
High-Performance Graphics 2021
N. Binder and T. Ritschel
(Guest Editors)

Volume 40 (2021), Number 8

Sampling from Quadric-Based CSG Surfaces

P. Trettner1 and L. Kobbelt1

1RWTH Aachen University, Germany

Figure 1: Our method takes a CSG object defined by quadric surfaces and computes a set of per-surface low-distortion parametrizations. On
these, we perform an adaptive subdivision guided by a conservative distance function (left). Once all CSG surface patches are identified, we
can generate point samples on them (middle). Our splat-based rendering guarantees perfect surface reconstruction (right). In this example,
327000 samples across 80 quadric primitives were generated. For models of this complexity, we can generate about a million surface samples
per second per CPU core. Render time is 0.5 ms at 1080p.

Abstract
We present an efficient method to create samples directly on surfaces defined by constructive solid geometry (CSG) trees or
graphs. The generated samples can be used for visualization or as an approximation to the actual surface with strong guaran-
tees. We chose to use quadric surfaces as CSG primitives as they can model classical primitives such as planes, cubes, spheres,
cylinders, and ellipsoids, but also certain saddle surfaces. More importantly, they are closed under affine transformations, a
desirable property for a modeling system. We also propose a rendering method that performs local quadric ray-tracing and
clipping to achieve pixel-perfect accuracy and hole-free rendering.

CCS Concepts
• Computing methodologies → Point-based models; Volumetric models; Ray tracing;

1. Introduction

Constructive solid geometry (CSG) is a popular methodology for
defining geometric objects. Given a set of volumetrically defined
base objects, so called primitives, the resulting CSG object is con-
structed by combining the primitives using Boolean operations
such as union, intersection, or difference. CSG is used in milling
simulations, video game level design, CAD tooling, fabrication, 3D
modelling, and many other mesh processing pipelines. It is often
seen as a natural way to describe complex geometry.

While the primitives are usually quite simple, computing and
representing the resulting CSG object tends to be challenging. This
typically involves computing the pairwise intersection of all par-
ticipating primitives. For higher-order primitives or freeform sur-
faces, many intersections are extraordinarily hard to compute, often

no analytic expression is known. Even when restricted to triangle
meshes, robustness and performance issues are abundant.

Depending on the use case, working with CSG objects is ap-
proached by a wide spectrum of methods. Often, an explicit repre-
sentation of the object is required. Some need a volumetric repre-
sentation, leading to Boolean operations on binary space partition-
ing (BSP) trees. Others only need a surface, resulting in boundary
representation (B-rep) methods with analytic surfaces, or mesh-
based methods usually working with triangles. When coarse ap-
proximations are sufficient, volumetric methods based on implicit
surfaces are popular. Sometimes, only visualization is required and
rendering-only approaches are employed. These can range from
ray-tracing the primitives and applying a form of 1D CSG, over ray-
marching implicit functions, to depth-peeling inspired approaches.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14380

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0003-3706-2259
https://orcid.org/0000-0002-7880-9470
https://doi.org/10.1111/cgf.14380

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

A B

C

(a) (b) (c) (d)

Figure 2: Our sampling-based CSG approach creates point samples on CSG surfaces. In this example, the represented surface is (A∩B)∪C,
where each primitive is a sphere, shown in (a). Conceptually, point samples from each primitive can be classified as outside (red), inside
(green), or surface (white) using the CSG tree (b, front half clipped for clarity). The result is a point cloud representing the CSG surface (c).
Additionally, we present a splat-based rendering using local quadric ray-tracing and clipping to achieve pixel-perfect visualization (d). Note
that (b) is only conceptual and our actual method uses an adaptive sampling strategy to skip large parts of the red and green regions.

1.1. Method Overview

In this paper, we present sampling-based CSG, a highly efficient
method for creating point or splat samples on the surface of a CSG
object. The input is a directed acyclic graph (DAG) where leaf
nodes are primitives and inner nodes are (variadic) boolean opera-
tions. Edges can be annotated by affine and projective transforma-
tion matrices. The output is a point cloud that represents the CSG
surface. Optionally, we also emit per-point metadata such as sur-
face normal, primitive ID, and clipping information, e.g. for a splat
renderer.

Our method is motivated by the observation that the CSG sur-
face consists exclusively of parts of the (transformed) input prim-
itives. A fact that is actually used by many mesh-based CSG ap-
proaches: Cut all input triangles along self-intersections and then
remove those that do not belong to the CSG surface, i.e. are in-
side or outside the defined CSG object. We exploit this to create a
conceptually simple method for creating point samples on a CSG
surface:

• for each (transformed) input primitive P:

– create point samples {sP,i} on the surface of P
– discard all samples sP,i that are not part of the CSG surface

The set of all non-discarded samples sP,i is a point cloud represent-
ing the CSG surface (cf. Figure 2). While this template provides
an intuition of why our approach works, our main contribution is
to mold this into a practical method and to provide pixel-perfect
rendering of the surface.

In its basic formulation, our method has very few constraints
on the primitive types. The only requirements are that point sam-
ples can be created and that a position can be classified as inside,
outside, or surface. The first is needed to create the per-primitive
samples, the second to discard samples. For example, in A∪B, a
sample sA on the surface of A is discarded if it is inside of B. In
A∩B, we would discard sA if it is outside of B.

In practice, this leads to a very inefficient method as often large
portions of the primitive surfaces are discarded. This formulation is
also problematic for CSG surfaces that are finite but consist of infi-

nite primitives, e.g. a cube modeled as the intersection of six half-
spaces. Thus, we also require a per-primitive conservative signed
distance function dP(x), i.e. dP(x) > 0 outside, dP(x) < 0 inside
the surface, and |dP(x)| is a lower bound for the shortest distance
from point x to primitive P.

Classical primitives are spheres, cubes, cylinders, cones, or half-
spaces. For the rest of this paper, we focus on a single type of
primitive that can represent all these—and more: a quadric sur-
face. Quadrics are closed under affine and even projective trans-
formations and subsumes the classical primitives, while still be-
ing reasonably efficient to handle. Section 3 is dedicated to quadric
fundamentals, how quadric surfaces can be formulated as a set of
heightfields and how to compute a conservative signed distance. In
Section 4, we decompose the heightfield domains into a set of low-
distortion regions and formulate an adaptive sampling scheme with
strong guarantees. In particular, our sampling can guarantee a max-
imum distance to the next sample on the surface and thus hole-free
rendering. How these parts are assembled to sampling-based CSG
is explained in Section 5. In Section 6, we present a splat-based
renderer with local per-fragment quadric ray-tracing and clipping.
Together with the watertight sampling, this results in pixel-perfect
renderings, even of complex CSG objects with sharp and small fea-
tures. The rendering is highly efficient and only exhibits minimal
viewpoint dependence.

1.2. Contribution

In summary, we contribute:

• Analytical insight into quadric surfaces, including a surface de-
composition into a set of low-distortion heightfields and a use-
ful lower bound for distance-to-quadric-surface that is extremely
fast to compute.
• From that, we derive an efficient adaptive sampling scheme to

generate point samples on CSG surfaces with strong coverage
guarantees.
• Finally, we present a splat-based renderer that uses local quadric

ray-tracing and clipping to achieve pixel-perfect real-time ren-
derings of the sampled CSG surface.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

42

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

2. Related Work

CSG, solid modeling, and geometric Booleans have an extensive
and varied history.

For geometric modeling, the desired result is an explicit com-
putation and representation of the result. It is extremely challeng-
ing to design methods that are fast, robust, and accurate. Methods
that focus on triangle meshes typically use a spatial acceleration
structure to find triangle-triangle intersections, subdivide the input
triangles along those cuts, and then classify every triangle as in-
side, outside, or boundary [BGF15, HKM07, MT13]. The fastest
methods use clever classification schemes, for example using ray-
tracing [DFR17]. [ZGZJ16] guarantees exact results using ratio-
nal numbers but has still reasonably performance due to a winding
number classification approach. Performance can be increased by
using floating point predicates [CLSA20].

A different approach to explicit CSG of triangular or flat polygo-
nal meshes is based on binary space partitionings (BSPs) [NAT90].
Vertices are represented implicitly as the intersection of three
planes and Booleans are formulated on BSP trees. This implicit
formulation circumvents the need for exact construction. [BF09]
uses filtered floating-point predicates to guarantee exact results.
Pure BSP-based methods tend to have scaling problems with large
models. [CK10] performs mesh Booleans by inserting the meshes
in a temporary shared octree and only switch to the BSP repre-
sentation in octree cells that contain intersections. [NWTK21] in-
troduce octree-embedded BSPs as a solution for the iterated CSG
problem. They also use fixed-width integer arithmetic instead of
floating point predicates for increased performance.

