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Figure 1: Grasp and place the object to its upright orientation guided by our UprightRL model.

Abstract

In this paper, we study the problem of 3D shape upright orientation estimation from the perspective of reinforcement learning,
i.e. we teach a machine (agent) to orientate 3D shapes step by step to upright given its current observation. Unlike previous
methods, we take this problem as a sequential decision-making process instead of a strong supervised learning problem. To
achieve this, we propose UprightRL, a deep network architecture designed for upright orientation estimation. UprightRL mainly
consists of two submodules: an Actor module and a Critic module which can be learned with a reinforcement learning manner.
Specifically, the Actor module selects an action from the action space to perform a point cloud transformation and obtain the
new point cloud for the next environment state, while the Critic module evaluates the strategy and guides the Actor to choose
the next stage action. Moreover, we design a reward function that encourages the agent to select action which is conducive to
orient model towards upright orientation with a positive reward and negative otherwise. We conducted extensive experiments
to demonstrate the effectiveness of the proposed model, and experimental results show that our network outperforms the state-
of-the-art. We also apply our method to the robot grasping-and-placing experiment, to reveal the practicability of our method.

CCS Concepts

e Computing methodologies — Reinforcement learning; Sequential decision-making process; Upright orientation;

1. Introduction

In this paper, we tackle the problem of 3D shape upright orientation
estimation. This is a long standing problem in both computer graph-
ics as well as vision. Orientating 3D shape into its upright is an im-
portant step for certain applications, such as shape retrieval, model
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recognition, segmentation and so on. However, a model is usually
acquired in poor conditions with its orientation incorrectly placed,
and manually correcting these models in software like Maya, 3DS
Max or Meshlab by human is a time-consuming, error-prone and
tedious task. To this end, an automatic, robust and efficient upright
orientation estimation approach is urgently needed nowadays.

Up to now, there have been several research works on 3D shape
upright orientation estimation and achieve certain results, includ-
ing methods based on either hand-crafted features or neural net-
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works. The first work was proposed by Fu et al. [FCDS08] mo-
tivated by their observation that 3D models generated from vari-
ous modeling tools or scanning systems tend to have different up-
right orientations. They developed a two-stage method where can-
didate bases were proposed and then evaluated based on their ge-
ometry properties. Following [FCDSO08], Jin et al. [JWLI12] and
Wang et al. [WLL14] proposed matrix rank minimization and 3D
tensor minimization methods to align models with coordinate axes,
and then selected the final base from candidate bases according to
the geometrical features proposed by Fu er al. [FCDS08]. Mean-
while, with the fast development of deep neural network (DNN),
Liu et al. [LZL16] solve the upright orientation estimation problem
by first determining the object category and then utilizing a corre-
sponding regression network to fit the upright direction. Nonethe-
less, these methods based on hand-crafted features or networks
have certain limitations, due to either strict requirement on data
input such that the object demands a supported base for its stand-
ing, or low efficiency as different regression networks need to be
trained for different object categories.

In recent years, reinforcement learning reveals its advantages
over supervised learning in some specific aspects, by converting
the original problem as a sequential decision process [ADBB17].
For example, in the image cropping task, compared with the time-
consuming and storage-intensive sliding window method that leads
to a large number of candidate regions, [LWZH18] demonstrates
its better performance by utilizing reinforcement learning and se-
lecting actions from a limited action space set only, which results
in low time and space complexity. These works inspire us to pro-
pose a reinforcement learning based solution to the shape upright
orientation estimation problem.

There are two main challenges for the adaption of reinforce-
ment learning for the upright orientation task: how to efficiently ex-
tract environmental observation from the agent’s view given a point
cloud input as well as how to evaluate the action space based on the
current state. Towards this end, we propose our network, namely
UprightRL, which first extracts features from the input cloud and
outputs the environmental observation for the agent, and then the
agent makes strategy decision accordingly and evaluate the current
strategy. The whole process is achieved by an Actor-Critic algo-
rithm [MBM*16]. The Actor branch conducts strategy selection
from an action space. Once the action is selected, the Actor branch
performs a rotation on the current state point cloud to obtain a new
state. The Critic branch then evaluates the current strategy with a
reward designed as feedback after the evaluation, which indicates
a beneficial action by a positive value or a damaging one other-
wise. With the network training continues, the strategy selection
becomes increasingly better and the evaluator works in a gradually
more accurate manner. The network finally converges with the ac-
cumulated reward being continuously increased until unchanged,
so as to achieve the upright orientation task.

