), and we
use the same colorbar for later figures except for special notes. If
dLe < 10−6 (or dLe > 2×10−6), the edge e is in blue (or red). The
rightmost graph shows log(dLmax) vs. running time (in seconds),
where dLmax is the maximum dLe.

ferent convergence speeds. Therefore, it is non-trivial to perform
modifications to achieve interactive editing.

In this paper, we propose a novel handle-based tool to edit discrete
Chebyshev nets interactively. Our method uses soft constraints to
control the maximum edge length deviation to be lower than a tiny
threshold. Since the ℓp-norm with a large p is a good proxy for the
infinite norm, we use the ℓp-norm of the edge length deviations as
the objective function. The key to achieving an interactive rate is a
novel second-order solver. Central to the solver is a new approach
constructing a convex majorizer for the objective function. Then, the
positive semi-definite Hessian matrix of the convex majorizer is used
to compute descent directions. In practice, the solver can make the
maximum edge length deviation approach zero quickly. Besides, to
make the optimization faster, we develop two acceleration strategies:
(1) adaptive p scheme and (2) adaptive variable reduction.

Our interface is straightforward and intuitive to enable users to
edit discrete Chebyshev nets creatively. We support real-time editing
(about 25 FPS) of nets with around 4000 vertices. If 100 millisec-
onds is allowed between interactions, nets with around 8000 vertices
can be edited. We demonstrate the feasibility and practicality of our
system through a large number of experiments (see the supplemen-
tary video).

2. Related Work

Discrete Chebyshev nets A Chebyshev net is a coordinate chart de-
fined on R2 satisfying that the partial derivatives of two coordinate
components are equal to one [SD95]. Since the global requirement
is difficult to reach, continuous Chebyshev nets consist of several
surface patches, each of which satisfies the requirement locally.
Discrete Chebyshev nets are the discretization of continuous Cheby-
shev nets. They are defined as quad meshes with identical edge
lengths [BP∗96], and each quad is an approximation to a local contin-
uous Chebyshev net. Discrete Chebyshev nets have been widely used
in many fields, including woven cloth formation [Aon94,ADBW96],
gridshell structures computation [BBC10, HSRG12, BBC14, BS-
FJR18], wire meshes construction [GSFD∗14], etc.

Generating discrete Chebyshev nets In recent years, the gen-
eration and fabrication of discrete Chebyshev nets have attracted
significant attention. Some methods aim at approximating a local
part of the given surface by a discrete Chebyshev net while not
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adding singularities [BBC14, GSFD∗14]. On the other hand, global
discrete Chebyshev nets are needed for some applications. Starting
from a single patch [Aon94, ADBW96, ABW01], the generation
process gradually introduces seams of tangential discontinuity. A
similar method is to gradually add new singularities from an ini-
tialization [Mas17]. Some approaches also employ quad meshing
algorithms, which first compute vector fields first and then gener-
ate discrete Chebyshev nets [SFCBCV19, LLZ∗20]. Fabrication is
further considered by [LLZ∗20] to facilitate home users.

Length-preserving constraint Some applications aim to control
the edge length deviation. To achieve this goal, [LBOK13] de-
fines the spring potential by Hooke’s law to simulate a mass-spring
system, which restricts the edges physically. Several local-global
algorithms are proposed to gradually approach the target edge
length [BDS∗12, DBD∗15, LLZ∗20]. There are also many meth-
ods focusing on isometric constraints, which can also preserve edge
lengths. They construct energy functions to describe the isometric
constraints, for example, local rigidity energy [SA07] and Ginzburg-
Landau energy [SFCBCV19]. However, these methods have no
control over the maximum deviation of the edge length from the tar-
get length. Our work constrains the maximum edge length deviation
under a tiny threshold during editing by an energy function defined
in the form of ℓp-norm.