As a rough rule, mesh-based approaches lack robustness or
speed, but are typically accurate. Plane-based approaches tend to
be accurate and robust, but slow. When accuracy can be sacrificed,
voxel or other volumetric approaches are used. Given implicit sur-
faces for the primitives, the CSG surface can be defined using min
and max. An isosurface extraction algorithm is then used to create
the explicit surface representation. Dual Contouring [JLSW02] or
Extended Marching Cubes [KBSS01] are popular to preserve some
sharp features. For a more thorough survey, we refer to [dALJ∗15].

These three paradigms can also be combined to create hybrid ap-
proaches. [SLL∗18] uses the classical triangle mesh approach but
has a dual triangle representation via explicit vertices and plane-
based geometry. [PCK10] mixes a mesh-based approach with a
volumetric one at the intersections. [SB16] treats the mesh as an
approximation of a smooth surface and performs adaptive subdivi-
sion close to intersections.

For large and complex models, none of these techniques is fast
enough for real-time visualization, though some come close to sup-
port interactive modification. Often, the explicit representation is
not required and a visualization technique is sufficient. These can
be roughly classified into ray-tracing-based and rasterization-based
ones.

The basic idea behind raytraced CSG is simple: Tracing a ray
against all primitives results in a list of intersection intervals,
on which a 1D CSG problem can be solved efficiently [Rot82].
Still, acceleration schemes are required to scale with the num-
ber of primitives. Spatial subdivisions of the primitives are pop-

ular [RVD06, RVd08, MDG∗17]. This can be coupled with bal-
ancing the CSG tree [UBT17]. When analytic intersection with
the primitives cannot be provided, sphere-tracing can be employed
[KB89, SJNJ19].

The rasterization-based approaches render the primitives using
the classical rasterization pipeline and then solve the 1D CSG
problems using screen-space techniques. One of the earliest ap-
proaches was proposed by [GMTF89], who normalized the CSG
tree and employed a full-screen pass per primitive to compos-
ite the correct result. Later, [SLJ98] used an approach similar to
depth peeling, that uses the z-buffer and stencil masks to cre-
ate correct renderings of normalized CSG trees. Many methods
try to optimize the CSG tree to improve the compositing perfor-
mance [HR05, HR07, Ros11]. Rasterization-based CSG has many
similarities with transparency computation [MCTB11] and pixel-
lists or k-buffers are popular. [ZCL18] use hashing to speed up
the classification of intervals in the 1D CSG problem. Layered
depth-normal images can also be used to compute screen-space
CSG and reconstruct an approximation of the represented sur-
face [Wan11, WLC10]. When the input models are point-sampled,
e.g. acquired from a laser scanner, one can still perform approxi-
mate CSG on those [PKKG03,WGT04]. This must not be confused
with our approach, which has an analytical input and creates point
samples on the exact surface.

Quadrics are a popular tool in computer graphics. Their value
can be used as an error metric, which has been used in mesh
decimation and smoothing [GH97, LTB19, TK20] and segmenta-
tion [TGB13]. [JLSW02] use the minimizer of error quadrics for
feature-sensitive isosurface extraction.

Our use case is the quadric surface, i.e. the isosurface of the
quadric error function. They are a natural generalization of classi-
cal primitives like planes, spheres, ellipsoids, cylinders, and cones.
In an early work, [Kle92] constructed a quadric-specific scanline
algorithm for visualization purposes. Quadric surfaces can be fit-
ted to triangle meshes [YWLY12, YLW06, AS14]. They can be
used in collision detection [CWM∗14]. Intersections of two quadric
surfaces have been characterized analytically [CWJ02, DLLP08,
TWMW09]. However, the resulting implementation is highly com-
plex and not immediately suitable for CSG computation. A basic
problem is computing the distance from point to quadric surface,
which, except for certain special cases, is non-trivial and must be
done iteratively [MES03, Lot14].

Our method is a mixture between explicit computation and the
rendering-centric approaches. The generated samples are an ex-
plicit, view-independent representation of the CSG surface and
come with strong guarantees, suitable for some tasks such as col-
lision detection. However, we still maintain a strong focus on ren-
dering with the same pixel-perfect result that ray-tracing usually
produces. A certain analytical breakdown of quadrics is performed
to find low-distortion parametrizations and a conservative signed
distance function, but nothing as complex as the explicit intersec-
tion of two quadrics. More discussion and some quantitative results
can be found in Section 7.2.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

43

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

3. Quadric Fundamentals

As described in Section 1.1, while the general approach supports a
large variety of primitives, for this paper we concentrate on a sin-
gle, yet powerful type: the quadric surface (cf. Figure 3). Given a
symmetric matrix Q ∈ R4×4 and a 3D position x ∈ R4 in homoge-
neous coordinates, the quadric surface of Q is defined as the set of
points satisfying

xT Qx = 0. (1)

It is often convenient to decompose Q via

Q =

[
A −b
−bT c

]
(2)

and define the quadric surface as all points x that satisfy

xT Ax−2xT b+ c = 0. (3)

3.1. Properties

The value of the quadric Q is xT Qx and, unless ambiguous, will be
written as Q(x). Thus, the quadric surface is the isosurface Q(x) =
0. The normal of an isosurface is its normalized gradient:

N(x) =
∇Q(x)
||∇Q(x)|| , ∇Q(x) = 2 · (Ax−b) (4)

Given a line p+ tv with p,v ∈ R3, t ∈ R and ||v|| = 1, we can
compute the line-quadric intersection by solving Q(p + tv) = 0.
This quadratic equation with a single unknown t has up to two real
solutions:

t1,2 =
vT b− vT Ap

vT Av
±

√(
vT b− vT Ap

vT Av

)2

− pT Ap−2pT b+ c
vT Av

(5)
For some quadrics, A is singular and vT Av can be (close to) zero
for some directions. In those cases, the quadratic equation becomes
linear and we only get a single solution

t =
1
2
· pT Ap−2pT b+ c

vT b− vT Ap
. (6)

For the sake of simplicity, we will only present the non-degenerate
cases in the rest of this paper.

3.2. Sampling Planes and Heightfields

In this subsection, we develop an efficient way to work with the
quadric surface. For that, we define three sampling planes, from
which we orthogonally project onto the quadric surface. This re-
sults in three different ways to parametrize the surface, basically
heightfields from three different directions.

We call the point q with Aq = b the center of the quadric and use
a singular value decomposition (SVD) to compute it robustly. For
most quadrics, this is the “natural” choice, such as the center of an
ellipsoid or the apex of a double cone. For some types, this point
is not unique, e.g. for the various cylinder types. In those cases, the
actual choice matters little and we take the min-norm solution.

The eigenvectors ui and eigenvalues λi, i ∈ {1,2,3}, of A are

of special importance. The eigenvalues can be used to classify the
quadric types. The eigenvectors, together with the center q, form
a convenient local coordinate system that we heavily use in our
sampling process. We will call ui the principal axes of the quadric
Q. For almost all quadrics, all three planes (q,ui), i ∈ {1,2,3}, are
mirror symmetries. A selection of quadric types together with their
centers and principal axes are shown in Figure 3.

Given the quadric center q and two different principal axes ui
and u j of Q, we call the plane q+ x · ui + y · u j with x,y ∈ R the
sampling plane Pi j. The Pi j can be seen as the coordinate planes
of a local coordinate space. These planes cut the quadric into two
parts and have a special property: any ray that starts on the plane
and is orthogonal to it will intersect with the quadric surface at
most once. Such rays have the form p+ tuk, where p is restricted to
p = q+ x · ui + y · u j ∈ Pi j, t ∈ R≥0. As ui,u j,uk are eigenvectors,
Q(p + tuk) = 0 can be simplified significantly. In particular, we
exploit uT

i uk = 0, uT
j uk = 0, and uT

i Aui = λi to obtain

t =
√

αxx2 +αyy2 +αc, αx =−
λi

λk
, αy =−

λ j

λk
, αc =

qT b− c
λk

.

(7)
This can be interpreted as a heightfield h(x,y) =√

αxx2 +αyy2 +αc and the quadric surface (in the local space) as
the function graph (x,y,±h(x,y))T where h(x,y) is real-valued.
An example quadric and its three sampling planes are shown in
Figure 4. Different quadrics lead to different heightfield types,
depending on the signs of αx,αy, and αc, as depicted in Figure 5.

3.3. Efficient Conservative Distance

For an efficient sampling and subdivision procedure, we need a
distance-to-primitive function, or at least a conservative approxi-
mation thereof. Distance between point and quadric surface is a
non-trivial problem [MES03, Lot14] and only a few special cases
have efficient analytic formulas, like point-to-sphere or point-to-
plane. The main use of the distance function is to skip large regions
of cut-away surfaces. In this case, even a conservative approxima-
tion, a lower bound for the distance-to-quadric-surface, is effective.

Given a point x0 ∈ R3, our goal is to derive a conservative dis-
tance function d(x0) that guarantees that there is no quadric surface
within a sphere of radius d(x0) around x0. This function should be
fast to compute but as close to the true distance as possible.