To demonstrate the significance of our method, we conduct
quantitative and qualitative comparisons with a network without
reinforcement learning and the state-of-the-art methods. The last
but not the least, to verify the practicability, we apply it to the robot
grasping-and-placing simulated experiment to improve the robot
operation quality because it can filter the unreasonable grasp poses.

e We cast the 3D shape upright orientation estimation problem as
a sequential decision making problem, and propose a reinforce-
ment learning architecture UprightRL network to solve it step by
step.

e We adapt the Actor-Critic algorithm for our problem formula-
tion and customize a reward function which induces the network
gradually forward shape upright orientation estimation.

e We conduct extensive comparison experiments to demonstrate
the superiority of the proposed reinforcement learning model
over the state-of-the-art method and other alternative baseline
based on supervised learning.

e We further apply our method to robot grasping-and-placing ex-
periment to the clarify our method’s utility in practice. The ex-
perimental result shows the upright orientation predicted by our
method can filter out unreasonable grasping poses, making the
robot place object better.

2. Related Work
2.1. Upright Orientation Estimation Methods

Hand-crafted feature based methods. In computer graphics,
there have existed several solutions proposed to estimate the up-
right orientation for given objects. Fu et al. [FCDSO08] used the
supported candidate bases, from which a base is selected as the so-
lution if the 3D shape can stand stably on it. This method is based
on supervised learning and is feasible for most man-made models
but would fail for objects with supported bases that are hard to well
define, such as boat.

Besides the aforementioned method, Jin ef al. [JWL12] proposed
an iterative optimization algorithm with an unsupervised learning
strategy. It aligns the 3D shape with coordinate axes based on the
observation that a 3D shape in its upright orientation should have a
low rank projection matrix. Wang et al. [WLL14] follows the simi-
lar principle, while the guidance becomes the 3D tensors composed
by the shape rather than the projection matrix. By minimizing the
rank of the 3D tensors via a genetic algorithm, a local optimum and
six candidate supported bases are obtained, so as to achieve orien-
tating the 3D shape by combining stability, visibility and symmetry
properties proposed in [FCDSO08] to select the optimal base. It is
worth-noting that, as unsupervised methods, these two methods are
able to handle a wider variety of shape types as they involve neither
model training nor prior knowledge, but they are limited to shapes
with rough symmetry.

To sum up, these hand-crafted feature based methods are limited
by either the input data types or the constraint of the output results,
so they need to be further improved.

DNN based methods. With the development of DNN in recent
years, there are increasingly more tasks that apply DNN as a solu-
tion, for example the intensive usage of Convolutional Neural Net-
work (CNN) in image classification. With this inspiration, Liu et
al. [LZL16] proposed a DNN architecture to solve upright orienta-
tion estimation of the 3D shapes. They classify the voxelized shapes
by 3D CNN followed by regressing the shapes’ upright orienta-
tion according to each category regression model. As an end-to-end
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Figure 2: The network architecture of UprightRL. Given a 3D shape point cloud at time step t, the PointNet module extracts its feature
and then passes it to the Actor-Critic module, so as to obtain two outputs. Specifically, the Actor branch samples a single action from an
action space at each time step to transform the point cloud, and the Critic branch is responsible for estimating the reward expectation at the
current state. The reward is set to a positive value if the L2 difference between the shape’s orientation vector and its ground truth is reduced
compared with that in the last time step, and to a negative value otherwise. The agent is composed of three fully connected (FC) layers
and one LSTM layer. The agent extracts features and feeds to the FC layers of two subsequent branches, where a actor branch produces
5-dimensional vectors as actions and a critic branch outputs scalar value as state value.

learning approach, it is able to handle most models but it involves
multiple models to be regressed after the classification for different
classes. If the number of classes and the variation between classes
are large, training a plenty of models becomes a time-consuming
and storage-intensive task.

2.2. Reinforcement Learning

During the development of deep supervised and unsupervised
learning, deep reinforcement learning (DRL) also makes a signifi-
cant influence on robots or games for their advanced applications,
which are gradually applied to computer vision and other fields and
show its superiority than more traditional methods.

