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A Halfedge Refinement Rule for Parallel Catmull-Clark Subdivision
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Figure 1: We derive a halfedge refinement rule for Catmull-Clark subdivision. The rule is illustrated on the left: Catmull-Clark subdivision
splits each halfedge into exactly 4 new ones independently from the face within which the subdivision operates (see highlighted halfedges). We
leverage this rule in a novel GPU implementation that runs at state-of-the-art performances. For instance, the control mesh of this illustrated
T-Rex production model consists of∼11.5k faces and vertices. We compute its subdivision down to level 4, which produces∼2.9M faces and
vertices, in less than three milliseconds on an NVIDIA RTX 2080 GPU.

Abstract

We show that Catmull-Clark subdivision induces an invariant one-to-four refinement rule for halfedges that reduces to simple
algebraic expressions. This has two important consequences. First, it allows to refine the halfedges of the input mesh, which
completely describe its topology, concurrently in breadth-first order. Second, it makes the computation of the vertex points
straightforward as the halfedges provide all the information that is needed. We leverage these results to derive a novel parallel
implementation of Catmull-Clark subdivision suitable for the GPU. Our implementation supports non-quad faces, extraordinary
vertices, boundaries and semi-sharp creases seamlessly. Moreover, we show that its speed scales linearly with the number of
processors, and yields state-of-the-art performances on modern GPUs.
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1. Introduction

Motivation First published back in 1978, Catmull-Clark subdivi-
sion [CC78] is one of the most durable and successful algorithms
of computer-graphics: it lies at the very foundation of any mod-
ern surface-modeling tool and has been stimulating a wide-variety
of research† up to the present day. Among the vast literature ded-
icated to Catmull-Clark subdivision (see, e.g., [Cas12] for a thor-
ough survey), one of the most active research areas over the past
two decades focuses on parallelization. This particular area is mo-
tivated by two main reasons. First, the geometric complexity of
modern scenes makes it hard for a sequential implementation to
cope with the exponential complexity induced by the algorithm.
Second, there is a strong desire within the industry for interactive
GPU-based implementations supporting both rendering and mod-
eling scenarios [BFK∗16,MWS∗20]. In this work, we contribute to
this research area via a novel parallel method for uniform subdivi-
sion on halfedge meshes suitable for both CPUs and GPUs.

Positioning While halfedges are ubiquitous in mesh process-
ing [KUJ∗14, SC∗19, SB20, The21], they have been discarded by
previous work for being inefficient in the context of parallel sub-
division [SJP05, MWS∗20]. Our work effectively disproves this
belief by showing that halfedges lead in fact to a simple and fast
parallel implementation that rivals performance-wise with exist-
ing methods based on more sophisticated implementations. From a
practical standpoint, we also mention that our work is the only one
(apart from OpenSubdiv) to support and distribute code for semi-
sharp creases, an often overlooked yet crucial feature in practice.

Contributions and Outline We arrived at our algorithm by ini-
tially looking at how Catmull-Clark’s refinement rule behaves with
respect to the halfedges of the input mesh. In this setting, we
observed that Catmull-Clark refinement multiplies the number of
halfedges by exactly four; Figure 1 (see refinement rule inset) il-
lustrates this property. Based on this simple insight, we introduce
an invariant rule for the halfedges of the mesh under Catmull-Clark
subdivision. Our rule always splits halfedges into four new copies
whose attributes can be computed in breadth-first order via sim-
ple algebraic expressions. This makes parallelization trivial while
providing all the topological information necessary to compute the
vertex points produced by the subdivision. In the remainder of this
paper, we derive our new invariant refinement rule and show how it
straightforwardly leads to an efficient parallel implementation:

• In Section 3, we provide some fundamentals on Catmull-Clark
subdivision and halfedge meshes. The reader already familiar
with these concepts may look into Figure 2 for intuitions and
immediately move to the next section.
• In Section 4, we introduce our invariant halfedge refinement rule,

as well as the straightforward parallel implementation it leads to.
• In Section 5, we show how to support the semi-sharp crease ex-

tension of DeRose et al. [DKT98].
• In Section 6, we position our contributions with respect to pre-

vious work and compare our implementation’s performances
against state-of-the-art methods for different polygon meshes.

† Google Scholar references over 2849 citations, which seems to be the
second most cited computer-graphics paper after Kajiya’s (3568 citations).

2. Previous Work

In this section, we position our work with respect to existing par-
allelization methods for Catmull-Clark subdivision. We distinguish
three main categories: patch-based, breadth-first, and direct evalua-
tion, each of which is discussed in a dedicated paragraph. Note that
for the sake of clarity, we defer discussions on adaptive refinement
to the last paragraph of this section.

Patch-Based Refinement Patch-based refinement meth-
ods [BS02, Bun05, PO08, ZHR∗09] decompose the input
polygon-mesh into patches, each of which consists of a face
and its one-ring neighborhood. In turn, these patches are refined in-
dependently down to the required subdivision level. This approach
makes per-patch parallelization trivial since data-dependencies are
avoided via duplication. Reciprocally though, it incurs redundant
vertex-point computations. This is wasteful both in terms of
memory and computations but worse is that, due to floating point
inaccuracies, refined edges may differ between patches, yielding
cracks [BS02]. Note that floating-point inaccuracies can be
alleviated whenever computations solely consist of commutative
operations, i.e., additions and multiplications [SJP05, NLMD12].
Depending on the approach however, this may not be feasible. Un-
like patch-based refinement methods, ours is free from redundant
vertex-point computation and wasteful memory allocations. We
achieve this via a breadth-first approach, which we discuss next.