The value Q(x) of the quadric is quadratic in x and can be rewrit-
ten to be “centered” around x0:

Q(x) = Q(x0)+∇Q(x0)
T (x− x0)+

1
2
(x− x0)

T HQ(x0)(x− x0)

= Q(x0)+2 · (Ax0−b)T (x− x0)+(x− x0)
T A(x− x0) (8)

We can write x as x0 + t · v with t ∈ R≥0 and v ∈ R3, ||v|| = 1, i.e.
in particular x− x0 = t · v:

Q(x0 + t · v) = Q(x0)+2 · t · (Ax0−b)T v+ t2vT Av (9)

As v has unit length, −||Ax0−b|| ≤ (Ax0−b)T v≤ ||Ax0−b|| and
minλi ≤ vT Av ≤ maxλi, where λi are the eigenvalues of A. Thus,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

44

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

(a) (b) (c) (d) (e) (f) (g)

Figure 3: Quadric surfaces (blue) are quite flexible and, together with CSG operations, can represent a wide selection of objects. A few
notable types of quadrics are shown: ellipsoid (a), elliptic cylinder (b), elliptic cone (c), one-sheet hyperboloid (d), two-sheet hyperboloid (e),
two parallel planes (f), and the hyperbolic paraboloid (g). Using principal component analysis, we also define a quadric center (magenta)
and quadric principal axes.

(a) (b) (c) (d)

Figure 4: Each quadric has a special coordinate system derived from a principal component analysis of its coefficient matrix, an exemplary
elliptic hyperboloid is shown in (a). Every pair of principal axes defines a sampling plane, from which we can orthogonally project onto the
quadric surface (b, c, d). Each surface point can be reached by multiple sampling planes with varying distortions. In the top row, a regular
sampling of each sampling plane is shown. Samples are colored if they are the projection with the lowest distortion. The bottom row shows the
analytical partitioning into low-distortion regions. Each region is decomposed into 2D basic regions that are later used as the starting point
for our adaptive sampling scheme. These basic regions come in four different types: triangles, axis-aligned rectangles, “elliptic triangles”,
and “hyperbolic triangles”.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

45

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

αx > 0
αy > 0
αc < 0

αx > 0
αy > 0
αc > 0

αx > 0
αy < 0
αc > 0

αx > 0
αy < 0
αc < 0

αx < 0
αy < 0
αc > 0

Figure 5: On a sampling plane, the quadric surface is a heightfield of the form h(x,y) =
√

αxx2 +αyy2 +αc. The non-degenerate cases are
shown here and depend on the signs of the coefficients. From the 8 possible cases only 5 are depicted as one has no surface (αx,αy,αc < 0)
and the two belonging to αx < 0,αy > 0 are mirrored versions of αx > 0,αy < 0. The top row shows samples on the heightfield: blue, if this
is the lowest distortion amongst the three sampling planes, and gray otherwise. The bottom row shows the analytical construction of the low
distortion regions: Pairwise equating of two normal components results in either a line (red) or a conic section (green, blue). The desired
region is always bounded by (a subsection of) these curves and the coordinate axes.

the following bounds hold:

Q(x0 + t · v)≤ Q(x0)+ t ·2||Ax0−b||+ t2 ·maxλi = Q+
x0(t) (10)

Q(x0 + t · v)≥ Q(x0)− t ·2||Ax0−b||+ t2 ·minλi = Q−x0 (t) (11)

For each bound, we have a simple quadratic equation in t. In par-
ticular, the bounds are independent of v. Depending on the sign
of Q(x0), we can now define d(x0): if Q(x0) < 0, then x0 is in-
side the quadric and we can use the upper bound (Equation 10)
to compute the smallest positive t where the Q+

x0(t) = 0, called
t+0 . Analogously, if Q(x0) > 0 we use the lower bound to define
t−0 = min{t | t > 0∧Q−x0 (t) = 0}. Thus, the function

d(x0) =

{
t+0 if Q(x0)< 0
t−0 otherwise

(12)

is a conservative distance function.

A few 2D examples are shown in Figure 6. Empirically, d(x0)
seems to be a good approximation of the true distance. In the sup-
plemental material, we prove a desirable property: not only the ab-
solute error, but also the relative error converges to zero close to the
surface.

3.4. Heightfield Distortion

Due to the way we partition the heightfield domains in Section 4.1,
the mapping from 2D to 3D has a maximum distortion of

√
3. Us-

ing this bound results in pessimistic assumptions during subdivi-
sion and distance evaluation, ultimately resulting in more subdi-
vision levels and more emitted samples than strictly necessary. A

more nuanced understanding of the local distortion leads to more
accurate subdivision and less superfluous samples. Given the (un-
normalized) heightfield normal n(x,y) (Equation 14), the distortion
δ(x,y) is given by

δ(x,y) =
(

n(x,y)2
|n(x,y)|

)−1

=

√
(αx +α2

x)x2 +(αy +α2
y)y2 +αc

αxx2 +αyy2 +αc
.

(13)
For the subdivision and distance estimates, we need the maximum
distortion of a basic region. Assuming a constant distortion over
such a region might work for small regions of relatively smooth
quadrics, but is wrong in the general case. Fortunately, we were
able to prove a useful property of δ(x,y): Given an axis-aligned
rectangle R in a 2D quadrant, the extrema of δ(x,y) for (x,y) ∈ R
are assumed at one of the four vertices of R. Thus, we obtain effi-
cient and useful distortion bounds for any 2D region by computing
an axis-aligned bounding box and evaluating the distortion at the
corners. The supplemental material contains the full derivation.

4. Adaptive Sampling

Blindly sampling the primitive surfaces and discarding samples that
do not lie on the actual CSG surface leads to an efficient method
with weak guarantees. Instead, we use the sampling planes defined
in Section 3.2 to have a parametric description of the quadric sur-
faces via sets of heightfields. In Section 4.1, we partition the do-
mains of the heightfields such that the quadric surface is repre-
sented by 2D regions with low-distortion heightfields (cf. Figure 4).
In the domain of these heightfields, we define our adaptive sam-
pling. Given a user-provided radius, our goal is to guarantee that

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

46

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

(a)

(b)

Figure 6: We derive an extremely efficient conservative signed
distance-to-quadric-surface function using second order Taylor ex-
pansion and the min-max theorem for eigenvalues. A few exam-
ples are shown here in the 2D setting, where the non-degenerate
quadrics are ellipses and hyperbolas (blue). Negative signed dis-
tances are “inside” (green), positive means “outside” (red). These
roles can be inverted by negating the quadric coefficient matrix and
is used for the Boolean operation “not”. Note that, while not exact,
these distances are still quite useful in determining large regions of
space that contain no surface intersection.

for each point on the CSG surface, at least one sample is gener-
ated within the provided radius. Formulated the other way around:
each generated sample “covers” a certain radius in the heightfield
domain. Our adaptive subdivision and sampling approach of Sec-
tion 4.2 ensures that each point in the heightfield domain is either
covered by a generated sample or not part of the CSG surface. Si-
multaneously, large regions outside and even on the CSG surface
can be skipped during the subdivision.

4.1. Low-Distortion Regions

While we could take any of the three sampling planes and use its
heightfield as a parametrization, for most quadrics, this leads to
problems in certain areas. Consider the leftmost example in Fig-
ure 5. In the gray region, the quadric surface perpendicularly inter-
sects the sampling plane. Close to the intersection, a unit area on the
quadric projects to almost zero area on the sampling plane. Thus,
we would need smaller and smaller steps on the sampling plane
to have a uniform sampling on the quadric surface, each generated
sample would “cover” less and less of the 2D domain.

Given a sampling plane Pi j and the orthogonal principal axis uk,
we can compute the distortion using the normal vector. If p is a

point sample in world space, then |uT
k N(p)|−1 measures the distor-

tion if a local surface patch on Pi j is orthogonally projected onto
the quadric surface at p. We can circumvent the distortion problem
by using all three sampling planes and always choose the “best fit-
ting” plane, i.e. the one with the lowest distortion. This is always
the plane where N(p) aligns best with the plane normal, the one
maximizing |uT

k N(p)|. As the principal axes form an orthonormal
system, we can always find a plane with at most

√
3 distortion. This

is reminiscent of how triplanar texturing (e.g. [Gol17]) constructs a
low-distortion texture mapping based on the surface normal. The
result is a set of 2D patches on the sampling planes that, when ap-
plying the heightfield function, partition the quadric surface as de-
picted by the different colored regions in Figure 4. These patches
will be the starting point of our adaptive subdivision and sampling
scheme described in Section 4.2. In the following, we only describe
the positive quadrant, all other regions follow from symmetry.

We now want to find an analytic description of these low-
distortion regions, i.e. the blue regions of Figure 5. This can be
derived from the heightfield function h(x,y) =

√
αxx2 +αyy2 +αc.