Li et al. [LWZH18] first brought DRL to solve the image crop-
ping problem. Compared with the previous sliding window based
method, it has the advantage that does not involve proposal of
tens of thousands of region candidates, so as to save lots of time.
It is also able to have cropping of flexible height-width ratios as
finite actions, so as to complete the task in finite steps, produc-
ing cropped images in arbitrary shapes. For combinatorial opti-
mization, Bello er al. [BPL*17] incorporated DRL into Pointer
Network [VFJ15], which is a well known neural architecture for
tackling combinatorial problems, to solve the Travelling Salesman
Problem. Based on the framework of Bello et al. [BPL*17], Hu et
al. [HZY*17] applied DRL to solve the 3D packing problem. Both
of these problems are NP-hard combinatorial problems with ex-
tremely large search space, and their works demonstrate the gener-
alization of supervised data is rather poor compared to an RL agent
which explores different cases and observes their corresponding
rewards. Moreover, Park et al. [PHBD21] presented two methods
based on DRL for adaptive streaming of 360-degree videos. Unlike
prior works that use pre-determined rules for rate adaptation, they
can dynamically determine which tiles to download at what qual-
ities and when, depending on the network conditions, which has
superiority than state-of-the-art 360-degree tiled video streaming
techniques. While for unsupervised transfer learning task, Zhang et
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al. [Z2YD21] proposed a novel framework called adversarial rein-
forcement learning (ARL) for domain adaptation. Reinforcement
learning is employed as a feature selector to identify the closest
feature pair between source and target domains, which mitigate the
discrepancy between these two domains and their performance is
better than the state-of-the-art domain adaptation methods. How-
ever, there is limited research work that applies reinforcement
learning to the task of object upright orientation estimation. There
exists sufficient challenges rather than a trivial application, includ-
ing how to efficiently extract environmental observation given a
point cloud and how to evaluate the action space based on the cur-
rent state. Towards this end, we specifically designed action space,
rewards function and training strategy based on the Actor-Critic al-
gorithm for the challenging task of upright orientation estimation.
These customized settings make the application of reinforcement
learning to upright orientation estimation possible.

3. Algorithm

We formulate upright orientation estimation of 3D shapes as a se-
quential decision-making process, during which an agent interacts
with the environment, and takes a series of actions to optimize the
strategy so as to achieve orientation estimation. The proposed net-
work UprightRL is illustrated in Figure 2, which consists of a point
cloud feature extractor and an Actor-Critic module. A reward func-
tion is defined to guide the optimization of this reinforcement learn-
ing problem. Below, we introduce each component of UprightRL,
including observation state, action space, the reward function as
well as the implementation details of network structure.

3.1. Observation States and Action Space

Observation state. Given a point cloud state P at time step ¢, we
extract its feature o; serving as the observation to the agent by a
feature extractor f(-), i.e.

or = f(Pr) €]



268 L. Chen et al. / UprightRL: Upright Orientation Estimation of 3D Shapes via Reinforcement Learning

The current observation state is further defined as all the observa-
tions up to time ¢, i.e. s = {0g,01,...,0r . The agent makes deci-
sions based on this state by taking all the observations into account,
which is similar to human’s decision-making mechanism.

Action space. The action space embodies five actions that can be
divided into three groups: rotate around x-axis, rotate around y-axis,
and stop. The first two groups aim to rotate the 3D shape in upright
orientation without caring about any z-axis related rotation, because
the shape can achieve its upright pose with x-axis and y-axis rota-
tions only. In each group of x-axis and y-axis rotation, it involves
clockwise and counterclockwise rotation at a fixed angle respec-
tively. The stop action is a termination trigger for the agent, that
is, once this action is taken, the agent will stop rotation and output
the current point cloud with its 3D orientation vector as the up-
right orientation. In theory, the agent should be able to fully cover
the data space of random orientation of the input point clouds. The
observations and action space can be illustrated in Figure 2.

3.2. Reward Function

We further define a reward function to guide the optimization of
our UprightRL network, with a basic capability to reflect how good
is an action the agent takes. Intuitively, if the difference between
the orientation predicted in current time step and the ground truth
becomes smaller than that obtained in the last step, we consider the
orientation task is being solved in the correct track. As such, we
define the reward function as follows,

re =b-Sign(M; — M) —p-(t+1) 2

where M; is the L, difference between the current orientation and
the ground truth, i.e.

M, = Hﬁg‘—ﬁfre . 3)

Sign(-) is the sign function, and b equals to 5 and 1 if the sign of
(M — M, 1) is positive and negative respectively. Here we use
the sign function instead of the original (M; — M, ) to constrain
the range of the reward value, because we observed a more stable
and easier convergence could be achieved in practice. In order to
speed up the rotation process, we add an extra negative penalty term
weighted by a constant y, set as 0.001 in our experiments. This term
will cause lower reward for the agent after a large number of steps
are preformed.