Breadth-First Refinement A breadth-first subdivision method
successively refines a mesh data-structure down to the required sub-
division level. The advantage of such an approach is that it makes
vertex-point computations straightforward since all the necessary
topological information is available. The downside is that it has
traditionally been difficult to parallelize all refinement steps, espe-
cially when the input mesh has non-quad faces. For instance, the
first parallel approach due to Shiue et al. [SJP05] requires two se-
quential refinement steps to first quadrangulate the input mesh and
then isolate extraordinary vertices. Patney et al. [PO08] later al-
leviate the need to isolate extraordinary vertices but still require
quad-only meshes. Recently, Mlakar et al. [MWS∗20] introduced
the very first method capable of parallelizing all refinement steps
at unprecedented speed. Their method relies on a sparse data-
structure [ZSS17] capable of coping with the fact that non-quad
faces produce irregular numbers of faces during the first refinement
step (see Figure 1). Our approach can be seen as a halfedge-based
alternative to Mlakar et al. that avoids sparse data-structures en-
tirely. This is thanks to the fact that Catmull-Clark refinement reg-
ularly splits halfedges into four new ones even in the presence of
non-quad faces (see again Figure 1). We argue that our resulting
implementation is much simpler than that of Mlakar et al. while
yielding very close performances albeit at slightly higher mem-
ory costs. We also emphasize that each aforementioned publica-
tion requires a custom data-structure, while ours relies on the pop-
ular halfedge data-structure. Interestingly, halfedges have been dis-
carded for being too complex and/or costly for parallel proces-
sors [SJP05, MWS∗20]. This is probably because halfedges are of-
ten understood as linked-lists; in Section 3.3, we provide a pointer-
less approach that hopefully clarifies this misunderstanding.
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Direct Evaluation Rather than relying on successive refinement to
compute the subdivision, direct-evaluation methods focus on evalu-
ating the limit-surface directly [NLMD12,SRK∗15,BFK∗16]. Note
that the OpenSubdiv library builds directly on this idea, and more
specifically on the work of Nießner et al. [NLMD12]. The original
inspiration for such methods come from the fact that Catmull-Clark
subdivision generalizes bicubic patches, for which direct evalua-
tion is known. Later, Stam [Sta98] and Nießner et al. [NLG12]
showed that certain non-regular configurations also produce a limit
surface that can be directly evaluated. For other additional config-
urations, approximations also exist [LS08, KMDZ09, LSNCn09].
From a practical standpoint, the main advantage of direct evalua-
tion lies in its ability to be evaluated by GPU tessellation-shaders,
which provide hardware acceleration as well as adaptive triangu-
lations within each tessellation-patch. Unfortunately though, direct
evaluation remains restricted to specific geometric configurations
and has yet to be proven applicable to the general case. There-
fore, existing methods require a preprocessing stage that adaptively
subdivides the input mesh into those geometries that lead to direct
evaluation. Currently, this preprocessing stage is difficult to par-
allelize and/or memory-intensive, which makes it impractical for
modeling scenarios [MWS∗20]. We also mention that while direct-
evaluation is often advertised over breadth-first approaches for their
lower memory bandwidth requirements [NLMD12, BFK∗16], the
performance measurements of Mlakar et al. and those we report in
Section 6 do not show any evidence that this leads to consistent
performance advantages.

On Adaptive Subdivision Several works on parallel subdivision
emphasize support for adaptive subdivision, i.e., the ability to re-
fine subsets of an input polygon-mesh. This is usually relevant for
GPU rasterization, which scales poorly in the presence of sub-pixel
(triangle-based) tessellations. While such concerns are entirely jus-
tified, we argue that subdivision and tessellation are two distinct
problems. In the case of feature-adaptive subdivision [NLMD12]
for instance, a sequential subdivision is precomputed around, e.g.,
extraordinary vertices to create a set of patches that support direct
evaluation and thus adaptive tessellation in parallel on the GPU.
In our case and that of Mlakar et al. [MWS∗20], nothing prevents
us from applying our refinement rules non-uniformly, but the diffi-
cult problem of producing conforming and/or watertight mesh sur-
faces in parallel remains entirely open. We thus emphasize that we
solely target the problem of computing Catmull-Clark subdivision
surfaces in parallel and do not address the problem of adaptively
tessellating them. We defer this latter problem to future work.

3. Preliminaries

In this section, we provide the fundamentals for computing
Catmull-Clark subdivisions. First, we recall how Catmull-Clark
subdivision operates on polygon meshes (Section 3.1). Next, we
provide a self-contained formalism for halfedge meshes, which
we leverage to process Catmull-Clark subdivision (Section 3.2).
Finally, we describe the data-structure we use to represent our
halfedge meshes in memory (Section 3.3). As stated in the intro-
duction, we recall that the reader already familiar with these con-
cepts may simply look into Figure 2 for intuitions and immediately
move to the next section.

3.1. Catmull Clark Subdivision

Catmull-Clark subdivision applies a specific set of refinement rules
on an input polygon mesh S0 to produce a denser, quad-only mesh
S1. In turn, this new mesh may be used for subdivision to produce
an even denser mesh S2. Repeating this operation D≥ 1 times pro-
duces the quad-only mesh SD, which converges towards a smooth
surface as D increases. We provide below the specific set of refine-
ment rules that characterize Catmull-Clark subdivision. Note that
for the sake of clarity, we provide the original 1978 formulation of
Catmull and Clark and describe the semi-sharp crease extension in
Section 5.

Vertex Point Calculation Given an input polygon mesh Sd≥0,
Catmull and Clark determine the vertices of the new quad-only
mesh Sd+1 according to the following (A, B, C) rules:
(A) New face points – the average of all of the old points defining

the face
(B.1) New boundary edge points – the midpoint of the old edge
(B.2) New smooth edge points – the average of the point produced
by the boundary edge rule with the average of the two new face
points of the faces sharing that edge
(C.1) New boundary vertex points – old vertex point
(C.2) New smooth vertex points – the average

Q
n
+

2R
n

+
S(n−3)

n
, (1)

where
Q = the average of the new face points of all faces adjacent

to the old vertex point.
R = the average of the midpoints of all edges incident to

the old vertex point.
S = old vertex point.
n = valence of the old vertex point.

Topological Rules After the new vertex points have been com-
puted, the edges of the new mesh Sd+1 are formed by:

• connecting each face point to the new edge points of the edges
defining the old face
• connecting each new vertex point to the new edge points of all

old edges incident on the old vertex point

The faces of Sd+1 are then defined as those enclosed by the new
edges.

Implementation Prerequisite In order to process Catmull-Clark
subdivision on a computer, the refinement rules impose strict re-
quirements upon the data-structure used to represent the input
mesh. Specifically: the data-structure should provide a mechanism
to iterate over the faces, edges, and vertices of the mesh. In addition,
it should provide support for vertex and face neighborhood queries.
In the following subsection, we describe a well-known mesh de-
composition suitable for producing a data-structure that complies
with such requirements.
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Halfedge mappings
Symbol Action
TWIN opposite halfedge
NEXT next halfedge in face
PREV previous halfedge in face
VERT vertex carrying the halfedge
EDGE edge spanned by the halfedge
FACE face spanned by the halfedge

f0

f1

f2

e0

e1

e2
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e4
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e6
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h0
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h4

h5
h6

h7

h8

h9

h10

h11

v0

v1

v2

v3

v4

v5

v6

← h7 mappings:
TWIN(7) = 1
NEXT(7) = 8
PREV(7) = 11
VERT(7) = 1
EDGE(7) = 4
FACE(7) = 2