The (unnormalized) surface normal n(x,y) is given by

n(x,y) =

 −αxx
−αyy√

αxx2 +αyy2 +αc

 . (14)

The heightfield is defined in the local coordinate space of the sam-
pling plane Pi j. Thus, the blue low-distortion region is the set
of points (x,y) where |n(x,y)2| ≥ |n(x,y)0| ∧ n(x,y)2 ≥ |n(x,y)1|,
i.e. where “up” is the largest component of the heightfield normal.
As n(x,y) is continuous, the low-distortion region boundary is at
|n(x,y)2| = |n(x,y)0| or |n(x,y)2| = |n(x,y)1|. The first condition
yields

|αxx| =
√

αxx2 +αyy2 +αc

⇔ 0 = (αx−α
2
x)x

2 +αyy2 +αc,
(15)

which is an axis-aligned conic section centered at the origin. Simi-
larly, the second condition yields

0 = αxx2 +(αy−α
2
y)y

2 +αc. (16)

These two conics already properly describe the searched-for
boundary, but are slightly unwieldy in practice. Thus, we further
subdivide this region. Solving |n(x,y)0| = |n(x,y)1| yields αxx =
±αyy, i.e. two lines through the origin, one per quadrant, resulting
in “octants”. These three curves describe all points where two nor-
mal components have equal magnitude. They partition the plane
into regions where the order of normal component magnitudes is
fixed. If two of them intersect, they all intersect in the same points,
which correspond to the normals (±1,±1,±1)T /

√
3. This con-

struction is shown in the lower row of Figure 5.

If the coordinate axes are used for demarcation as well, we
obtain a partitioning of the blue region into manageable subre-
gions. No subregion can be bordered by more than one of the
conics. An elliptic conic will always eventually intersect with the
|n(x,y)0| = |n(x,y)1| line. The hyperbolas can either intersect the
x- or y-axis and they might intersect the |n(x,y)0| = |n(x,y)1| line
or not. For each case there is an “inside” and an “outside” sub-case,
i.e. if the subregion with or without the origin is meant. The result-
ing 9 non-degenerate cases are shown in Figure 7.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

47

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

(a) (b) (c) (d) (e)

Figure 7: The analytic partitioning of the low-distortion height-
field regions results in five cases, four of which have two sub-cases
each. These are all combinations of how an ellipse or hyperbola
that is axis-aligned and centered at the origin can intersect with a
2D octant (i.e. the region between an axis and a line through the
origin).

(a) (b) (c)
Figure 8: Given a bounding box, the potentially infinite heightfield
regions are decomposed into a set of basic regions: triangles, axis-
aligned rectangles, “elliptic” triangles and “hyperbolic” triangles
(a). During our adaptive sampling, we classify these regions. If a
region is fully on the CSG surface, it is covered by splats (b). If it is
fully outside or inside, it is discarded. Otherwise, we subdivide the
region and re-classify (c).

These subregions can still be infinite, the same way that quadric
surfaces might be infinite. In practice, we provide a bounding
sphere and no surface outside the sphere needs to be generated. We
translate this bound into an axis-aligned bounding box (AABB) in
the local coordinate system of the sampling plane. The subregions
are then intersected with this AABB and decomposed into a set
of basic regions, chosen for ease-of-use in our adaptive sampling.
Each basic region can be either (cf. Figure 8):

1. a triangle
2. an axis-aligned rectangle
3. an “elliptic triangle“, an axis-aligned right triangle where the

diagonal is part of an ellipse centered at the origin
4. a “hyperbolic triangle”, a triangle where one side is part of a

hyperbola centered at the origin and opening either towards the
x- or y-axis

While this construction might seem unnecessarily complex, it
serves an important purpose: We now have a decomposition of the
quadric surface into heightfields bound by reasonably simple re-
gions. Each heightfield has the guarantee that within the defined
region, the mapping from 2D to 3D has a maximum distortion of√

3. These properties are important for the adaptive sampling in
Section 4.2. An example quadric and its decomposition into basic
regions is shown in Figure 4.

4.2. Adaptive Sampling

This section describes the core of our method: the adaptive sam-
pling with strong coverage guarantee. Our CSG surface is de-
fined by a set of quadrics and Boolean operations between them
(cf. Section 5). Each quadric surface is decomposed into a set of
low-distortion 2D basic regions with heightfield functions (cf. Sec-
tion 4.1 and Figure 4).

Given a quadric Q and a 2D region on a sampling plane, the goal
of our adaptive sampling is to generate samples in this region and
thus, via the heightfield, on the quadric surface. Additionally, each
sample must be on the CSG surface and each point of the region
must either be “covered” by a sample (i.e. within a user-defined
world-space radius) or the point must be proven to not be part of
the CSG surface.

An essential tool to achieve this efficiently is Equation 22 in Sec-
tion 5, which defines the quadric-relative conservative signed dis-
tance function dQ(S, p): For quadric Q of CSG surface S, this func-
tion provides classification for points p (that lie on Q) and their
neighborhood. It has the following property: p is only part of the
CSG surface if dQ(S, p) is negative. Furthermore, the same classi-
fication is valid for all points on Q within radius |dQ(S, p)| of p.

Given a basic region, i.e. one of the shapes depicted in Figure 8,
we evaluate dQ(S, p) on all corners of the region. These distances
are in world space and we use our distortion guarantees to project
the radius into the 2D domain. For this, we can either use the
conservative

√
3 value or the distortion bounds described in Sec-

tion 3.4. The result is a set of circles at the corners of the region.
Inside each circle, all points have a known classification provided
by the sign of dQ(S, p). If the circles cover the whole region, the
region can be classified as belonging (as a whole) to the CSG sur-
face or not. In the former case, we cover the region with samples
(cf. Figure 8 (b)). Otherwise, no samples are generated. If the cir-
cles do not cover the whole region, we subdivide according to a
simple longest-edge strategy (cf. Figure 8 (c)). This whole strategy
is then applied recursively.

There is one special case: If any corner is part of the CSG surface
(dQ(S, p) < 0) and the region is small enough to be covered by a
single sample at that corner, we terminate regardless of |dQ(S, p)|.
Generating that sample will already provide our guarantee without
classifying the rest of the region.

Figure 9 shows the subdivision pattern on an example CSG
object. Using the conservative distance, this adaptive sampling
only subdivides where multiple quadrics interact. The subdivision
quickly terminates when the region actually belongs to the CSG
surface, i.e. when dv is negative. In that case, we can stop at the
latest when the region is smaller than a single splat as the render-
ing ensures proper pixel-perfect covering. Outside but close to the
CSG surface, usually many subdivisions are required to prove that
the region is actually completely outside and does not contain small
surface parts. In practice, a threshold can be employed: discard re-
gions that are not yet classified but are smaller than for example
1/10th of the splat size. This speeds up termination but can theo-
retically result in small holes (which we did not observe in practice,
except when explicitly forced).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

48

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

(a) (b) (c) (d)

Figure 9: Subdivision pattern of our adaptive sampling on an actual CSG object (a). The (recursively subdivided) basic regions on each
quadric surface are shown (b,c,d). Each red point is an evaluation of our quadric-relative conservative signed distance function. With its
help, large regions can be classified at once and subdivision is only needed in the vicinity of feature curves.

5. CSG

The input is a directed acyclic graph (DAG) representing the CSG
object. Leaf nodes are annotated with a primitive, i.e. a quadric. In-
ner nodes are Boolean operations such as union, intersection or dif-
ference. Operations are variadic where sensible. Additionally, each
graph edge can be annotated with a 4×4 transformation matrix.

We start by computing a canonical form of the CSG graph:
A union of intersections, also known as disjunctive normal form
(DNF). Sub-graphs are duplicated as needed, transformations are
pushed into leaf nodes and are applied to the quadric matrix. Given
a quadric coefficient matrix Q ∈ R4×4 and a transformation matrix
M ∈ R4×4, the transformed quadric Q′ is obtained via

Q′ = M−T QM−1. (17)

The represented object S is thus simply

S =
⋃

i

⋂
j

Qi j, (18)

where Qi j are the leaf quadrics with transformations applied. This
transformation is quite similar to [GMTF89].

This canonicalization serves three purposes. First, a tree form is
required as each path from root to leaf creates a unique instance
of the primitive, and thus of its surface, anyways. For each in-
stance, different regions of the primitive surface might belong to
the CSG surface, which means that samples cannot be reused across
instances. Secondly, the conservative signed distance function that
we construct for the adaptive sampling in Section 4.2 currently re-
lies on the normal form. And finally, the local clipping employed
during rendering in Section 6 is highly efficient as it only needs to
know about quadrics from the same intersection term.