Geometric optimization A variety of geometry processing tasks in
computer graphics, such as mesh deformation and parameterization,
are finally converted into nonlinear optimization problems [FSZ∗21].
The design of suitable solvers for these complex formulations has
become a hotspot in recent years. As for the first-order algorithm,
the time spent on each iteration is very small, but many iterations are
required for convergence, such as the local-global solver [BDS∗12,
LZX∗08, SA07] and the block coordinate descent method [FLG15].
Some methods are developed to improve the convergence of local-
global solvers [RPPSH17, PDZ∗18, SFL19]. Newton’s method is
one of the most popular second-order methods to solve optimization
problems, which uses the Hessian of the objective function to update
variables iteratively [NW06]. But this method only fits the situation
where the objective function is convex. When the function has a
non-convex form, it is necessary to modify the Hessian to enforce its
positive definiteness [SPSH∗17, SGK19, GSC18]. To achieve faster
convergence than second-order methods, a progressive reference is
proposed [LYNF18]. Quasi-Newton algorithms [NW06] develop
Newton’s method, which have a superlinear convergence rate and
are reliable in nonlinear optimization [LBK17, ZBK18].

The Majorization-Minimization (MM) algorithm [Lan13a] is an
iterative optimization method that exploits the convexity of a func-
tion to find its minima. At each iteration, it first constructs a convex
upper bound function of the objective function, and then minimizes
the convex proxy function. [SPSH∗17] adopts this framework to
deal with the minimization of composite objectives, which is further
utilized in [SYLF20] to compute bijective parameterizations. We
also follow the pipeline of composite majorization and construct a
novel convex majorizer for the length-preserving energy function,
which is used to perform the deformation of discrete Chebyshev
nets interactively. Our solver outperforms prior work in the test of a
large number of examples.

3. Method

3.1. Problem and formulation

Inputs The input quad mesh is a 3D discrete Chebyshev net N .
Each edge of N has the same length, denoted as L. Our goal is
to edit N to obtain a new discrete Chebyshev net M. The sets of
vertices, edges, and quad facets of M are denoted as V , E , and F ,
respectively. For each edge e = vavb in E , its length Le is computed
as ∥va −vb∥2.

Requirements We use a handle-based interface to edit N . The han-
dles and their target positions are represented as {vh,h = 1, ...,Nh}
and {v⋆h,h = 1, ...,Nh}, respectively. The following requirements
should be satisfied after the editing:

• M is still a discrete Chebyshev net.
• Each handle reaches its target position, i.e., vh = v⋆h, ∀h.
• The editing is fast enough, e.g., an interactive rate is achieved for

medium-sized nets.

Approximation To satisfy the first requirement, all edges in M
should have the same length, i.e., Lei = Le j for all edge pairs (ei,e j).
As this strict requirement is too hard to meet, we use a soft constraint
energy function to penalize the maximum edge length deviation
dLmax to approach zero as an approximation in practice. To define
dLmax, we first define the edge length deviation dLe for each edge
e:

dLe = Le/Lref +Lref/Le −2, (1)

where Lref is a reference length. Then, dLmax = ∥{dLe | e ∈ E}∥∞.
In general, to keep a high similarity between M and N , we take
Lref = L.

Soft constraint energy It is difficult to directly optimize dLmax
to approach zero due to the non C1 continuity of the infinite norm.
Since the ℓp-norm (p ≥ 2) with a large p is a good proxy to ap-
proximate the infinite norm, we adopt the ℓp-norm to define the
optimization objective Ep:

Ep = ∥{dLe | e ∈ E}∥p
p = ∑

e∈E
(dLe)

p. (2)

However, as shown in Figure 7, we observe that directly optimizing
Ep needs many iterations to obtain a small dLmax in our experiments.
Therefore, we construct another new objective function to achieve
faster convergence, which is based on the following proposition.

PROPOSITION 1 Fnew
p,e = (Le/L)p+(L/Le)

p−2≥ (Le/L+L/Le−
2)p when Le/L > 0, and the equality holds when Le/L = 1.