Label Content
h 0 1 2 3 4 5 6 7 8 9 10 11

TWIN 6 7 -1 -1 -1 8 0 1 5 -1 -1 -1
NEXT 1 2 3 0 5 6 4 8 9 10 11 7
PREV 3 0 1 2 6 4 5 11 7 8 9 10
VERT 3 2 1 0 3 4 2 1 2 4 5 6
EDGE 3 4 0 1 2 5 3 4 5 6 7 8
FACE 0 0 0 0 1 1 1 2 2 2 2 2

(a)
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h7 mappings:→
TWIN(7) =−1
NEXT(7) = 4
PREV(7) = 6
VERT(7) = 3
EDGE(7) = 4
FACE(7) = 1

(b)

Label Content ( = quad-only analytic expression)
h 0 1 2 3 4 5 6 7 8 9 10 11

TWIN 6 11 -1 -1 -1 8 0 -1 5 -1 -1 1
NEXT h mod 4 == 3 ? h−3 : h+1
PREV h mod 4 == 0 ? h+3 : h−1
VERT 3 2 1 0 4 5 2 3 2 5 6 1
EDGE 3 8 0 1 2 5 3 4 5 6 7 8
FACE h/4

Figure 2: Two different polygon meshes with same vertex points and their respective halfedge buffer.

3.2. Halfedge Mesh Formalism

A polygon mesh is a high-level concept. As such, it is not imme-
diately amenable to computer processing without a prior decompo-
sition into simpler, lower-level concepts. A halfedge mesh [Wei85,
Ket99, BKP∗10] provides one such decomposition. Specifically, a
halfedge mesh decomposes a polygon mesh S into two sets: a set
V of vertex points and a set H of halfedges, so that we can write
S = H∪V . The vertex points encode the positional information
for the mesh, while the halfedges–from which edges, and faces em-
anate naturally–encode its topology. We provide below our formal
definition‡ for the concept of halfedge and describe the mappings
they provide; these mappings are summarized in Figure 2.

Halfedge Definition We define a halfedge simply as an oriented
edge between two vertices of the mesh; Figure 2 (a) provides an
illustration for this construction where, e.g., the red halfedge h7 is
the oriented edge carried by vertex v1 and pointing towards v2.

Face and Edge Construction Based on the halfedge definition,
both the edges and faces of the mesh arise as follows:

• Each edge e ∈ S of the mesh S arises either as a pair of oppo-
site halfedges, which we refer to as twins, or as a single isolated
halfedge in the case of a boundary. More formally, we write that
EDGE(h) = EDGE(TWIN(h)), where h ∈H denotes a halfedge
of the mesh S (note that in the case of a boundary, the notation

‡ We are not aware of a standard halfedge mesh formalism hence we pro-
vide our own.

TWIN(h) does not refer to an existing halfedge). Figure 2 (a)
provides an illustration for the edge construction where, e.g., the
edge e4 arises from the halfedge pair h7 and h1 = TWIN(h7), and
e1 is a boundary edge formed by the isolated halfedge h3.

• Each face f ∈ S of the mesh S arises as a closed cycle of
halfedges. More formally, we write that FACE(h0) = · · · =
FACE(hm>2), where the halfedges h0, · · · ,hm ∈H form a closed
cycle f within the mesh S – the resulting face is an m-gon. In
addition, we respectively define NEXT(h) and PREV(h) as the
next and previous halfedge within the (unique) cycle to which
the halfedge h contributes. Figure 2 (a) provides an illustration
for the face construction where, e.g., the face f1 arises from the
halfedge cycle h4, h5 = NEXT(h4), h6 = PREV(h4), therefore
forming a 3-gon, i.e., a triangle.

Halfedge-to-Vertex Mapping The halfedge-based constructions
for edges and faces imply that each vertex v ∈ V spans at least
n ≥ 2 halfedges, where n denotes the valence of the vertex. More
formally, we write that VERT(h0) = · · · = VERT(hn) where the
halfedges h0, · · · ,hm ∈H are those carried by v. Figure 2 (a) pro-
vides an illustration for the halfedge-to-vertex mapping where, e.g.,
the vertex v2 carries the halfedges h1, h6 and h8, i.e., VERT(h1) =
VERT(h6) = VERT(h8).

Implementation Prerequisite The halfedge construction de-
scribes mesh topology solely through the use of halfedges and their
mappings. Implementing a data-structure that evaluates these map-
pings is the key to computing Catmull-Clark subdivision. We de-
scribe such a data-structure in the next subsection.

© 2021 The Author(s)
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3.3. Our Halfedge Mesh Data-Structure

There are multiple ways to transform formalism into an actual
implementation. Here, we rely on a generalization of directed-
edges [CKS98] to arbitrary polygon meshes (as opposed to triangle
meshes originally). Similarly to directed-edges, we represent poly-
gon mesh topology as array indices, which is the most suitable form
for parallel processing, especially on a GPU. We provide below the
details about the actual data we store.

Floats for Vertex Points Following directed-edges, we store the
spatial coordinates of each 3D vertex point in a floating-point buffer
of size 3V , where V ≥ 3 denotes the number of vertices of the mesh.

Array-Indices for Topology We represent the mesh topology
H using a halfedge buffer. This buffer stores each fundamental
halfedge mapping as listed in Figure 2 using H ≥ 3 indices, where
H denotes the number of halfedges of the mesh; Figure 2 (a)
shows the content of the halfedge buffer for a specific mesh (N.B.:
we encode a border half-edge h by setting TWIN(h) < 0, without
loss of generality). Note that, similarly to the directed-edges data-
structure, we store the halfedges that span each face contiguously in
memory. This is particularly useful when dealing with semi-regular
meshes, as we discuss in the next paragraph.

Semi-Regular Mesh Optimization Catmull-Clark subdivision
works for arbitrary polygon meshes but always produces quad-
only meshes. We leverage this property for the subdivided meshes
S1, · · · ,SD by storing the halfedges forming a face contiguously.
This makes the mappings NEXT, PREV, and FACE analytic; Fig-
ure 2 (b) provides the expression of the resulting mappings. In prac-
tice, we represent the control mesh topology H0 using the explicit
representation of Figure 2 (a) and those produced by subdivision
H1, · · · ,HD using the representation of Figure 2 (b).

4. Parallel Catmull Clark Subdivision

In this section, we derive our parallel implementation of Catmull-
Clark subdivision based on the halfedge mesh representation. We
take an arbitrary polygon mesh S0 =H0∪V0 as control cage input
and produce a quad-only mesh SD =HD∪VD by successive appli-
cation of Catmull-Clark rules over D≥ 1 steps. We start by deriving
our novel halfedge refinement rule and leverage it to successively
compute the topologies H1, · · · ,HD (Section 4.1). Next, we show
how to leverage this topology information to successively produce
the vertex points V1, · · · ,VD (Section 4.2). Finally, we provide im-
plementation details and performance evaluation on multiproces-
sors (Section 4.3).