Let d(Q, p) be the conservative signed distance function defined
in Section 3.3. This distance is positive, if the point p is outside
the quadric Q, negative if inside, and zero if Q(p) = 0. It is conser-
vative, because |d(Q, p)| is a lower bound of the minimal distance
from p to the quadric surface. This can be extended to a conserva-
tive signed distance to the whole CSG surface:

d(S, p) = min
i

max
j

d(Qi j, p) (19)

Distance-to-csg-surface using
min and max can be inexact, even
if distance-to-primitive is exact.

Note that, in general, this
distance is only a conservative
approximation, even if the in-
dividual d(Qi j, p) were exact.
While this function can accu-
rately classify points as “in-
side”, “outside”, or “on sur-
face”, it is not particularly ef-
ficient for our purposes. When
generating samplings for a
quadric Qi j, we already know
that the samples lie on the sur-
face of Qi j. They can still lie inside the CSG object (e.g. if inside
another unioned primitive) or outside of it (e.g. if cut away by an in-
tersection). However, we gain no further information if the sample
actually belongs to the CSG surface. d(S, p) is zero and we have no
idea if d(S, p+ ε) is zero or not. This would make the subdivision
scheme of Section 4.2 inefficient, as we would have to subdivide
surface regions until the parts can be covered by a single splat each.

However, given the CSG tree in normal form, we can design
a quadric-relative conservative signed distance function dQab(S, p)
that can classify large regions of a quadric surface as “samples must
be kept” and “samples must be discarded” and requires subdivi-
sion only in regions where different quadrics interact. Consider the
“point of view” of a quadric Qab, i.e. the b-th intersection of the
a-th union of the DNF. If we generate a sample on Qab, it only
belongs to the CSG surface if it is not inside any other intersection
term (and thus inside the CSG object, cf. Figure 10 (c,d)) and if it is
not outside any other intersection term of its own intersection term
(and thus outside the CSG object, cf. Figure 10 (a,b)). The distance
to the other intersection terms is

−min
i 6=a

max
j

d(Qi j, p). (20)

It is negative, because we discard positive values and want to dis-
card p if it is inside any other intersection term. The distance to the
other intersections of the same intersection term is simply

max
j 6=b

d(Qa j, p). (21)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

49

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

Combining these yields our desired distance function:

dQab(S, p) = max
(
−min

i 6=a
max

j
d(Qi j, p), max

j 6=b
d(Qa j, p)

)
(22)

This function has our desired properties:

• It is positive if p does not belong to the CSG surface and no point
of Qab within |dQab(S, p)| belongs to it either.
• It is negative if p belongs to the surface and all points of Qab

within |dQab(S, p)| also belong to it.

With this function, our adaptive sampling of Section 4.2 can
quickly skip over discarded regions and fill completely covered
ones. Note that while dQab(S, p) appears to have different meanings
depending on its sign, it has a clear interpretation in terms of clas-
sification: The sign of dQab(S, p) encodes if p belongs to the CSG
surface or not, while |dQab(S, p)| is a radius in which all points of
Qab have the same classification as p.

6. Rendering

Each generated sample lies on the actual CSG surface. Further-
more, the adaptive sampling is designed for a splat-based render-
ing: Our approach guarantees that for each CSG surface point, at
least one sample is generated within the splat radius r and on the
same primitive. Thus, the following method yields a pixel-perfect
rendering of the CSG surface (cf. Figure 11):

1. For each sample s on quadric Qab, render a screen-aligned quad
of size 2r×2r (world-space).

2. In the fragment shader, compute the intersection p of the view
ray with Qab (Equation 5), favoring the intersection closer to s
and discarding those farther away than r from s.

3. Evaluate Qa j(p) for all quadrics Qa j, j 6= b that belong to the
same intersection term as Qab. Discard the fragment if any
Qa j(p) is positive. Only Qa j that are “close” to the sample need
to be considered, i.e. where |d(Qa j,s)|< r.

Step (1) ensures that the fragment shader is executed for each frag-
ment that potentially belongs to a sphere of radius r around the
sample s. Then, Step (2) performs a local quadric ray-tracing to
compute the exact surface point. Finally, Step (3) implements a lo-
cal quadric clipping to make sure that no point outside of the CSG
surface is visible. This is the only potentially expensive step in the
rendering, but is very cheap in practice as it can be aggressively
optimized: The clipping only needs to clip against quadrics of the
same intersection term as those would result in visible fragments
outside the CSG surface. Some rendered points might be inside the
CSG surface, but as our rendering is watertight, this is not visible.
We furthermore reduce the set of required tests by only consider-
ing quadrics that might intersect with the (s,r)-sphere. In practice,
most samples actually need zero clipping. Close to CSG surface
edges we need one clipping quadric, close to corners two. This
number can increase in the vicinity of small features and thin re-
gions but is still low in general. The per-quadric clipping test is
pT Qp > 0, which is cheap.

In our implementation, we make sure to minimize the amount
of redundant data. Apart from the splats, we use two additional
buffers:

1. A quadric buffer that contains an entry for each unique quadric:
matrix coefficients (10 floats as the matrix is symmetric) and a
color (for visualization purposes).

2. A clip indirection buffer that contains indices for quadrics used
in the local clipping.

The samples are rendered as an instanced quad. The per-instance
data is the 3D sample position, the index of the quadric that this
sample belongs to and two integers that indicate the quadrics used
in the clipping: a start index and a count into the clip indirection
buffer. When assembling the splat data on the CPU, the clipping
data is deduplicated, i.e. each unique set of clipping quadrics is
only stored once in the clip indirection buffer and used by many
samples.

For accurate shading and interaction with other renderings, we
compute the surface normal using Equation 4 and adjust the depth
using gl_FragDepth. This usually disables the early depth test,
but as the updated depth value is always behind the rendered ge-
ometry, a conservative depth specification can be used. Our ren-
dering integrates smoothly into a traditional rasterization pipeline.
For that purpose, it can be thought of as a special decal or particle
rendering technique. All typical local shading techniques, includ-
ing physically-based shading, can be used due to accurate depth
and normals.

6.1. Overdraw Reduction

The described rendering strategy results in the correct rendering,
but is unnecessarily conservative: The screen-aligned quad is used
to cover a sphere around the sample to capture the quadric sur-
face. However, most of the time the quadric is smooth and the splat
small, thus almost flat. Especially when viewing from a shallow an-
gle, this leads to extreme overdraw. Figure 13 shows the overdraw
and the effect of the following optimizations.

Instead of a screen-aligned quad, we can use our distortion es-
timate (cf. Section 3.4) to construct a local surface-aligned box
around the splat surface. The first box direction is given by the
surface normal n(x,y) (Equation 14), the other two are arbitrary
tangent directions. The extent in tangent direction is given by the
splat radius r, the extent in normal direction is

r · (maxδ(x± r,y± r)−minδ(x± r,y± r)) . (23)

When smaller than an epsilon, we can safely render the splat as a
single surface-aligned quad, otherwise we render the box. If we are
only interested in the outer appearance, we can omit the box side in
negative normal direction and enable back-face culling. Figure 12
shows an example of these splat bounds, while Figure 13 (b) and
(c) show the drastic overdraw reduction achieved. We derive this
bound in the supplemental material.

Replacing the
√

3 estimate in the subdivision and distance es-
timate by the distortion measure from Section 3.4 also results in
less superfluous samples and thus less overdraw (Figure 13 (d)).
Finally, close to interaction between quadrics, many subdivisions
are needed and small regions occur that are similarly sized to splats
or smaller. In those cases, we can reduce the radius of the emitted
sample without increasing the number of samples and without any
visual change, but nevertheless reducing overdraw (Figure 13 (e)).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

50

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

(a) (b) (c) (d)

Figure 10: Our quadric-relative conservative signed distance function makes it possible to quickly classify large regions in our adaptive
sampling. In this example, the blue quadric surface is being sampled and the function value is shown as a color-coded radius around the
sample position. If the function is negative (green), all samples within the radius are guaranteed to lie on the CSG surface. If it is positive
(red), those samples can be discarded instead. Due to our normal form, the sign change, or decision border, happens either when being cut
away by a quadric within the same intersection (a,b) or by being inside a different term of the root union (c,d). The displayed distance uses
our conservative distance-to-quadric from Section 3.3 which, while not exact, is still practical.

(a) (b) (c) (d)

Figure 11: Effect of our rendering on an intersection of three quadric with non-negligible curvature. An environment map reflection is added
to improve the legibility of surface smoothness. (a) shows a classical splat rendering of our generated surface samples. In (b), we perform
local quadric ray-tracing to project the splat onto the quadric surface. For accurate reconstruction of features, we add local quadric clipping
in (c), which results in a hole-free pixel-perfect visualization of the CSG surface. The number of quadrics that must be clipped against is
theoretically unbounded, but due to our aggressive optimization, it is quite low in practice. This can be seen in (d), where the number of
clipping quadrics is color-coded: white means 0, green is 1, orange is 2, the maximum in this example.