We prove Proposition 1 in the Appendix and show the differ-
ence in Figure 6 - Left. As shown in Figure 6-Left, Fnew

p,e decreases
much faster than (dLe)

p near x = 1. According to Proposition 1, we
construct the new objective function as follows:

Enew
p = ∑

e∈E
((Le/L)p +(L/Le)

p). (3)

In Figure 6 - right, we plot Fnew
p,e with different ps. When p is

large, our objective function can also control maxe∈E |Le/L− 1|.
The reason is that Le/L+L/Le −2 approximates (Le/L−1)2 when
Le/L is close to 1.
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Formulation The problem of editing discrete Chebyshev nets can
be formulated as a constrained optimization problem:

min
V

Enew
p ,

s.t. vh = v⋆h, ∀h.
(4)

3.2. Second-order solvers

Our method relies on a second-order solver for solving (4).

Solver overview Given an initial M, the second-order solver runs
as follows:

1. Compute the Hessian matrix H of Enew
p , which is further modi-

fied to be a positive semi-definite matrix H+.
2. Since the positional constraints of the handles are linear, the KKT

system is used to compute the descent direction d:[
H+ AT

A 0

][
d
λ

]
=

[
−∇Enew

p
0

]
, (5)

where the matrix A selects the handles for restricting them to the
specified positions.

3. Perform a standard Armijo backtracking algorithm to determine
the step size and update positions of vertices.

4. We terminate the solver if the relative change of Enew
p is less than

ε1, or ∥∇Enew
p ∥2 < ε2, or dLmax < ε3, where ε1, ε2, and ε3 are

three small positive thresholds. Otherwise, go to Step 1.

In our experiments, we set ε1 = ε2 = ε3 = 10−6 empirically. Note
that all the steps are standard except the construction of H+.

Constructing H+ Depending on the method of constructing H+,
the convergence rate may vary significantly. Hence, it is the key
challenge to obtain fast convergence. As our objective function
Enew

p is the sum of the energy on each edge, we construct H+ =

∑e∈E H+
e , where the positive semi-definite H+

e is the modification
of the Hessian matrix of fe = (Le/L)p +(L/Le)

p. This construction
method is similar to the previous geometric optimization meth-
ods [SPSH∗17, GSC18, SGK19].

3.2.1. Convex majorizers

At each iteration, we use the Hessian matrix of a majorizer, which
is a convex surrogate upper bound of the objective function, to
compute H+

e [Lan13a]. Next, we propose a novel convex majorizer
for our objective function.

Majorizer and minorizer If a function r can be written as the sum
of a convex function and a concave function, it has a convex-concave
decomposition:

r = r++ r−,

where r+ is convex and r− is concave. We define the majorizer of
r [Lan13b] at x0 as:

r̄(x;x0) = r+(x)+ r−(x0)+∇r−(x0)(x−x0), (6)

and the minorizer at x0 as:

r(x;x0) = r−(x)+ r+(x0)+∇r+(x0)(x−x0). (7)

The majorizer and minorizer satisfy the following proper-
ties [Lan13b]:

1. r̄ is convex and r is concave.
2. r(x0) = r̄(x0;x0) = r(x0;x0) and ∇r(x0) = ∇r̄(x0;xxx0) =

∇r(x0;x0).
3. r(x;x0)≤ r(x)≤ r̄(x;x0),∀x.

Composite functions Similar to [SPSH∗17], we consider a com-
posite function f having the following form:

f (x) = h(g(x)) = h(g1(x),g2(x), . . . ,gk(x)), (8)

where h : Rk → R and gi : Rn → R, i = 1,2, . . . ,k are at least C2

functions. Suppose h and each gi have convex-concave decomposi-
tions:

h = h++h−, gi = g+i +g−i , i = 1,2, . . . ,k,

where h+, g+i are convex, and h−, g−i are concave.

Majorizer construction for f We first construct a majorizer h̄
of h via (6). Then, suppose h̄ can be decomposed as a sum of an
increasing function and a decreasing function which are convex:

h̄ = hinc +hdec,

where hinc is convex and increasing with respect to each variable
when all the others are fixed, hdec is convex and decreasing with
respect to each variable when all the others are fixed. Different
from [SPSH∗17], the majorizer for f is constructed according to the
following proposition.
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PROPOSITION 2 The following function f̂ is a convex majorizer of
f at x0:

f̂ (x;x0) = hinc(ḡ(x;x0))+hdec(g(x;x0)), (9)

where

ḡ(x;x0) = (ḡ1(x;x0), ḡ2(x;x0), . . . , ḡk(x;x0)),

g(x;x0) = (g1(x;x0),g2(x;x0), . . . ,gk(x;x0)).