4.1. Halfedge Refinement

Catmull-Clark subdivision always produces quad-only meshes.
This implies a simple yet powerful consequence for halfedges: the
subdivision splits the halfedges of the input mesh into exactly 4 new
ones; Figure 3 highlights this effect on the red and blue halfedges.
In this section, we introduce a stationary halfedge refinement rule
that produces the topologyHd+1 givenHd for any depth d ∈ [0,D].

Refinement Rule We derive a breadth-first halfedge refinement
rule: the h-th halfedge in Hd produces four halfedges in Hd+1 in-
dexed by

h 7→ 4h+0

7→ 4h+1

7→ 4h+2

7→ 4h+3.

Note that it follows trivially that at depth d, the number of halfedges
Hd produced by the subdivision is

Hd = 4dH0, (2)

where H0 denotes the number of halfedges of the control mesh. By
convention, we choose that the four new halfedges form a new face
in Hd+1 and that the (4h+ 0)-th halfedge in Hd+1 cuts the h-th
halfedge inHd in half; Figure 3 highlights this specific rule for the
red and blue halfedges. From this particular construction, we de-
termine refinement rules for the halfedge operators TWIN, NEXT,
PREV, and FACE; Figure 3 (a, b, c, f) compiles these rules and pro-
vides some illustrated examples for the halfedges highlighed in red
and blue. The remaining VERT and EDGE operators require addi-
tional conventions, and we focus on them next.

Edge Operator Catmull-Clark subdivision splits existing edges
into two new ones. It also produces an extra number of Hd edges
within each face of the input mesh. Therefore, the number of edges
Ed+1 produced by the subdivision follows the recurrence relation

Ed+1 = 2Ed +Hd . (3)

By convention, we choose that the e-th edge in Sd produces two
edges in Sd indexed by

e 7→ 2e+0

7→ 2e+1. (4)

Figure 3 provides an illustration for this construction, where the
green edge e1, which is formed by the halfedge pair h0 and h4, splits
into the green edges e2 and e3. We then label each of the Hd addi-
tional edges as 2Ed + h in such a way that each halfedge produces
exactly one additional edge. From this particular construction we
determine the refinement rule for the operator EDGE; Figure 3 (e)
provides this specific rule. Note that this rule requires to evaluate
the number of edges Ed . We retrieve this number by solving the
recurrence relation of Equation (3). This gives

Ed = 2d−1
(

2E0 +(2d−1)H0

)
, (5)

where E0 denotes the number of edges of the control mesh S0.

Vertex Operator Catmull-Clark subdivision adds an extra vertex
for each face and edge of the input mesh. Therefore, the number
of vertices Vd produced by the subdivision at depth d follows the
recurrence relation {

Vd+1 =Vd +Fd +Ed

Fd+1 = Hd
, (6)

where Fd denotes the number of faces at depth d. By convention,
we label the new vertices as follows: we index each vertex produced
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by the f -th face of Sd as Vd + f , and those produced by the e-th
edge of Sd as Vd +Fd +e. Thanks to this particular construction we
determine the refinement rule for the operator VERT; Figure 3 (d)
provides this specific rule. Note that this rule requires to evaluate
the number of faces Fd and vertices Vd . We retrieve these numbers
by solving the recurrence relation of Equation (6) for d ≥ 1{

Vd =V1 +2d−1
(

E1 +(2d−1)F1

)
Fd = 4d−1H0

. (7)

Halfedge Refinement Algorithm Thanks to the refinement rules
derived in this subsection, we straightforwardly compute the
topologies H1, · · · ,HD; Algorithm 1 provides pseudocode for an
implementation – note the simplicity of the actual pseudocode.

Algorithm 1 Halfedge refinement
1: procedure REFINEHALFEDGES(H0: input,H1,··· ,D: output)
2: for all d ∈ [0, D) do
3: for all h ∈ [0, Hd) do
4: // apply rule Fig. 3 (a):
5: TWIN(Hd+1[4h+0])← 4 NEXT(TWIN(Hd [h]))+3
6: TWIN(Hd+1[4h+1])← 4 NEXT(Hd [h])+2
7: TWIN(Hd+1[4h+2])← 4 PREV(Hd [h])+1
8: TWIN(Hd+1[4h+3])← 4 TWIN(PREV(Hd [h])+0
9: // apply rules Fig. 3 (b, · · · , f):

10: · · ·
11: end for
12: end for
13: end procedure

4.2. Vertex Point Calculation

We now leverage H0, · · · ,HD to compute the vertex points as de-
fined in Section 3.1. Specifically, we compute the vertex points
Vd+1 using Vd and an iteration over the halfedges of Hd . In this
setting, each halfedge atomically adds a specific contribution to the
computation. We describe these contributions in the following para-
graphs.

Face Points Algorithm 2 provides pseudocode for an implemen-
tation of the face point calculation. The h-th halfedge weights the
vertex-point that carries it by m, where m denotes the number of
halfedges within the face FACE(h). Then, it adds this value inside
the location of the new face point i =Vd + FACE(h) (see Algo-
rithm 2, lines 3-5). We determine the m value for the control mesh
S0 by computing the length of the cycle formed by the halfedges.
Note that for d > 1, we have m = 4 since the mesh is solely com-
posed of quads.

Edge Points There are two ways of computing the new edge points
depending on whether the edge is a boundary or not (see Sec-
tion 3.1). We determine which specific way to follow while iter-
ating over each halfedge h based on the sign of TWIN(h). The eval-
uation of the sharp edge point rule is trivial, so we focus here on
the smooth edge point rule; Algorithm 3 provides pseudocode for
an implementation. The h-th halfedge weights the sum of the ver-
tex point that carries it and the new face point it produced using
the face rule. It then adds this value at the location of the new edge
point i =Vd +Fd +EDGE(h) (see Algorithm 2, lines 3-6).

Vertex Points As for the edge points, there are two ways of com-
puting the new vertex points. We determine which specific way to
follow for the h-th halfedge based on whether the vertex that car-
ries it lies on a boundary. The evaluation of the sharp vertex point
rule is trivial, so we focus here on the smooth rule. Rather than
directly evaluating Equation (1) through the halfedge iteration, we
first rewrite it as the alternative form

−Q
n
+

4R′

n
+

S(n−3)
n

, (8)

where R′ now denotes the average of the new edge points induced
by all edges incident to the old vertex point; we are not aware of the
existence of this particular expression in the literature so we believe
it is new. Compared to the original expression, ours is more cache-
friendly as it re-uses the newly computed face and edge points in
Vd+1, which are closer memory-wise to the new vertex point. Now,
the h-th halfedge of the input mesh weights the sum of the vertex
point that carries it with both the new face- and edge-point it pro-
duced. It then adds this value inside the location of the new vertex
point v = VERT(h) (see Algorithm 2, lines 3-7).