Taken together, these optimizations lead to a significant reduc-
tion in overdraw and a 10× decrease of render cost. On the CPU
side, they actually lead to a slightly faster sampling process as the
more accurate distortion estimate reduces the required subdivision
depth and the number of generated samples.

7. Evaluation

7.1. Characteristics and Performance

All benchmarks were performed on a 3.60 GHz Intel Core i9-
9900K (4.8 GHz single core turbo) and an NVIDIA RTX 2080 Ti.
Unless otherwise noted, all timings are on a single CPU thread. All
algorithms were implemented in C++ and OpenGL, compiled with
Clang 7 using the flags -O3 and -march=native.

The runtime performance of our method has two components.
First, samples have to be generated for a given CSG model. This is
a pre-processing step and the samples are view-independent. After-
wards, the model can be rendered from any view using the splat-

based renderer of Section 6. As the sampling and the rendering are
two separate contributions, there are evaluated individually.

Table 1 summarizes the key performance metrics that determine
the sampling throughput. Especially all basic formulas needed for
the subdivision and the covering can be evaluated multiple hun-
dreds of millions of times per second per CPU core. In practice, this
translates to a few ten million samples per second on simple CSG
models and a few million per second on more complex ones. The
number of samples depends on the CSG surface area and the user-
provided sample radius, i.e. the splat size. We can always guarantee
correct rendering, even for low numbers of samples. However, large
splats usually lead to more overdraw and more “wasted” splat area,
typically reducing the rendering performance. In our experience,
a few hundred thousand samples provide a good tradeoff for the
models we tested. This means, that CSG models can be edited in
near real-time or at least interactively.

Note that the system described here does not include a spatial
acceleration structure on the CSG-tree level. This is left as fu-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

51

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

Figure 12: Rendering with surface-aligned flat splats is not correct
a priori, as the surface curvature might lead to holes or missed sil-
houette pixels. Instead, we derive surface-aligned splat bounding
boxes based on local distortion bounds. These bound the curved
splats. Rasterizing these bounding boxes and performing local
quadric ray-tracing guarantees a hole-free result and a correct sil-
houette. In this figure, splats are not tight for illustration purposes.

ture work and beneficial if objects with many separate or loosely-
interacting parts are modeled. We do not foresee any problem
adding it to the evaluation of Equation 22.

While we did not implement and benchmark a multi-core ver-
sion, it is rather straightforward to implement and we expect near-
linear speed-up. At least each basic region (cf. Section 3.2) can be
subdivided and sampled in parallel. If this is too coarse, a work-
stealing method based on the subdivision trees is appropriate.

The rendering is splat-based and can be characterized with two
metrics: per-fragment cost of a single splat and the overdraw factor.

For each splat fragment, we perform local ray-tracing against a
single quadric and a variable number of quadric evaluations for the
clipping (cf. Figure 11). Most splats require no clipping, at the in-
tersection of two quadrics samples need one clipping quadric, at
corners typically two. In general, all quadrics of the same inter-
section term are collected within the splat radius, except for the
one that the splat belongs to. Thus, structures smaller than the splat
size can show a higher number of clipping quadrics. On our high-
end graphics card, a single screen-filling (1920×1080) splat costs
0.10 ms with no clipping, and 0.12 ms with 5 clipping quadrics. An
interesting perspective is that the splats can be seen as a kind of lo-
calized “CSG cache”. Instead of evaluating the complete CSG tree
for each view ray, the splats act as a spatial acceleration (rays are
only generated for splat fragments) and a computation cache (rays
have access to a pruned CSG tree via the local clipping).

Hole-free splat-based renderers tend to have non-negligible over-
draw. Our technique has several optimizations to reduce overdraw
(cf. Section 6.1, Figure 13, and Figure 14). In our experiments,
we still have about 3–4× overdraw, i.e. on average, each pixel is
covered by 3–4 fragment shader invocations. Complex and layered
models can have higher overdraw, though most models require less
than 1 ms to render on Full HD. As our rendering is really close to
raster-based particle or decal rendering, traditional techniques like

frustum, occlusion, or hierarchical z-buffer (HiZ) culling can be ap-
plied. This would lead to even more predictable frame times and the
impact of high depth complexities would be minimized. Close-up
viewing of the CSG model can currently be roughly twice as expen-
sive as indicated in Table 2, as the close-up surface is effectively a
second screen-filling layer. While still quite fast, proper occlusion
culling would eliminate this overhead.

Note that our rendering is currently optimized for opaque render-
ing from the outside. To correctly clip the inside, other terms of the
root union must be considered as well, leading to more complex
clipping code in the shader. The impact on the rendering perfor-
mance would probably be low, as, similar to the current clipping,
only nearby quadrics would need to be added to the clipping.

Table 2 presents a few examples with varying splat sizes and
the resulting statistics and characteristics. The number of distance
queries, i.e. evaluations of dQab(S, p), is relatively high, as we
need many subdivisions where quadrics interact (cf. Figure 9).
A sampling-plane-local acceleration structure to share distance
queries between different branches of the subdivision tree might
help, but incur non-negligible overhead themselves. We leave this
optimization for future work. The number of clip indices, i.e. the
size of the clip indirection buffer (cf. Section 6), is low enough
that we expect that quadric buffer and clip indirection buffer are
always in cache. After sampling, our rendering is extremely cheap
with less than 1 ms for all models. This is roughly proportional to
the number of fragments and we measured about 4× the cost when
rendering in 4K.

7.2. Comparison

Our sampling-based CSG represents a new approach to CSG com-
putation and visualization, with its own unique set of trade-offs.

Explicit computations are typically significantly more expensive
than our sampling and often require linear approximations, e.g. tri-
angle meshes or BSP trees. However, after the computation, render-
ing tends to become trivial. In contrast, pure rendering methods like
ray-tracing or depth-peeling-based approaches often require little to
no preprocessing but tend to be more expensive than our approach.
Table 2 contains a comparison with a raytracing approach: for each
intersection term of Equation 18, all quadric intersections are col-
lected in a local buffer and sorted by depth. Counting number of
times the quadrics are entered and left finds the correct CSG sur-
face. The result is the closest surface of all terms of the root union.
Except for very simple cases, our rendering is faster and relatively
independent of the CSG complexity.

Most rendering methods require spatial acceleration structures
or bounded primitives to be efficient. Our primary focus is on ob-
jects with complex interaction of curved quadrics, where these op-
timizations are less applicable. We leave adding a spatial acceler-
ation structure for evaluating the distance function to future work
and expect this straightforward to integrate.

CSG of curved surfaces is often approximated by isosurface ex-
traction of implicit functions. Even with feature-preserving meth-
ods, these approximations tend to be poor in the presence of thin
structures. In contrast, our method provides strong guarantees for

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

52

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

(a) (b) (c) (d) (e) (f)

Figure 13: When rendering the samples as view-aligned splats covering a sphere, overdraw becomes an issue (a). Multiple optimizations
lead to a drastic reduction of wasted bandwidth: First, we use surface-aligned boxes and splats (b). This enables effective back-face culling
(c). We also derive an efficient lower bound for the splat distortion, leading to less sample overlap (d). Finally, splat size can be reduced in
highly subdivided regions without increasing the number of samples, resulting in less overdraw where multiple quadrics intersect (e). The
CSG surface is shown in (f) and while all variants produce the same visual results, (e) is more than 10 times faster than (a). Overdraw is
color coded, green is 1 and red is 30+.

operation throughput timing
evaluation
quadric value Q(x) 315000000 / s 3.17 ns / op
quadric normal N(x) 220000000 / s 4.54 ns / op
sampling plane heightfield value h(x,y) 1000000000 / s 1.00 ns / op
heightfield distortion δ(x,y) 625000000 / s 1.60 ns / op
heightfield min distortion minR δ(x,y) 150000000 / s 6.70 ns / op
quadric-line intersection 53000000 / s 18.87 ns / op
conservative signed distance-to-quadric d(x0) 130000000 / s 7.69 ns / op
sampling
single quadric, no subdivision 135000000 / s 7.41 ns / sample
single quadric, with subdivision 40–70000000 / s 14–25 ns / sample
simple CSG surface (Figure 9) 10–50000000 / s 20–100 ns / sample
complex CSG surface (Figure 1) 0.5–2000000 / s 500–2000 ns / sample

Table 1: Typical performance numbers of our method on a single 4.8 GHz CPU core. While many optimizations, especially for large,
complex CSG models, are still untapped, the current performance is already enough for interactive modification of the CSG object. Note that
our samples cover the whole CSG surface and do not require recomputation if the camera view changes. When sampling from a CSG surface,
the throughput also strongly depends on the splat size: a lower size results in fewer samples and less absolute time, but the per-quadric
overhead factors in more significantly.

the sampling and the rendering. All samples are guaranteed to lie on
the CSG surface and for each point on the CSG surface, there is at
least one sample on the same quadric within the user-provided splat
radius. Together with the splat-local quadric raytracing and clip-
ping, we guarantee hole-free pixel-perfect rendering. The sample
guarantee ensures that our method is also useful in a non-rendering
context, e.g. for collision detection. Figure 15 shows an object with
small, curved features with sharp tips. Even though the splat size is
large in comparison, our method finds, samples, and renders those
features correctly.