3.3. The UprightRL Model

With the observation state, action space and reward function being
defined as above, our UprightRL network is presented as follows.
An illustration of it is shown in Figure 2, where a random rotated
point cloud P is given as input, and the network produces an up-
right orientated version of it as output, i.e. Py We utilize Point-
Net [QSMG17] as the point cloud feature extractor f(-), which
consists of three convolutional and three fully connected (FC) lay-
ers. We use PointNet over PointNet++ [QYSG17] as it is a light-
weighted backbone and is more efficient and memory-friendly for
training. An 1024-D observation or is fed to an Actor-Critic mod-
ule, where an agent being composed of three FC layers and one

Algorithm 1: Training procedure of the UprightRL model

Input: Original rotated randomly point clouds P
Output: Predicted point clouds Py, in upright orientation
Initialize Py < P,t <+ 0
repeat
tstart < 1,d0 < 0,d0, + 0
repeat
or < f(P:), where f(-) is a feature extractor.
st < LSTM ¢ (or)

— . —
Piil, L[pre1 < Transformation (73,7 L{}m;n (ar|se; 9))

+
71 <— Reward (ﬁ?re, ﬁffl ,t)
t+t+1
until 7 — tyqrt = tmax Or a;_1 is the termination action;
0 if a;,_| is the termination action
V (s:;0;) for other actions
forie {r—1,.. tsarr} do
R<+ri+7YR
de

d0+ Vglogn(ai|si;0) (R—V (5:;0)) + BVeH (n(s:;0))
dy < dB,+ Vg (R—V (5:;6,))% /2
end for
Update 6 with d0 and 6, with d6,
until 7 = f4x Or a;_q is the termination action;

LSTM layer is used to fuse o with all the historical observa-
tions {0g, 01, ...,0,—1 }. The Actor-Critic module then produces two
branches of strategy output. One is a 5D vector with each entry of it
indicating an action probability, and the other is the expectation of
the current accumulative return that evaluates the current strategy.
According to the strategy output, the agent samples relative action
and transforms the point cloud P and its orientation vector. The for-
ward pass of the network continues until a stop action is sampled
or the maximum steps threshold is reached.

Optimization. To train the proposed Upright model, we follow the
classical actor-critic task solutions. Our model training procedure
is detailed in Algorithm 1. Specifically, we define the accumulative
return R; at time step ¢ as follows,

k—1 .
Ri=Y Yri YV (5,14:60) 4)
i=0

where v is a discount factor, r; is the reward at step ¢, V (s;;0,) is the
value output under state s;. 0, represents the network parameters of
the critic branch, and k ranges from 0 to fjqx, Where fiuqyx is the
maximum number of steps.

We further apply advantage function [MBM*16] and entropy
normalization [WP91] to describe the optimization term of strat-
egy output, aiming to maximize the advantage function R; —
V(ss;6y) and the entropy H(m(s:;0)), where n(s;;0) is a prob-
ability distribution of actions in the strategy outputs, 0 is the
parameters of Actor branch network, and H(-) is the entropy
function, which aims to increase the diversity of action selec-
tion, so as to enable the agent to make more flexible deci-
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sion. Moreover, the optimization goal of value output is minimiz-
ing (R, —V(s;0,))%/2. The gradient of the actor branch can be
formulated as Vglogm (ar|s:;0) (R — V (s130v)) +BVeH ((s1;8)),
where P is the weight of entropy, and the gradients of the critic
branch would be Vg (R, —V (s,;ev))2 /2.

4. Experiments

To demonstrate the effectiveness of our proposed UprightRL, we
conduct experiments on several datasets, including complete point
cloud, partial point cloud as well as single scan as input. We also
compare UprightRL with a BaseNet which is trained as a super-
vised regression network, and also with previous state-of-the-art
methods. Both qualitative and quantitative results show the supe-
rior performance of UprightRL.

4.1. Dataset and Implementation Details

Complete and partial point cloud dataset. We use the complete
and partial point clouds provided by Completion3D Point Clouds
Benchmark [TKR*19]. It contains 8 categories with around 30,000
shapes. Specifically, the complete point clouds are uniformly sam-
pled on the mesh surfaces and the partial point clouds are back-
projected from 2.5D depth images [YKH*18], which aims to simu-
late the real scanning partial data. We further downsample the point
clouds into consistent input size (2048 for our experiments).