Algorithm 2 Face points (according to (1, A))
1: procedure FACEPOINTS(Sd : input mesh, Vd+1: points)
2: for all h ∈ [0, Hd) do
3: m← CYCLELENGTH(Sd , h) . see Alg. 7
4: v← VERT(h) . halfedge vertexID
5: i← Vd + FACE(h) . new face point vertexID

6: Vd+1[i]←Vd+1[i]+ V
d [v]
m

7: end for
8: end procedure

Algorithm 3 Smooth edge points (according to (1, B.2))
1: procedure EDGEPOINTS(Sd : input mesh, Vd+1: points)
2: for all h ∈ [0, Hd) do
3: v← VERT(h) . halfedge vertexID
4: i← Vd + FACE(h) . new face point vertexID
5: j← Vd +Fd +EDGE(h) . new edge point vertexID

6: Vd+1[ j]←Vd+1[ j]+ V
d [v]+Vd+1 [i]

4
7: end for
8: end procedure

Algorithm 4 Smooth vertex points (according to (1, C.2))
1: procedure VERTEXPOINTS(Sd : input mesh, Vd+1: points)
2: for all h ∈ [0, Hd) do
3: n← VALENCE(Sd , h) . see Alg. 6
4: v← VERT(h) . halfedge vertexID
5: i← Vd + FACE(h) . new face point vertexID
6: j← Vd +Fd +EDGE(h) . new edge point vertexID

7: Vd+1[v]←Vd+1[v]+ 4Vd+1 [ j]−Vd+1 [i]+(n−3)Vd [v]
n2

8: end for
9: end procedure
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⊂ Sd 7−→ Sd+1 ⊃

Halfedge refinement rules

(a) halfedge’s twin rule (b) halfedge’s next rule (c) halfedge’s previous rule

TWIN(h) 7→TWIN(4h+0) = 4 NEXT(TWIN(h))+3

7→TWIN(4h+1) = 4 NEXT(h)+2

7→TWIN(4h+2) = 4 PREV(h)+1

7→TWIN(4h+3) = 4 TWIN(PREV(h))+0

NEXT(h) 7→NEXT(4h+0) = 4h+1

7→NEXT(4h+1) = 4h+2

7→NEXT(4h+2) = 4h+3

7→NEXT(4h+3) = 4h+0

PREV(h) 7→PREV(4h+0) = 4h+3

7→PREV(4h+1) = 4h+0

7→PREV(4h+2) = 4h+1

7→PREV(4h+3) = 4h+2
examples: examples: examples:
TWIN(0) 7→ {23, 6, 13, 48} NEXT(0) 7→ {1, 2, 3, 0} PREV(0) 7→ {3, 0, 1, 2}
TWIN(4) 7→ {7, 22, 29, 44} NEXT(4) 7→ {17, 18, 19, 16} PREV(4) 7→ {19, 16, 17, 18}

(d) halfedge’s vertex rule (using h′ := PREV(h)) (e) halfedge’s edge rule (using h′ := PREV(h)) (f) halfedge’s face rule

VERT(h) 7→VERT(4h+0) = VERT(h)

7→VERT(4h+1) =Vd +Fd +EDGE(h)

7→VERT(4h+2) =Vd + FACE(h)

7→VERT(4h+3) =Vd +Fd +EDGE(h′)

EDGE(h) 7→EDGE(4h+0) =

{
2 EDGE(h) if h > TWIN(h)
2 EDGE(h)+1 otherwise

7→EDGE(4h+1) = 2Ed +h

7→EDGE(4h+2) = 2Ed +h′

7→EDGE(4h+3) =

{
2 EDGE(h′)+1 if h′ > TWIN(h′)
2 EDGE(h′) otherwise

FACE(h) 7→FACE(4h+0) = h

7→FACE(4h+1) = h

7→FACE(4h+2) = h

7→FACE(4h+3) = h

examples: examples: examples:
VERT(0) 7→ {0, 13, 8, 19} EDGE(0) 7→ {3, 22, 25, 14} FACE(0) 7→ {0, 0, 0, 0}
VERT(4) 7→ {1, 13, 9, 18} EDGE(4) 7→ {2, 26, 29, 12} FACE(4) 7→ {4, 4, 4, 4}

Crease refinement rules

(g) creases’s sharpness rule (h) crease’s next rule (using c′ := NEXT(c)) (i) crease’s previous rule (using c′ := PREV(c))

σ(c) 7→σ(2c+0) = 〈σ(PREV(c))+3σ(c)
4

−1〉

7→σ(2c+1) = 〈σ(NEXT(c))+3σ(c)
4

−1〉

NEXT(c) 7→NEXT(2c+0) = 2c+1

7→NEXT(2c+1) =

{
2c′ if c = PREV(c′)
2c′+1 otherwise

PREV(c) 7→PREV(2c+0) =

{
2c′+1 if c = NEXT(c′)
2c′ otherwise

7→PREV(2c+1) = 2c

example: example: example:
σ(1) = 1.8 7→ {0.8, 0.8} NEXT(1) = 1 7→ {3, 1} PREV(1) = 1 7→ {1, 2}

Figure 3: Halfedge and crease refinement rules induced by Catmull Clark subdivision. A Catmull-Clark subdivision step splits each halfedge
into 4 new ones and each crease into 2 new ones. The algebraic rules to compute the attributes of the new halfedges and creases are
summarized inside the tables.
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4.3. Implementation Details

We now focus on a parallel implementation of the algorithms we
have presented so far. In order to compute SD≥1 given S0, we pro-
ceed in two steps. First, we compute all the necessary topology in-
formation H1, · · · ,HD using Algorithm (1). Second, we compute
the vertex points V1, · · · ,VD using Algorithms (2, 3, 4). We first
describe how much memory our algorithm requires and how we
allocate it in practice. Then, we describe our parallel CPU-based
implementation, followed by our GPU-based one.