8. Limitations and Future Work

Our presented method uses quadric surfaces as primitives. While
this already includes boxes, spheres, ellipsoids, cones, cylinders,
and affine transformations thereof, many important curved surfaces
cannot be exactly represented by quadric surfaces. Thus, a straight-

forward avenue for future research would include extending our
system for other primitives types, especially freeform surfaces.
Generating samples from these surfaces is usually not a problem
and the challenge is to find fast and useful conservative signed dis-
tance functions.

A potentially more serious limitation is our conversion to dis-
junctive normal form. Depending on the input CSG graph, this can
lead to exponentially many terms in the worst case. While we did
not encounter that in our tests, it might still be worthwhile to ex-
plore working on the CSG tree directly. As argued in Section 5,
the tree form (in contrast to a graph) is necessary as each primi-
tive surface point should correspond to at most one point on the
CSG surface. However, the normal form might not be necessary if
efficient “quadric-relative conservative signed distance functions”
can be formulated that respect the CSG tree. Similarly, the local
quadric clipping need to be tree-aware and could probably not stay
in its current, highly-efficient form.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

53

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

CSG object quadrics splat size samples dis. queries #clip sampling time render time
ours raytracing

3

large 5454 22372 2 1.51 ms 0.34 ms

0.36 msmedium 23452 47336 2 3.39 ms 0.23 ms

small 249014 100398 2 8.51 ms 0.27 ms

5

large 8112 103296 52 7.63 ms 0.27 ms

1.14 msmedium 35904 215040 23 16.45 ms 0.18 ms

small 329856 576048 17 66.87 ms 0.26 ms

5

large 9465 52578 52 4.38 ms 0.31 ms

0.87 msmedium 27882 103908 31 8.71 ms 0.28 ms

small 205075 254592 25 23.47 ms 0.26 ms

21

large 7134 30802 78 6.26 ms 0.45 ms

0.72 msmedium 31940 85744 37 18.01 ms 0.39 ms

small 104972 171958 31 37.91 ms 0.33 ms

31

large 28432 196298 51 36.63 ms 0.96 ms

4.43 msmedium 91895 325705 34 62.23 ms 0.87 ms

small 184533 415847 29 83.36 ms 0.69 ms

80

large 10176 194024 299 94.47 ms 0.32 ms

9.15 msmedium 141200 558582 244 292.35 ms 0.34 ms

small 655727 1182464 236 623.92 ms 0.47 ms

Table 2: Examples of varying complexity with three different splat sizes and the resulting number of samples, distance queries, clip indices,
and performance statistics. Sampling is a view-independent pre-processing step done on the CPU (single core, 4.8 GHz), while our splat-
based rendering is done on the GPU (NVIDIA RTX 2080 Ti). The timings are given for 1920× 1080 from a view where the objects are
approximately screen-filling. We compare our rendering with a fragment-shader global raytracing.

Finally, there are still many potential optimizations untapped.
We expect a near-linear speed-up when utilizing more cores as our
method can be easily parallelized at the level of basic regions or
via a work-stealing approach. In an interactive modeling setting,
a partial update would be useful and is probably easily realizable
by computing regions that might have been invalidated and only
recompute the affected sample. Additionally, the CSG tree itself
would benefit from an optimization pass that tries to simplify super-
fluous operations, such as intersections that result in zero surface,
differences that do not change the input, or unions where subtree
is a subset of the other. For models with many loosely interact-
ing quadrics, a spatial acceleration structure and pre-culling on the
CSG tree would be appropriate.

9. Conclusion

In summary, we present a new method for working with objects de-
fined by CSG graphs, in particular where the primitives are quadric
surfaces. With our approach, it is possible to create point samples
from the CSG surface without computing an explicit surface repre-
sentation. We derive an efficient conservative distance-to-quadric-
surface function and, together with a low-distortion parametrization
of the quadric surface, we can formulate an adaptive subdivision-
based sampling method that can quickly classify large regions and
only subdivides close to where multiple quadrics intersect. The
generated samples satisfy a strong guarantee: given a user-provided
splat size r, each point on the CSG surface has at least one sample
within radius r that lies on the same quadric. This leads to a highly
efficient watertight rendering of the CSG surface using splats with
local quadric ray-tracing and clipping. The result is a sampled rep-
resentation of the CSG surface that can be used for pixel-perfect

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

54

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

(a) (b)
Figure 14: Using the distortion estimate minR δ(x,y) results in a
more even distribution of splats across the quadric surface. With-
out it, the worst-case distortion of

√
3 has to be assumed, leading

to a higher density of samples when the surface points towards the
quadric principal axes, i.e. has a low distortion. The images show
splats with 50% radius, (a) assumes worst-case distortion, (b) uses
our distortion estimate. The basic regions are slightly subdivided
and higher densities can be observed at the seams due to our con-
servative covering. In this example, (b) can cover the same surface
with 36% fewer samples.

(a) (b)
Figure 15: An intersection of eight quadrics that demonstrates
that our approach finds and preserves sharp features, even those
significantly smaller than the splat radius. Left shows splats with-
out clipping, right with clipping.

rendering without the usual discretization artifacts associated with
point clouds. Due to the strong guarantee, our samples can also be
used for some geometric operations, such as collision detection or
distance computation. The sampling process achieves a few million
samples per second per CPU core, which is fast enough to allow in-
teractive modification of the CSG object. Rendering typically costs
less than 1 ms and is largely independent of the model complexity.

Acknowledgements

The authors thank Aaron Grabowy for help with prototyping and
fruitful discussions. This project was funded by the European Re-
gional Development Fund within the “HDV-Mess” project under
the funding code EFRE-0500038.

References

[AS14] ANDREWS J., SEQUIN C.: Type-constrained direct fitting of
quadric surfaces. Computer-Aided Design and Applications 11 (01
2014). 3

[BF09] BERNSTEIN G., FUSSELL D.: Fast, exact, linear Booleans. In
Proceedings of the Symposium on Geometry Processing (Goslar, DEU,
2009), SGP ’09, Eurographics Association, p. 1269–1278. 3

[BGF15] BARKI H., GUENNEBAUD G., FOUFOU S.: Exact, robust, and
efficient regularized Booleans on general 3D meshes. Computers and
Mathematics with Applications 70, 6 (2015), 1235–1254. 3

[CK10] CAMPEN M., KOBBELT L.: Exact and robust (self-)intersections
for polygonal meshes. Comput. Graph. Forum 29 (05 2010), 397–406. 3

[CLSA20] CHERCHI G., LIVESU M., SCATENI R., ATTENE M.: Fast
and robust mesh arrangements using floating-point arithmetic. ACM
Trans. Graph. 39, 6 (Nov. 2020). 3

[CWJ02] CHANGHE TU, WENPING WANG, JIAYE WANG: Classifying
the nonsingular intersection curve of two quadric surfaces. In Geometric
Modeling and Processing. Theory and Applications. GMP 2002. Pro-
ceedings (2002), pp. 23–32. 3

[CWM∗14] CHOI Y.-K., WANG W., MOURRAIN B., TU C., JIA X.,
SUN F.: Continuous collision detection for composite quadric models.
Graphical Models 76, 5 (2014), 566–579. Geometric Modeling and Pro-
cessing 2014. 3

[dALJ∗15] DE ARAÚJO B. R., LOPES D. S., JEPP P., JORGE J. A.,
WYVILL B.: A survey on implicit surface polygonization. ACM Comput.
Surv. 47, 4 (May 2015). 3

[DFR17] DOUZE M., FRANCO J., RAFFIN B.: QuickCSG: Fast arbi-
trary Boolean combinations of N solids. CoRR abs/1706.01558 (2017).
arXiv:1706.01558. 3

[DLLP08] DUPONT L., LAZARD D., LAZARD S., PETITJEAN S.: Near-
optimal parameterization of the intersection of quadrics: I. the generic
algorithm. Journal of Symbolic Computation 43, 3 (2008), 168–191. 3

[GH97] GARLAND M., HECKBERT P. S.: Surface simplification using
quadric error metrics. In Proceedings of the 24th Annual Conference
on Computer Graphics and Interactive Techniques (USA, 1997), SIG-
GRAPH ’97, ACM Press/Addison-Wesley Publishing Co., p. 209–216.
3

[GMTF89] GOLDFEATHER J., MONAR S., TURK G., FUCHS H.: Near
real-time CSG rendering using tree normalization and geometric prun-
ing. IEEE Computer Graphics and Applications 9, 3 (1989), 20–28. 3,
9