Single scan dataset. To fully evaluate UprightRL, we also gener-
ate a synthetic single scan dataset. Specifically, we use scanning
tools similar to [BRHS14; YSGG17], which were designed to sim-
ulate Kinect scanning point clouds generation. For each scan, we
take one 3D model and align its mass center to the origin. We then
apply a random rotation on the mesh and generate the simulated
scan from a fixed view point, i.e. (0,0,1.5) in our experiments.

Implementations: We split these datasets into 80%/10%/10%
for training/testing/validation respectively. Our method is imple-
mented using the PyTorch deep learning library [PGM*19]. The
UprightRL model is trained with a single NVIDIA® ITITAN
XP GPU, where one epoch training takes about 23 minutes with
around 250 epochs for convergence. We set maximum steps frnax =
20, and discount factor of rewards Y = 0.4 for the accumulative
returns function. The entropy weight B, strategy weight, value
weight are set as {0.1, 1.0, 1.0} respectively for our experiments.
Adam [KB14] optimizer with learning rate 1072 is utilized to op-
timize the network.

In our experiments, the rotation angle step is set as ® = 4°, which
brings us the best performance over rotation angles from 1° to 10°,
considering a good trade-off between accuracy and time steps, as
shown in Figure 3.

4.2. Comparison with Existing Methods

We first quantitatively compare our method with a supervised learn-
ing baseline and the state-of-the-art approach [LZL16], and then
show more qualitative results of our method in the end.
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Figure 3: Rotation angle step setting with the best performance
achieved when ® = 4°.
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Figure 4: The architecture of the BaseNet. Instead of using a se-
quential decision-making process powered by reinforcement learn-
ing, a simple supervised network is designed for comparison.

Evaluation Metric. We follow the metric used in [LZL16] by first
computing the angle error between the predicted orientations and
their ground truths and then making statistics on these errors, cal-
culating the percentage of samples within 15°, 10°, 5° error re-
spectively. The angle error can be easily obtained via trigonometric
function:

— (e]
<a>pre’a>gt> = ‘arccos (ZF -Ugl> ‘ . % 5)

Note that in [LZL16], only 15° is used as they believe this error
threshold is enough for most cases. We extend the error threshold
to 10° and 5° to evaluate the results in a more accurate manner, to
reveal the superiority of our UprightRL method.

4.2.1. Ours vs. supervised learning baseline

To verify the effectiveness of our model powered by reinforcement
learning, we first simplify our model into a network BaseNet for
supervised learning. As shown in Figure 4, a upright vector of each
randomly rotated point clouds is predicted without the sequential
decision making process. We use the PointNet [QSMG17] encoder
to extract the features, which are then fed into the multiple fully
connected layers, gradually reducing the dimensions to produce
the upright orientation vector prediction as the output. The loss of
BaseNet is the L2 norm between the prediction and the ground truth
orientation vectors. That is,

— —
LuP_base = H upre -Uu g H2 (6)

In order to ensure the fairness of the comparison, we train and
test the BaseNet and UprightRL models on the aforementioned
three datasets. Thanks to UprightRL model’s sequential making-
decision process,the predicted orientation can achieve closer to
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Figure 5: Qualitative comparison results with BaseNet on the single scan dataset. The first row shows the input point cloud, the second row
shows the results obtained using BaseNet, and the last row shows our results.

Table 1: Comparison between our UprightRL model and BaseNet
on the Complete, Partial, Single scan datasets.

Dataset Method | <15° | <10° | <5°

Complete BaseNet | 0.793 0.690 | 0.418

Ours 0.940 | 0.927 | 0.836

. BaseNet | 0.609 | 0.476 | 0.238
Partial

Ours 0.881 0.851 | 0.699
BaseNet | 0.783 0.649 | 0.337
Ours 0.927 | 0.902 | 0.758

Single scan

the ground truth. As seen in Table 1, the percentage of angle er-
rors within 5° of UprightRL is around 2 times higher than that of
BaseNet, revealing the better performance of our model. It is also
noted that despite of the shapes being complete or partial during
training, our UprightRL model has a consistent better performance.
It is also worth-noting that with the completeness of the data drops,
the percentage of angle error within 5° for UprightRL drops less
than that for BaseNet, i.e. 13.7% from 0.836 to 0.699 vs. 43.1%
from 0.418 to 0.238, which shows the superior robustness of Up-
rightRL method.