Memory Allocation Our implementation only requires memory
for topology H1, · · · ,HD and vertex points V1, · · · ,VD. Note that
unlike the approaches of [PEO09] and [MWS∗20], we do not re-
quire any extra temporary memory as our buffers provide all the
necessary information to compute the subdivision. For the topol-
ogy, we allocate a halfedge buffer that stores the operators TWIN,
VERT, and EDGE as signed, 32-bit integers; we neglect the remain-
ing operators NEXT, PREV, and FACE as we compute them analyt-
ically as shown in Figure 2 (b). Using Equation (2), we determine
the size of the halfedge buffer as

D

∑
d=1

Hd =
4D−1

3
H1, (9)

where H1 = 4H0 denotes the number of halfedges of S1. Note that
we also use Equation (9) to determine the pointer to the d-th topol-
ogy Hd≤D. For the vertex points, we allocate a vertex buffer that
stores the 3D point coordinates as 32-bit floating point values. Us-
ing Equation (7), we determine the size of the vertex buffer as

D

∑
d=1

Vd = (2D−1)(E1−2F1)+
4D−1

3
F1 +D(F1−E1 +V1).

(10)
Since our implementation increments the values of this buffer in
parallel, it is important to set its values to zero. Note that we also
use Equation (10) to determine the offset to the d-th vertex points
Vd≤D. We believe we are the first to provide explicit memory foot-
print formulas, for computing Catmull Clark subdivision.

Parallel-for CPU Implementation Our CPU implementation is
written in C and runs halfedge iterations as OpenMP parallel-for
loops (see Algorithm (1) line 3 for halfedge refinement and Al-
gorithms (2, 3, 4) line 2 for vertex point calculations). The vertex
point calculations lead to concurrent memory accesses over the ver-
tex buffers and so we use an OpenMP atomic instruction for the
(single) memory write operation executed by each thread; for more
details we refer the reader to the C code provided in our supple-
mental material. In order to assess our implementation’s scalability
across thread count, we provide performance measurements for the
subdivision of the ArmorGuy asset; Figure 4 provides the results
of our measurements using 1, 2, 4, and 8 concurrent threads of an
AMD Ryzen Threadripper 3960X. As demonstrated by the plotted
curves, the processing speed of our implementation increases lin-
early with the number of threads. It is interesting to note that for
higher thread counts, we sometimes observed a decrease in scal-
ability because memory bandwidth becomes the main bottleneck;
we discuss memory bandwidth issues in more detail in Section 6
and provide exhaustive CPU performance measurements in a dedi-
cated supplemental document.

GPU Implementation Thanks to the pointerless nature of our
halfedge data-structure, our GPU implementation is a straightfor-
ward port of our CPU implementation to GLSL compute shaders.
In practice we rely on core GLSL450 shaders augmented with
the NVIDIA extension GL_NV_shader_atomic_float. We
wrote two variants of four compute shaders that respectively im-
plement the halfedge refinement, face points, edge points, and ver-
tex points routines discussed so far. The first variant serves to com-
pute subdivision level one and supports non-quad faces. The second
variant serves to compute deeper subdivision levels and leverages
the analytic nature of the NEXT, PREV, and FACE halfedge opera-
tors of quad-only meshes. In addition, we also rely on a dedicated
kernel to set the vertex points to zero before refinement. In prac-
tice, this kernel takes the form of a simple OpenGL ClearBuffer
command. We refer the reader to the shaders provided in supple-
mental for more details. In order to compute a subdivision down to
an arbitrary depth, we successively call these shaders followed by a
memory barrier operation. To quantify gains due to parallelization,
we compared the performances of our GPU-based implementation
against our CPU-based one; Figure 4 provides the results of this
comparison. The reported numbers show an important speed-up
over our CPU implementation thanks to the high processor counts
and memory bandwidth offered by modern GPUs. Note that we
perform a more thorough performance analysis in Section 6.

5. Semi-Sharp Creases

In this section, we extend our algorithms to support the semi-sharp
crease extension of DeRose et al. [DKT98]. We start by recall-
ing the modified refinement rules induced by the extension (Sec-
tion 5.1). Next, we provide a refinement rule for creases that al-
lows extending our algorithm to support semi-sharp creases (Sec-
tion 5.2). Finally, we provide some implementation details regard-
ing the additional memory required to support the extension (Sec-
tion 5.3).

5.1. Background

Building upon the idea of Hoppe et al. [HDD∗94], DeRose et al.
tag the edges of the control mesh S0 with arbitrary sharpness val-
ues σ ≥ 0. In turn, these sharpness values alter the vertex point
calculations of the original Catmull-Clark subdivision. We provide
below the modified rules induced by this extension.

Semi-sharp Creases Formalism The introduction of sharp edges
leads to consider specific topological configurations. To this end,
we denote σ̄ ≥ 0 the average edge-sharpness incident to a vertex
and refer to any edge with sharpness σ > 0 as a crease c∈ S so that
we write σ(c) > 0. Whenever σ(c) ∈ [0,1), we say that the crease
is a blending crease. Additionally, we refer to a vertex with valence
n = 2 or with more than two incident creases as a corner vertex.
In the case where the vertex has exactly two incident creases, we
refer to it as either a creased vertex if σ̄ ≥ 1, or a blended vertex
otherwise. Finally, we mention that a crease c∈ S may act as a link
within a path of connected creases. In this case, we respectively
denote its two neighbors PREV(c) ∈ S and NEXT(c) ∈ S.
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Figure 4: Per-thread scalability for the computation of (left) halfedge-, and (right) vertex-point refinement as a function of depth with
ArmorGuy as control cage. The CPU is an AMD Ryzen Threadripper 3960X (24-cores), and the GPU an NVIDIA RTX 2080.

Vertex Point Calculation The following rules apply in addition to
the previous ones (see Section 3.1):
(B.3) New crease points – same as rule (B.1)
(B.4) New blending crease points – the linear interpolation of point
rules (B.1) and (B.2) with weight σ ∈ [0,1)
(C.3) New corner vertex points – same as rule (C.1)
(C.4) New blended vertex points – the linear interpolation of point
rules (C.3) and (C.5) with weight σ̄ ∈ [0,1)
(C.5) New creased vertex points – the average

A+6S+B
8

, (11)

where
A = the vertex point that forms the first crease incident to

the old vertex point S.
B = the vertex point that forms the second crease incident

to the old vertex point S.

Topological Rules The rules for edge and face construction of the
new mesh Sd+1, remain unchanged. The creases of the new mesh
Cd+1 ⊂Sd+1 are determined according to the curve subdivision al-
gorithm of Chaikin [Cha74]: Each crease c creates two new creases
with sharpness values

σ1 = 〈
σ(PREV(c))+3σ(c)

4
−1〉,

σ2 = 〈
σ(NEXT(c))+3σ(c)

4
−1〉,

where we use the notation 〈x〉 := max(0,x). It follows trivially that
the resulting number of creases Cd+1 follows the recurrence rela-
tion

Cd+1 = 2Cd , (12)

where Cd denotes the number of creases of the mesh Sd .