The proof is provided in the supplementary materials.

Our majorizer construction To adapt the aforementioned con-
struction method for our objective function fe = (Le/L)p+(L/Le)

p,
we define h and g in the form of (8). Since the vector g contains
only one element, it is denoted as g:

g = (Le/L)p.

It is easy to prove that g is convex. We then define h : R+ → R+ as:

h = x+
1
x
.

As h is convex, h̄ = h, hinc = x, and hdec =
1
x . Hence, we can use (9)

to construct the convex majorizer f̂e for fe. Then, H+
e is computed

as the Hessian matrix of f̂e (see mote details in the supplementary
materials).

3.2.2. Difference from [SPSH∗17]

A revisit of [SPSH∗17] A prior method to construct the convex
majorizer of the composite function (8) is proposed in [SPSH∗17].
The constructed majorizer f̃ of f at x0 is as follows:

f̃ (x;x0) = h̄([g](x;x0);u0), (10)

where u0 = g(x0), and each entry of [g] : Rn → Rk is:

[gi](x;x0) =


ḡi(x;x0), if

∂h̄
∂ui

(u0;u0)> 0,

gi(x;x0), if
∂h̄
∂ui

(u0;u0)< 0.
(11)

Majorizer differences We think our majorizer is different from
(10)’s, and our solver provides another way to construct a majorizer.
We have the following proposition proved in the supplementary
materials for the differences between the two majorizers.

PROPOSITION 3 f̃ (x;x0)≤ f̂ (x;x0); ∇2 f̃ (x0;x0)≤∇2 f̂ (x0;x0).

Although this proposition shows our majorizer is greater than that
of [SPSH∗17], we think a “tighter” majorizer cannot guarantee
better global performance in theory. The reason is that “tighter” is
more local and tends to be more effective when near the global
optimum, but it may lead to insufficient decrease when far away
from the global optimum. In our experiments, when dLmax > 10−6,
optimizing the tighter majorizer of [SPSH∗17] does not perform
better than ours (Figure 8).

Differences for our objective functions The constructed ma-
jorizer (10) only considers the influence of ∇2ḡi or ∇2gi at the

two sides of the point, where
∂h̄
∂ui

(u0;u0) = 0. Then for our func-

tion, since g is convex, the majorizer (10) actually does not use the
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Figure 8: Comparison with [SPSH∗17] on a Rabbit model contain-
ing 4011 vertices. We define a measure ρLe>L = NLe>L/N, where
NLe>L is the number of edges that satisfy Le > L, and N is the num-
ber of edges in E . We color those edges of the resulting meshes to
be pink in the zoom-out figures. The three graphs show log(dLmax),
log(Enew

p ), and ρLe>L as functions of the number of iterations.

Hessian of g within the range where h is decreasing (i.e., 0 < g < 1).
We propose our decomposition to take the Hessian of g into consider-
ation in this case. Our constructed majorizer uses the decomposition
of hinc and hdec regardless of the value of g or ∇h̄.

For some special functions, e.g., (12) and (13), our method can
have the same majorizer as that of [SPSH∗17] by choosing some
special decompositions. For example, considering h = x+ 1/x, if
we choose an increasing function h1(x) = x+1/x−1 when x >= 1,
h1(x) = 1 when x < 1, and a decreasing function h2(x) = x+1/x−1
when x < 1, h2(x) = 1 when x >= 1, the decomposition h = h1+h2
leads to the same majorizer as that of [SPSH∗17]. But by choosing
different decompositions, our method provides a different way to
construct majorizers.