We also show some representative results from the single scan
dataset in Figure 5 for qualitative comparison, and it can be seen
that our method generally produces more accurate results than
BaseNet. For example, the airplane (col 1) and the car (col 2) point
clouds are vertical to their upright states. In these cases, our model
performs sequential actions on them to get the optimal upright ori-
entation. As for the box-like category cabinet (col 3), although the
point clouds are partial, our model still predicts its upright orienta-
tion correctly. In the example of chair (col 4) which has back and
two legs only, our model consistently obtain the correct upright
orientation and make the legs standing on straightly. The similar
case also applies to the couch (col 5) and the table (col 6) example.
For the lamp (col 7) and vessel (col 8), they have non-flat bases
as the airplane, which brings too much confusion to the BaseNet.
In contrast, our model produces accurate and stable results for all
the challenging examples, thanks to the sequential making-decision
process that fuses not only the current information but also the his-
torical experience.

Table 2: Comparison between our UprightRL model and previous
work [LZL16] on their dataset. Note TTA means test-time augmen-
tation.

Data [LZL16] | [LZL16]-TTA | Ours | Ours-TTA
Airplane 0.960 0.993 0.963 0.990
Bathtub 0.925 0.965 0.955 1.000
Bicycle 0.793 0.830 0.955 0.978
Car 0.908 0.920 0.968 0.998
Chair 0.898 0.943 0.938 0.950
Cup 0.930 0.993 0.938 0.960
Dog 0.845 0.923 0.908 0.980
Fruit 0.528 0.755 0.940 0.988
Person 0.855 0.893 0.865 0.913
Table 0.990 1.000 0.975 1.000
Average 0.863 0.922 0.940 0.976

4.2.2. Ours vs. state-of-the-art method

We further compare our method with a state-of-the-art one [LZL16]
on their dataset in ModelNet since their method cannot be directly
applied to the point cloud datasets as our method. To make the com-
parison fair enough, we strictly follow the training and test data
split in [LZL16]. The only modification is that our input data is
point cloud sampled from the original mesh models, while their
input is voxelized data. As for the data augmentation, [LZL16] in-
volves random rotation within 360° around the orientation axis,
making the ground truth orientation distributed on a unit sphere,
while the random rotation angle for our method is within 180° only,
as our action space possessing the rotation actions are around the
Cartesian axes clockwisely or counterclockwisely. In other words,
we reduce the ambiguous expression of the same shape state before
data input.

We follow the same metric as in [LZL16] to calculate percent-
age of angle errors within 15°. As seen in columns 2 and 4 in
Table 2, the accuracy of our UprightRL model is 94%, i.e. 7.7%
higher than that of [LZL16]. As for the 10 categories of the in-
put shapes, the prediction accuracy of our method is consistently
higher than 86.5%, while [LZL16] only has 6 categories above it.
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results obtained using the method of [LZL16], and the last row shows our results.
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Figure 7: Some representative results obtained by our method on input point cloud with different completeness. The top two rows show the
input and corresponding results on the complete point cloud dataset, the middle two row are those for partial point cloud dataset, and the

last two rows are those for single scan dataset.

Our method only fails by a marginal accuracy (0.015) in the table
category compared with [LZL16], but produces significant higher
percentage in the other 9 categories, especially for the fruit with
92% against 52.8%. Besides, we also apply test-time augmenta-
tion (TTA) to the evaluation as [LZL16], that is taking average of
the output by sampling multiple times. As seen in columns 3 and
5, with TTA involved, the accuracy by our method is further im-
proved, and the superiority of our method is still kept in most cate-
gories and in the overall dataset.

Figure 6 further shows some qualitative results by our method
and [LZL16]. It can be clearly observed that our method has more
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accurate results. In the first four columns, Liu ez al. [LZL16] may
get opposite or vertical orientation. In the next four columns, the
results have small angles with the upright orientation vectors, but
[LZL16] fails to capture this difference and keeps the errors in the
output. More interestingly, the cup has been already in its upright
orientation but [LZL16] unexpectedly rotates it to a non-upright di-
rection. In contrast, our model can well capture and predict the cor-
rect upright orientations of these models, regardless of their original
orientations being near or far away from the ground truths.