5.2. Refinement Rules

The semi-sharp crease extension refines creases into two new ones.
We leverage this property to derive a breadth-first algorithm based
on a refinement rule for the creases Cd of an input mesh Sd in the
spirit of the one we used for the halfedges Hd . This allows us to
compute all C1, · · · ,CD. In turn, we use this information to evaluate
the modified vertex-point rules for V1, · · · ,VD. Note that we avoid
the method of Nießner et al. [NLG12] as it requires isolated creases,
which is inapplicable in the general case without preprocessing the
input mesh first.

Crease refinement As for halfedges, we represent each crease
through its fundamental operators σ, NEXT, and PREV. By conven-
tion, we label each crease according to the edge-labelling scheme
introduced in Equation (4). Thanks to this approach, we determine
the refinement crease rules; Figure 3 (g, h, i) compiles these rules
and provides an illustration for the edge highlighted in green. Al-
gorithm 5 provides pseudocode for an implementation.

Vertex Points As for regular Catmull-Clark subdivision, we still
iterate over the halfedges Hd of the input mesh to compute the
vertex points Vd+1. In order to determine which of the (A, B, C)
rules apply for the h-th halfedge, we lookup its associated sharp-
ness value σ(EDGE(h)); Algorithm 8 provides pseudocode for an
actual implementation. Thanks to this construction, we apply the
proper rules for face points, edge points and vertex points. Note
that for the creased vertex rule (C.5), we use an alternative form of
Equation (11). Specifically,

A′+2S+B′

4
, (13)

where A′ and B′ respectively denote the new crease points produced
by the old creases incident to S. As for Equation (8), Equation (13)
allows to re-use the newly-computed neighboring vertex points.
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Algorithm 5 Crease refinement
1: procedure REFINECREASES(C0: input, C1,··· ,D: output)
2: for all d ∈ [0, D) do
3: for all c ∈ [0, 2d E0) do
4: // apply rule Fig. 3 (g):

5: σ(Cd+1[2c+0])← 〈 σ(PREV(Cd [c]))+3σ(Cd [c])
4 −1〉

6: σ(Cd+1[2c+1])← 〈 σ(NEXT(Cd [c]))+3σ(Cd [c])
4 −1〉

7: // apply rules Fig. 3 (h, i):
8: · · ·
9: end for

10: end for
11: end procedure

5.3. Implementation Details

Our extended algorithm for semi-sharp creases remains mostly
unchanged from the original one. As such, its implementation is
straightforward. For the sake of completeness, we discuss here how
much memory requires our extended implementation and how we
allocate it in practice.

Memory Allocation In order to support semi-sharp creases, our
implementation requires memory for the creases C1, · · · ,CD. For
this we allocate memory for a crease buffer that stores the operators
σ, NEXT, PREV as a 32-bit floating point, and two 32-bit signed
integers, respectively. The crease buffer has size

D

∑
d=1

Cd = 2C0 (2
D−1), (14)

where C0 = E0 denotes the number of edges of S0. Note that we
also use Equation (14) to determine the pointer to the d-th crease
buffer Cd≤D. As for our original implementation, our extension for
semi-sharp creases has tractable memory requirements.

6. Performance Evaluation

With the exposition of our subdivision algorithm complete, we now
turn to its evaluation against existing parallel implementations. To
this end, we provide performance comparisons of our implementa-
tion against publicly available implementations.

Methodology In order to position our implementation with respect
to previous work, we provide performance-measurement compar-
isons against publicly available implementations. We conduct our
performance-measurements under the two following scenarios:

• Interactive modeling: we compute both the topology and the ver-
tex points. This scenario is relevant for interactive modelling,
when the topology and/or the creases of the control mesh are
modified.
• Vertex point update: we only compute the vertex points using

precomputed topology information. This scenario is relevant for
rendering, e.g., skinned meshes, which maintains control mesh
topology constant.

In both experiments, we report the timing for computing subdi-
visions on a variety of control meshes shown in Figure 5. Each
control mesh exhibits different features such as semi-sharp creases,

[MWS∗20] Ours
Bigguy 19.8 MiB 28.2 MiB

Monsterfrog 17.7 MiB 25.1 MiB
Imrod 73.4 MiB 104.1MiB
T-Rex 155.1 MiB 220.0MiB

Table 1: Memory requirements for subdivision down to level 4.

boundaries, and/or high numbers of non-quad faces. Each timing
we report represents the median of the delta between the first and
last operation required for the computation over 50 runs. Our tim-
ings thus naturally include shader/kernel execution time, memset
instructions, state changes, and CPU-GPU synchronizations. Note
that we provide timings for the tessellation-shader based imple-
mentation of [NLMD12]. For this specific algorithm, we measure
the total mesh rendering time when moved offscreen (so as to min-
imize rasterization overhead). We use the GLSL compute shader
backend for OpenSubdiv. We compile the timings for computing
up to 6 subdivision levels in our supplemental material. In the fol-
lowing paragraphs, we focus on the measurements for subdivision
level 4, which corresponds to a practical setting for both modelling
and rendering in production.

A Comment on Semi-sharp Crease Support Among all the
publicly available open-source implementations we tested, we
found our implementation to be the only one to support semi-
sharp creases in addition to that of OpenSubdiv. Therefore,
we separated creased-mesh performances from the other ones
for fair comparisons. Note that Nießner et al. [NLMD12] and
Mlakar et al. [MWS∗20] claim support for semi-sharp creases in
their respective papers, but we were unable to reproduce such re-
sults using their source code. Since our implementation is pub-
licly available and provides straightforward support for semi-sharp
creases, we position ourselves as the only practical alternative to
OpenSubdiv.

Interactive Modeling Figure 7 compiles the timings for the in-
teractive modeling scenario for subdivision depth 4. As demon-
strated by the reported numbers, our method runs on par with
the state-of-the-art method of Mlakar et al. [MWS∗20] for non-
creased assets and significantly outperforms OpenSubdiv for
creased assets. The slow performances for both OpenSubdiv and
Nießner et al. [NLMD12] are due to the preprocessing stage they
require, which is purely sequential. Note that the performance num-
bers for [PEO09] are missing for the Imrod and T-Rex assets as the
implementation lacks support for non-quad faces.