[Gol17] GOLUS B.: Normal mapping for a triplanar shader.
https://medium.com/@bgolus/normal-mapping-for-a-
triplanar-shader-10bf39dca05a, 2017. [Online; accessed
25-May-2021]. 7

[HKM07] HACHENBERGER P., KETTNER L., MEHLHORN K.: Boolean
operations on 3D selective Nef complexes: Data structure, algorithms,
optimized implementation and experiments. Computational Geometry
38, 1 (2007), 64–99. Special Issue on CGAL. 3

[HR05] HABLE J., ROSSIGNAC J.: Blister: GPU-based rendering of
Boolean combinations of free-form triangulated shapes. ACM Trans.
Graph. 24 (2005), 1024–1031. 3

[HR07] HABLE J., ROSSIGNAC J.: CST: Constructive solid trimming
for rendering BReps and CSG. IEEE Transactions on Visualization and
Computer Graphics 13 (2007). 3

[JLSW02] JU T., LOSASSO F., SCHAEFER S., WARREN J.: Dual con-
touring of hermite data. ACM Trans. Graph. 21, 3 (July 2002), 339–346.
3

[KB89] KALRA D., BARR A. H.: Guaranteed ray intersections with im-
plicit surfaces. In Proceedings of the 16th Annual Conference on Com-
puter Graphics and Interactive Techniques (New York, NY, USA, 1989),
SIGGRAPH ’89, Association for Computing Machinery, p. 297–306. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

55

http://arxiv.org/abs/1706.01558
https://medium.com/@bgolus/normal-mapping-for-a-triplanar-shader-10bf39dca05a
https://medium.com/@bgolus/normal-mapping-for-a-triplanar-shader-10bf39dca05a

P. Trettner & L. Kobbelt / Sampling from Quadric-Based CSG Surfaces

[KBSS01] KOBBELT L. P., BOTSCH M., SCHWANECKE U., SEIDEL
H.-P.: Feature sensitive surface extraction from volume data. In Pro-
ceedings of the 28th Annual Conference on Computer Graphics and In-
teractive Techniques (New York, NY, USA, 2001), SIGGRAPH ’01, As-
sociation for Computing Machinery, p. 57–66. 3

[Kle92] KLEIJ R. V.: Efficient display of quadric CSG models. Comput-
ers in Industry 19 (1992), 201–211. 3

[Lot14] LOTT III G. K.: Direct orthogonal distance to quadratic surfaces
in 3D. IEEE Transactions on Pattern Analysis and Machine Intelligence
36, 9 (2014), 1888–1892. 3, 4

[LTB19] LEGRAND H., THIERY J.-M., BOUBEKEUR T.: Filtered
quadrics for high-speed geometry smoothing and clustering. Computer
Graphics Forum 38, 1 (2019), 663–677. 3

[MCTB11] MAULE M., COMBA J. L., TORCHELSEN R. P., BASTOS
R.: A survey of raster-based transparency techniques. Computers &
Graphics 35, 6 (2011), 1023–1034. 3

[MDG∗17] MOSTAJABODAVEH S., DIETRICH A., GIERLINGER T.,
MICHEL F., STORK A.: CSG ray tracing revisited: Interactive render-
ing of massive models made of non-planar higher order primitives. In
VISIGRAPP (2017). 3

[MES03] MARTÍNEZ D., ESTRADA-SARLABOUS J.: On the distance
from a point to a quadric surface. Revista Investigación Operacional 24
(01 2003). 3, 4

[MT13] MEI G., TIPPER J. C.: Simple and robust Boolean opera-
tions for triangulated surfaces. CoRR abs/1308.4434 (2013). arXiv:
1308.4434. 3

[NAT90] NAYLOR B., AMANATIDES J., THIBAULT W.: Merging BSP
trees yields polyhedral set operations. SIGGRAPH Comput. Graph. 24,
4 (Sept. 1990), 115–124. 3

[NWTK21] NEHRING-WIRXEL J., TRETTNER P., KOBBELT L.: Fast
exact Booleans for iterated CSG using octree-embedded BSPs.
Computer-Aided Design 135 (2021), 103015. 3

[PCK10] PAVIC D., CAMPEN M., KOBBELT L.: Hybrid Booleans. Com-
put. Graph. Forum 29 (03 2010), 75–87. 3

[PKKG03] PAULY M., KEISER R., KOBBELT L. P., GROSS M.: Shape
modeling with point-sampled geometry. ACM Trans. Graph. 22, 3 (July
2003), 641–650. 3

[Ros11] ROSSIGNAC J.: Ordered Boolean list (OBL): Reducing the foot-
print for evaluating Boolean expressions. IEEE Transactions on Visual-
ization and Computer Graphics 17, 9 (Sept. 2011), 1337–1351. 3

[Rot82] ROTH S. D.: Ray casting for modeling solids. Comput. Graph.
Image Process. 18 (1982), 109–144. 3

[RVD06] ROMEIRO F., VELHO L., DE FIGUEIREDO L. H.: Hardware-
assisted rendering of CSG models. In 2006 19th Brazilian Symposium
on Computer Graphics and Image Processing (2006), pp. 139–146. 3

[RVd08] ROMEIRO F., VELHO L., DE FIGUEIREDO L. H.: Scalable
GPU rendering of CSG models. Computers & Graphics 32, 5 (2008),
526–539. 3

[SB16] SCHMIDT R. M., BROCHU T.: Adaptive mesh Booleans. CoRR
abs/1605.01760 (2016). arXiv:1605.01760. 3

[SJNJ19] SEYB D., JACOBSON A., NOWROUZEZAHRAI D., JAROSZ
W.: Non-linear sphere tracing for rendering deformed signed distance
fields. ACM Trans. Graph. 38, 6 (Nov. 2019). 3

[SLJ98] STEWART N., LEACH G., JOHN S.: An improved Z-
buffer CSG rendering algorithm. In Proceedings of the ACM SIG-
GRAPH/EUROGRAPHICS Workshop on Graphics Hardware (New
York, NY, USA, 1998), HWWS ’98, Association for Computing Ma-
chinery, p. 25–30. 3

[SLL∗18] SHENG B., LIU B., LI P., FU H., MA L., WU E.: Accelerated
robust Boolean operations based on hybrid representations. Computer
Aided Geometric Design 62 (2018), 133–153. 3

[TGB13] THIERY J.-M., GUY E., BOUBEKEUR T.: Sphere-Meshes:
Shape approximation using spherical quadric error metrics. ACM Trans.
Graph. 32, 6 (Nov. 2013). 3

[TK20] TRETTNER P., KOBBELT L.: Fast and robust QEF minimization
using probabilistic quadrics. Computer Graphics Forum (2020). 3

[TWMW09] TU C., WANG W., MOURRAIN B., WANG J.: Using signa-
ture sequences to classify intersection curves of two quadrics. Computer
Aided Geometric Design 26, 3 (2009), 317–335. 3

[UBT17] ULYANOV D., BOGOLEPOV D., TURLAPOV V.: Interactive
vizualization of constructive solid geometry scenes on graphic proces-
sors. Program. Comput. Softw. 43, 4 (July 2017), 258–267. 3

[Wan11] WANG C. C. L.: Approximate Boolean operations on large
polyhedral solids with partial mesh reconstruction. IEEE Transactions
on Visualization and Computer Graphics 17, 6 (2011), 836–849. 3

[WGT04] WICKE M., GROSS M., TESCHNER M.: CSG tree rendering
for point-sampled objects. In Computer Graphics and Applications, Pa-
cific Conference on (Los Alamitos, CA, USA, oct 2004), IEEE Computer
Society, pp. 160–168. 3

[WLC10] WANG C., LEUNG Y.-S., CHEN Y.: Solid modeling of poly-
hedral objects by layered depth-normal images on the GPU. Computer-
Aided Design 42 (06 2010), 535–544. 3

[YLW06] YAN D., LIU Y., WANG W.: Quadric surface extraction by
variational shape approximation. vol. 4077, pp. 73–86. 3

[YWLY12] YAN D.-M., WANG W., LIU Y., YANG Z.: Variational mesh
segmentation via quadric surface fitting. Computer-Aided Design 44, 11
(2012), 1072–1082. 3

[ZCL18] ZANNI C., CLAUX F., LEFEBVRE S.: HCSG: Hashing for real-
time CSG modeling. Proc. ACM Comput. Graph. Interact. Tech. 1, 1
(July 2018). 3

[ZGZJ16] ZHOU Q., GRINSPUN E., ZORIN D., JACOBSON A.: Mesh
arrangements for solid geometry. ACM Trans. Graph. 35, 4 (July 2016).
3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

56

http://arxiv.org/abs/1308.4434
http://arxiv.org/abs/1308.4434
http://arxiv.org/abs/1605.01760