We also illustrate more results obtained by our method in Fig-
ure 7 to present the performance on the three datasets with var-
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Figure 8: Upright orientation guided grasp selection and placement pose determination method. For the given input scan represented
by partial point cloud, we apply our UprightRL model to estimate the upright orientation and the method of [MEF19] to predict a set of
candidate grasping poses. Then we filter out unreasonable grasping poses by comparing their projections and the object’s projection along
the upright direction, and further select the optimal grasping pose based on the grasping angle relative to the upright direction. The final
placement pose is determined by rotating the object so that it’s upright direction is along z-axis.

Table 3: Comparison between different angle step update strategies
on the single scan dataset.

Strategy <15° | <10° | <5°
Decreased 0.910 | 0.866 | 0.623
Multiple 0.927 | 0.891 | 0.754
Fixed 0.927 | 0.902 | 0.758

ious completeness. As seen, despite of the various completeness
and random rotation of the input point cloud, our model predicts
accurate upright orientations of them. Taking the Cabinet (column
2) as an example, regardless of the input shape orientations includ-
ing already in, nearly in or far away from upright orientations, our
method is able to consistently predict its upright orientation and
further preserve, fine-tune or correct the pose of the input shape,
respectively.

4.3. Ablation study of angle step

In our experiments, a rotation with a fixed angle step is used when
the point cloud is updated at each time step. To better understand
the impacts of angle step, we conducted the following ablation
study with three different angle step update strategies for our Up-
rightRL model as follows:

e Decreased: We gradually decreased angle step during training.
Specifically, we set ® = 8° in steps 1 ~ 6, @ =4° in steps 7 ~ 12,
and ® = 2° in steps 13 ~ 20.

e Multiple: Instead of fixed angle step, the angle step o is selected
from a candidate set Q = {2°,4° 8°}.

e Fixed: We use a fix angle step where @ = 4°.

We train and test the UprightRL model with these strategies on the
single scan dataset. As shown in Table 3, the fixed strategy pro-
duces the highest accuracy, while the performance of multiple an-
gle steps is rather close to the fixed one. As revealed by the table,
choosing the angle step by network itself could be more reasonable
than decreasing the angle step by ourselves.

Table 4: Testing accuracy under [LZL16] dataset in ModelNet for
the shared categories using our UprightRL model trained on Com-
plete point cloud dataset.

Category Airplane Car Chair | Table
Accuracy 0.920 0.980 | 0.920 | 0.960

4.4. Generalization

To better evaluate the generalization of our method, we further con-
ducted an additional experiment where we trained the network on
Complete point cloud dataset generated from ShapeNet and tested
it on ModelNet [LZL16] for the shared categories. As shown in
Table 4, the accuracy of angle errors within 15° is above 0.9 over
different categories and close to the result tested by the network
trained on ModelNet, demonstrating good generalization of our
UprightRL model on synthetic data.

5. UprightRL for Robot Grasping-and-Placing

In this section, we show that upright orientation estimation of 3D
shapes can be applied to the robot grasping-and-placing task. Our
key insight is that for certain scenarios of robot grasping and plac-
ing, it not only requires robots to grasp objects successfully, but
also to place objects steadily. By involving upright orientation es-
timation and using it to filter out unreasonable grasping poses and
select the optimal grasping pose, our experiments demonstrate that
UprightRL can significantly improve the placement efficiency.

5.1. Algorithm

Unlike previous methods that tackle the grasping problem and plac-
ing problem separately, we propose to optimize them jointly: se-
lecting a suitable grasping pose for better placing. Intuitively, it is
generally easier and more steady to place an object with its up-
right orientation, which inspires us to consider orientation estima-
tion during grasping and placement. Towards this end, we propose
a novel grasp selection and placement pose determination method,
as shown in Figure 8. To simplify visualization, we use a gripper
skeleton to represent the gripper.

© 2021 The Author(s)
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Grasping pose prediction. We apply the method of [MEF19] for
grasping pose prediction as it performs well in both simulated and
real robot experiment environments. For each input point cloud, it
output a set of 6-DOF grasping poses with associated confidence
scores. To ensure these grasps are executable and the gripper will
not collide with table when performing the grasping, we further
remove the grasping poses where the angle between its grasp direc-
tion and the negative z-axis is larger than 45°, which results in a set
of candidate grasping poses as shown in Figure 8 (b) in blue.

Grasping pose selection. With associated confidence scores, the
most straightforward way for pose selection is to use the grasping
pose with highest confidence. However, to ensure the stability of
the final placement, we use the upright direction to guide the grasp-
ing pose selection, which consists of two steps: projection filter and
angle selection, as shown in Figure 8 (c).