Vertex Point Update Figure 8 compiles the timings for the vertex
point update scenario for subdivision depth 4. As demonstrated by
the reported numbers, our method again performs on par with state-
of-the-art methods. Note that OpenSubdiv outperforms our method
only once for the ArmorGuy asset. We explain this result by the fact
that this particular asset forces OpenSubdiv’s to significantly pre-
subdivide it around its features, leaving only very little geometry to
process.
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no
n-

cr
ea

se
d

Bigguy

S0 S4

(all-quads / no boundaries)

H0 = 5,800
F0 = 1,450
E0 = 2,900
V0 = 1,452

H4 = 1,484,800
F4 = 371,200
E4 = 742,400
V4 = 371,202

Monsterfrog

S0 S4

(all-quads / no boundaries)

H0 = 5,168
F0 = 1,292
E0 = 2,584
V0 = 1,308

H4 = 1,323,008
F4 = 330,752
E4 = 661,504
V4 = 330,768

Imrod

S0 S4

(3,479 non-quads / 223 boundaries)

H0 = 21,399
F0 = 6,202
E0 = 10,811
V0 = 4,630

H4 = 5,478,144
F4 = 1,369,536
E4 = 2,740,856
V4 = 1,371,341

T-Rex

S0 S4

(468 non-quads / 594 boundaries)

H0 = 45,224
F0 = 11,422
E0 = 22,909
V0 = 11,539

H4 = 11,577,344
F4 = 2,894,336
E4 = 5,793,424
V4 = 2,899,140

cr
ea

se
d

Rook

S0 S4

(
44 non-quads / 24 boundaries

280 creases

)
H0 = 3,064
F0 = 777
E0 = 1,544
V0 = 768

H4 = 784,384
F4 = 196,096
E4 = 392,384
V4 = 196,289

Bishop

S0 S4

(
132 non-quads / 24 boundaries

224 creases

)
H0 = 3,740
F0 = 968
E0 = 1,882
V0 = 917

H4 = 957,440
F4 = 239,360
E4 = 478,912
V4 = 239,555

Car

S0 S4

(
all-quads / 60 boundaries

314 creases

)
H0 = 6,300
F0 = 1,575
E0 = 3,180
V0 = 1,642

H4 = 1,612,800
F4 = 403,200
E4 = 806,880
V4 = 403,717

ArmorGuy

S0 S4

(
300 non-quads / 2,034 boundaries

7,101 creases

)
H0 = 34,388
F0 = 8,639
E0 = 18,211
V0 = 10,022

H4 = 8,803,328
F4 = 2,200,832
E4 = 4,417,936
V4 = 2,217,554

Figure 5: The subdivision surfaces we used for performance measurements along with their properties. Non-quad faces, boundaries, and
semi-sharp creases are respectively highlighted in green, magenta, and yellow.

Cube Imrod

S6 (fp32) S6 (fp16) S2 (fp32) S2 (fp16)

Figure 6: Discretization artifacts due to 16-bit floating point precision compared to 32-bit floating point precision.
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Figure 7: End-to-end subdivision timings for subdivision down to level 4.
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Per-Kernel Timings For the sake of completeness we report tim-
ings for each GPU kernel executed by our implementation in Fig-
ure 9. The error bars shown in the plot correspond to the minimum
and maximum timings measured over our 50 runs and are shown to
emphasize performance stability. In practice, the halfedge kernel is
consistently the slowest one, followed by the vertex-point kernel.
Conversely, the crease kernel is negligible with respect to the other
kernels. This opens up the possibility for real-time crease (in addi-
tion to vertex points) animation, which is not currently supported
by OpenSubdiv as creases require heavy preprocessing.

Memory Consumption The memory requirements of our algo-
rithm are straightforward to assess thanks to Equations (9, 10). For
instance, computing the subdivision down to level 4 of the Mon-
sterfrog asset given its control mesh statistics shown in Figure 5
requires 1,757,120 halfedges (see Equation (9)) and 439,344 ver-
tex points (see Equation (10)). Since we store each halfedge as
three 32-bit integers and each vertex point as three 32-bit floats,
we thus require a total of 25.1 MiBytes. We compare our memory
requirements with those of Mlakar et al. [MWS∗20] in Table 1.
The reported numbers demonstrate that their memory consumption
is 70% that of ours, which makes their method more efficient in
terms of memory. We add that for creased meshes, our implemen-
tation requires an additional crease buffer of size given by Equa-
tion (14) and consists of one 32-bit floating point and two 32-bit
integers as discussed in Section 5.3.

Memory Bandwidth as Performance Bottleneck We observed
negligible performance gains when disabling crease support even
though this incurs non-negligible shader logic simplifications.
This is due to the fact that our implementation is primar-
ily bottlenecked by memory bandwidth. In order to empha-
size this fact, we conducted the following experiment: We ran
our vertex-point kernels at 16-bit floating point precision (rather
than 32-bit) using another GLSL extension by NVIDIA namely
GL_NV_shader_atomic_fp16_vector. This extension re-
duces the memory footprint of vertex points from 3× 4 = 12
Bytes to 4× 2 = 8 Bytes (the extension forces 4-component vec-
tors), and consistently results in speedups ranging from ×1.15 to
×1.25 across our test meshes. In practice however, 16-bit floating
points produce obvious discretization artifacts illustrated in Fig-
ure 6. While 16-bit floating points thus turn out to be impractical,
they demonstrate the benefits of compressed vertex-point formats
for faster subdivision. An interesting addition from hardware ven-
dors could be to provide a similar GLSL extension for, e.g., 16-bit
normalized coordinates. Such an extension would also be beneficial
for more general compute tasks and image load/store operations.

7. Conclusion

We introduced a novel parallel algorithm suitable for computing
Catmull-Clark subdivision using a halfedge mesh data-structure.
Our algorithm yields state-of-the-art performances and its imple-
mentation is straightforward. In future work, we plan to derive the
halfedge refinement rules induced by other subdivision schemes
such as Loop. We are also investigating a gather-based implementa-
tion to support GPUs that lack support for atomic float operations.
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Appendix A: Supplemental Pseudocode

Algorithm 6 Vertex valence (non-boundary only)

1: function VALENCE(Sd : input, h: halfedgeID)
2: n← 1
3: h′← NEXT(TWIN(h))
4: while h′ 6= h do
5: n← n+1
6: h′← NEXT(TWIN(h′))
7: end while
8: return n
9: end function

Algorithm 7 Halfedge cycle length

1: function CYCLELENGTH(Sd : mesh, h: halfedgeID)
2: m← 1
3: h′← NEXT(h)
4: while h′ 6= h do
5: m← m+1
6: h′← NEXT(h′)
7: end while
8: return m
9: end function

Algorithm 8 Halfedge sharpness

1: function SHARPNESS(Sd : input, Cd : input, h: halfedgeID)
2: e← EDGE(h)
3: if e≥ 2dE0 then
4: return 0
5: else
6: return σ(Cd [e])
7: end if
8: end function
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