Experimental observations We compare our method
with [SPSH∗17] without any initial smoothing, and the re-
sults are shown in Figure 8. Because of numerical issues caused by
large p, we choose p = 20 here. As shown in Figure 8 - Bottom
right, the solver of [SPSH∗17] tries to make Le > L for all edges.
When the length of most edges is greater than L, log(dLmax) and
log(Enew

p ) drop suddenly (Figure 8 - Bottom left and middle).
We conjecture the reason is when g < 1 (i.e. Le < L), it uses the
Hessian of g which is zero. Consequently, their solver uses many
iterations to remove the influences of the lost Hessian. Besides, the
process of trying to make Le > L for all edges leads to noisy results
(Figure 8 - Top middle). Despite the noise, the solver of [SPSH∗17]
can also optimize the energy to a small level, and the result is also
a discrete Chebyshev net. The quite different results are caused
by the freedom of deforming quad mesh with only edge lengths
constraints. Our method is faster and does not generate noise in
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practice. For comparisons with [SPSH∗17], more examples are
provided in the supplementary material.

3.3. Acceleration strategies

We propose two speed-up strategies to accelerate the editing of
discrete Chebyshev nets.

Adaptive p strategy We observe that the value of p significantly
affects the convergence rate. As shown in Figure 9, a small p leads
to a rapid decrease of the maximum edge length deviation at the
beginning, yet cannot penalize the maximum edge length deviation
to be very small. A large p produces an opposite behavior compared
with a small p. According to these observations, we propose an
adaptive p strategy, which first uses a small p at the beginning and
adopts a large p at the end. The switch condition is that dLmax <
10−2 is satisfied for the first time.

Adaptive variable reduction Our goal is to minimize the maxi-
mum edge length deviation. We observe that the edge length devia-
tion of most edges will be tiny after several iterations. It indicates
that these edges do not need to be optimized in the subsequent
iterations, thus reducing the number of variables. Based on this
observation, we propose the following strategy:

1. Optimize all vertices until dLmax < 10−4.
2. Collect the vertices of the edges that satisfy dLe > ε4 into a set

V̂ , where ε4 is a positive threshold that is not greater than ε3.
Initialize a new set Vsmall = V̂ . If a vertex does not belong to V̂
and is in the n-rings of one vertex in V̂ , we push it into Vsmall.

3. Optimize vertices in Vsmall while fixing other vertices until
dLmax < ε3.

In the experiments, we set n-rings as 2-rings and ε4 = ε3/4. More
discussions for ε4 are provided in Section 4. Using this strategy
reduces the optimization time and generates almost the same result
compared to not using this strategy (Figure 10).

Our optimization workflow With these two acceleration strate-
gies, our optimization procedure contains three stages: (1) optimiz-
ing all vertices using a small p until dLmax < εdL1 = 10−2 is met
for the first time, (2) updating all vertices using a large p until
dLmax < εdL2 = 10−4 is satisfied, and (3) optimizing the selected
vertices with a large p until dLmax < ε3 = 10−6. An example of our
optimization pipeline is shown in Figure 11.

4. Experiments

We have tested our algorithm on various discrete Chebyshev nets
to evaluate its performance. Our method is implemented in C++,
and all the experiments are performed on a desktop PC with a 3.80
GHz Intel Core i7-10700 and 16 GB of RAM. The linear systems
are solved using the Intel® Math Kernel Library. The color bar in
Figure 5 is used by all figures. The used discrete Chebyshev nets are
kindly provided by the authors of [LLZ∗20].

Termination thresholds With the two acceleration strategies, we
terminate the optimization process until dLmax < ε3. Three values
for ε3 are tested in Figure 12. From the experimental results, we
are able to achieve a very small dLmax. Besides, there is almost
no difference in the results obtained using different ε3s. In our
interactive editing and experiments, we set ε3 = 10−6 by default.

Adaptive p strategy In the adaptive p strategy, the values of ps
affect the convergence rate. In general, the small p is set to 2. Differ-
ent large p values are tested in Figure 13. We observe that the larger
p leads to faster convergence. However, a very large p, e.g., p = 75,
usually causes numerical issues in practice. Hence, the large p is set
to 50 by default.