The projection filter is used to filter out the grasping poses that
are unable to place the object in its upright orientation. For exam-
ple, if we grasp the object from its bottom, then the gripper will col-
lide with the table first before placing the object. Specifically, We
compare the projections of gripper key points and input scan along
the predicted upright direction. If any part of the projection region
of the gripper lies outside the projection region of the input scan
along the negative upright direction, we consider the correspond-
ing grasping pose invalid. Figure 8 (c) shows one invalid grasping
pose in red and two valid grasping poses in green.

Among all those valid grasping poses, we further select the one
with grasping direction most perpendicular to the upright direction,
which leads to more stable placement in the end. We compute the
cosine of angle between the upright direction and the plane of the
gripper skeleton, and select the grasping pose with lowest value.

Placement pose determination. Once the object is grasped, we
need to further determine the final gripper pose to place the object
in a predefined position. Since the object will be in a more stable
state when put in its upright orientation, we rotate the object and the
gripper together to get the final placement pose so that the upright
direction is along the z-axis in the end. Figure 8 (d) shows one
example of the final placement pose.

5.2. Experiments

We now introduce the details of the experiment setting and evalu-
ate the effectiveness of our UprightRL model when applied on the
robot grasping-and-placing task.

Data preparation. We select 10 bottles from ShapeNet [CFG*15]
to test our method. Each bottle is rotated around the z-axis by a
angle 8 € {0°, 30°, 60°, 90°, 120°, 150°, 180°} after putting on
the table to get different input configurations, which results in 70
testing cases in total.

Placement quality. We use PyBullet [CB21] as our robot simula-
tion environment, and control the robot motion based on Samuel
Buss Inverse Kinematics library [BKO0S5]. Since the object may still
be shaking after placing on the table for a long time in the simu-
lator, we consider the placement is stable after the simulator runs
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Table 5: Placement success rate comparison in different settings
for the robot grasping-and-placing task.

Grasp w/o upright | Grasp with upright
Place w/o upright 0.143 0.257
Place with upright 0.300 0.486

for 200 more timesteps and then check the angle between the fi-
nal upright direction of the object and the z-axis. A placement is
considered to be successful if the angle is less than 15°.

Experimental results. Table 5 shows the placement success rate
comparison in different settings for the robot grasping-and-placing
task. For grasping pose selection, we consider two options: one uses
our upright-based selection method and the other simply picks the
pose with highest confidence. For final placement pose, we also
consider two options: one uses our upright-based determination
method and the other simply uses the horizontal gripper pose. As
seen in Table 5, the highest success rate is achieved when using the
upright direction to guide both grasping pose selection and place-
ment pose determination, which indicates the effectiveness of our
UprightRL model applied in the robot grasping-and-placing task.
We also show some visual examples of grasping-and-placing se-
quences in Figure 9. Compared with [FCDS08], our proposed Up-
rightRL can handle partial observation instead of a full 3D object
input, which is a more practical setting for robot manipulation.

6. Conclusion and Future Work

We present a reinforcement learning based method to solve the
problem of 3D shape upright orientation estimation. We model this
task as a sequential decision-making process with customized ac-
tion space as well as reward function. Our UprightRL model works
well for various input forms, ranging from complete and partial
point cloud to single scan data. It outperforms previous state-of-the-
art method and other alternative supervised learning based baseline
with a large margin. We also demonstrate its application on robot
grasping-and-placing task and show promising improvements.

Limitations and future work. Although our method shows a
great advantage on the task of 3D shape upright orientation estima-
tion compared with existing methods, there exist some limitations
for further investigation. First of all, the number of object categories
in current datasets is not sufficiently large, and we would like to ex-
periment our method with more diverse object categories to explore
its generalization. Secondly, compared with previous methods, it
takes much longer time to train UprightRL due to its sequential
decision-making process, and it would be helpful to accelerate the
training. Last but not the least, currently we only show the effec-
tiveness of our method when applied to the robot grasping-and-
placing task in a simulated environment, and it would be interesting
to experiments in real environment in the future. Different from the
clean point cloud data obtained from simulator, there could be other
factors like segmentation and noise that can low down the perfor-
mance for data in real scenarios. How to improve the robustness in
real scenarios would be a direction for our future work.
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Figure 9: Example results of the robot grasping-and-placing experiment. Each row shows the sequence from grasping to placing an object.
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