Adaptive variable reduction The threshold ε4 determines the num-
ber of fixed vertices, thereby affecting the optimization time. In
Figure 14, three different ε4s, including ε4 = ε3, ε4 = ε3/4, and
ε4 = ε3/25, are tested. Almost the same results are produced. A
smaller ε4 generally indicates fewer fixed vertices, causing more
optimization time. Although a larger ε4 leads to fewer optimization
variables, the degrees of freedom to achieve the termination condi-
tion dLmax < ε3 = 10−6 become fewer, resulting in more time to
terminate. Hence, we practically set ε4 = ε3/4 to achieve a tradeoff.

More parameter testing We test three parameters (i.e., εdL1, εdL2,
and ε4) in our workflow with more options. The results are in the
supplementary material. Since the results are similar for most param-
eters, we choose the parameters to be εdL1 = 10−2, εdL2 = 10−4,
and ε4 = 2.5×10−7 as above.

Ablation study Our method contains two acceleration strategies.
Here we perform an ablation study to show how each strategy im-
proves the convergence rate. Four methods are studied: (1) without
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Figure 11: Optimization procedure for a Bunny model with 9062 vertices. We show the snapshots of the optimized results after the first stage
(a), after the second stage (b), after the third stage (final result) (c). In the rightmost graph the left pink dotted line means that our method
changes from the first stage to the second stage. The right green dotted line indicates the change from the second stage to the third stage.

Input ε3 = 10−6 ε3 = 10−8 ε3 = 10−10

Figure 12: Various termination thresholds ε3. The running timings
to terminate are 0.250s for ε3 = 10−6, 0.343s for ε3 = 10−8, and
0.436s for ε3 = 10−10.
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Figure 13: Testing different large ps for the first acceleration
strategy. Since the final results using these three ps are similar, we
show the edited net with p = 50 as output.

two acceleration strategies; (2) with adaptive p strategy and without
adaptive variable reduction; (3) without adaptive p strategy and with
adaptive variable reduction; and (4) with two acceleration strategies
(the choice of our method).

Figure 15 shows an example. Here we choose adaptive large p =
20. From the comparisons between the first and second methods as
well as the third and fourth methods, the adaptive p strategy saves the
optimization time. The acceleration effects of the adaptive variable
reduction are shown by the comparisons between the first and third
methods as well as the second and fourth methods. Therefore, both
strategies contribute to optimization acceleration.

Mesh resolutions Shapes with three different resolutions are tested
(Figure 16). We specify similar target positions of the handles on
meshes with different resolutions. The time cost increases when the
mesh resolution increases, and our method can still preserve edge
lengths nicely.
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Figure 14: Testing length deviation thresholds ε4 for the second
acceleration strategy. The output is generated using ε4 = 10−6,
which is similar to the other two results using ε4 = 2.5×10−7 and
ε4 = 4×10−8.
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Figure 15: An ablation study on the two acceleration strategies.
All the results are similar, and we show the edited net generated by
the fourth method in the middle.

Comparisons We select four methods as competitors. As rigid
transformations are isometric, the first one is an as-rigid-as-possible
editing technique [SA07]. The ARAP energy of [SA07] can be di-
rectly used for quad meshes to preserve the edge lengths, and we use
the uniform weights. Since [LBOK13] and [BDS∗12] optimize the
edge lengths to their targets using the ℓ2-norm, it is selected as the
second competitor. We use the solver in [BDS∗12] for optimization.
The third competitor optimizes the following ℓp-norm energy:

Ediff = ∑
e∈E

(Le/L−1)p, (12)

which is the most natural form for preserving edge lengths. In the
experiments, we choose p = 4 and p = 8, and we call them Dp4 and
Dp8, respectively. We optimize Ediff by setting g = Le/L− 1 and
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Figure 16: Various resolutions. We choose three meshes which have similar shapes but different resolutions, and we specify the target positions
of the handles. According to their resolutions, they are called sparse (972 vertices), middle (3895 vertices) and dense (15477 vertices).
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Figure 17: Comparisons with [SA07], [BDS∗12], Dp4, Dp8 and [SPSH∗17] on the Elephant model (6055 vertices), the Santa model (1488
vertices), and the Teddy model (6777 vertices).
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Figure 18: Three different initializations. In the rightmost graph, the curves before the black circles indicate the initialization processes
of [SA07] and [BDS∗12].

h = xp that is decomposed as follows:

hinc(x) =

{
xp, if x ≥ 0,
0, if x < 0,

and hdec(x) =

{
0, if x ≥ 0,
xp, if x < 0.

(13)

Since we need to guarantee (Le/L− 1)p ≥ 0, we choose p to be
even. Then, our second-order solver is used to minimize Ediff, and

the corresponding adaptive p strategy is used. The fourth competitor
is solver of [SPSH∗17]. In this part we use both acceleration strate-
gies for the solver of [SPSH∗17]. The optimization procedure and
parameters are the same as our method.

As shown in Figure 17, we compare with these competitors on
three examples. From the comparisons, they cannot minimize the
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maximum edge length deviation to be small enough, i.e., dLmax
values are greater than ε3 = 10−6, or they are slower. Our method
succeeds in achieving a much smaller dLmax using less time. Be-
sides, more comparisons are provided in the supplementary material.

In the fourth and fifth columns, we optimize Ediff with different ps.
As shown in Figure 17, increasing p cannot contribute to improving
the convergence rate. When (Le/L−1) is close to 0, i.e., ε= |Le/L−
1| → 0, minimizing (Le/L−1)p is actually to decrease ε

p which is
less than ε. Thus, increasing p cannot reduce |Le/L−1| or dLmax
effectively.

Although some of them cannot optimize dLmax to be small
enough, we can use their results as the initializations of our method.
In Figure 18, we test three different initializations. First, the naïve
initialization is generated by dragging the handles directly to their
target positions, leaving other vertices in the rest poses. The results
after running [SA07] and [LBOK13] for five iterations are used as
the second initialization and the third initialization, respectively. We
observe that there is almost no difference in convergence rate using
these different initializations. Thus, we use the naïve initialization
by default. In the interaction process, the resulting net in the last
frame is used as an initialization for the next frame.

More examples Our tool is able to edit discrete Chebyshev nets
interactively. In practice, real-time editing (about 25 FPS) can be
realized for the discrete Chebyshev nets with around 4000 vertices. If
10 FPS is allowed during the editing process, nets with around 8000
vertices are supported. More editing results are shown in Figure 19.
We also provide the reference implementation of our algorithm and
an interactive demo in the supplementary materials.

Extension If Lref is set as the input length for each edge e in the
objective function, our method can solve length-preserved deforma-
tion for general meshes instead of only discrete Chebyshev nets. An
example is shown in Figure 20.

5. Conclusion

Our method provides a novel approach to edit discrete Chebyshev
nets interactively. To make the maximum edge length deviation drop
to be very small, we use ℓp-norm to define an objective function.
Then, the objective function is minimized by a second-order solver
with a novel majorizer. Consequently, our optimization method is
able to reduce the maximum edge length deviation quickly. The
feasibility and practicality of our editing tool are demonstrated by
successfully deforming various discrete Chebyshev nets.

Failure cases We have no theoretical guarantee that the resulting
mesh is always a discrete Chebyshev net. Specifically, large de-
formation or hard positional constraints of handles may cause the
algorithm to fail (Figure 21), and the quads may collapse as we
circle in Figure 21 since we can’t guarantee isometric deformation.
To accommodate large deformations, one possible solution is to
adaptively change the target edge length L. For the hard positional
constraints, relaxing them as soft constraints is a potential solution.
We consider these attempts as future work.
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Figure 19: More editing results for the Armadillo model (7192
vertices), Botijo model (9224 vertices), Rocking horse model (11153
vertices), and Sleeveless shirt model (8592 vertices).
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Figure 20: Extension. Our method can solve length-preserving
deformation for general meshes.

Global effect When moving a point handle, it appears that the
shape is globally affected even if the vertices are far away from the
handle. To control this, we plan to add an extra energy term defined
as the sum of the squared distance from the new position to the
original position of each vertex weighted by the geodesic distances
to the handles. This is an interesting future work.
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Figure 21: The hard constraints that move the handles to the
specified positions cause a failure to obtain a discrete Chebyshev
net. The collapsed quads caused by non-isometric deformation are
circled out.
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