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Figure 1: The bistro exterior (2.9 million triangles), lit by a long linear light source. We compute shading using Monte Carlo integration
with ray traced shadows. Taking one sample per pixel proportional to solid angle yields moderate noise throughout the scene. Our projected
solid angle sampling achieves clean diffuse shading outside penumbrae but specular highlights remain noisy. If we take a second sample
proportional to a linearly transformed cosine [HDHN16] and combine both techniques using clamped optimal MIS [Pet21], noise outside
penumbrae becomes weak everywhere. Timings are full frame times at 1920×1080 on an NVIDIA RTX 2080 Ti, numbers are RMSEs.

Abstract
We introduce an efficient method to sample linear lights, i.e. infinitesimally thin cylinders, proportional to projected solid angle.
Our method uses inverse function sampling with a specialized iterative procedure that converges to high accuracy in only two
iterations. It also allows us to sample proportional to a linearly transformed cosine. By combining both sampling techniques
through suitable multiple importance sampling heuristics and by using good stratification, we achieve unbiased diffuse and
specular real-time shading with low variance outside penumbrae at two samples per pixel. Additionally, we provide a fast
method for solid angle sampling.

Categories and Subject Descriptors (according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional Graphics and
Realism—Color, shading, shadowing, and texture

1. Introduction

Through new graphics hardware, real-time ray tracing has become
practical. Nonetheless, real-time renderers have to limit their ray
budget to a few rays per pixel. With generic path tracers, the vari-
ance at such low sample counts is too high. GPU-friendly impor-
tance sampling techniques for specific light transport phenomena
are in high demand. We provide such a method for direct lighting
with linear lights, which are an excellent idealization of fluorescent
tubes.

According to the reflection equation, the reflected radiance in
direction ωo ∈Ω is

Lo(ωo) =
∫

Ω

Li(ωi)V (ωi) f (ωi,ωo)〈n, ωi〉 dωi

where Ω⊂R3 is the hemisphere around the surface normal n∈R3,
f is the bidirectional reflectance distribution function (BRDF), Li
gives incoming radiance due to the light source, V (ωi) ∈ {0,1}
is light visibility and 〈n, ωi〉 denotes a dot product for the cosine
term. A Monte Carlo estimator takes random samples ωi from Ω

proportional to a known density p(ωi) and estimates the integral as

Li(ωi)V (ωi) f (ωi,ωo)〈n, ωi〉
p(ωi)

.

To cancel most of the variance, p(ωi) should be nearly proportional
to the integrand.

For direct lighting with Lambertian emitters, Li(ωi) is con-
stant within the solid angle of the light source and zero else-
where. Then techniques that sample this solid angle uniformly
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[Wan92, Arv95, UnFK13, Gam16, GUnK∗17] give a Monte Carlo
estimate that is proportional to V (ωi) f (ωi,ωo)〈n, ωi〉. No rays
are wasted on directions that miss the light but the BRDF and
cosine-term may introduce strong variance. Alternatively, we can
sample the whole hemisphere proportional to BRDF times co-
sine [Hd14]. Then the Monte Carlo estimate is nearly proportional
to Li(ωi)V (ωi). If the light source is small, most samples miss it.
In fact, our linear lights are never hit.

An ideal sampling technique would distribute samples propor-
tional to BRDF times cosine but only within the solid angle of the
light source. With such a technique, the only remaining source of
noise is the visibility term V (ωi). Sampling proportional to the vis-
ibility term requires global scene knowledge but neglecting it only
introduces noise in penumbrae.

To provide such a technique for diffuse BRDFs, we sample lin-
ear lights proportional to the cosine term 〈n, ωi〉. In other words, we
sample their projected solid angle uniformly. Our method accom-
plishes this goal by inverse function sampling with a highly opti-
mized numerical inversion (Sec. 3). Our error analysis shows that it
always converges to high accuracy in only two iterations. The im-
plementation is thoroughly optimized and some of these ideas also
apply to solid angle sampling of linear lights.

Once we can sample linear lights proportional to a cosine, we
can also sample them proportional to a linearly transformed cosine
(LTC) [HDHN16]. That gives rise to a suitable sampling strategy
for specular BRDFs (Sec. 4). We combine this strategy with pro-
jected solid angle sampling through clamped optimal MIS [Pet21].

Our sampling techniques enable unbiased shading for linear
lights, with ray traced shadows and minimal noise outside of
penumbrae (Fig. 1). Blue noise dithering and uniform jittered sam-
pling [RAMN12] are highly effective for the one-dimensional lin-
ear lights (Sec. 5.3). Hence, even the shadows have good quality at
two samples per pixel (one specular, one diffuse). Two prior works
offer similar functionality but they are either prone to branch diver-
gence [LADL18] or slower by a constant factor [Pet21] (Sec. 5.4).

The full source code of our renderer is available.

2. Related Work

There is extensive prior work on linear lights, partly because flu-
orescent tubes are widely used and partly because integration
in one dimension is easier than in two. Early work on diffuse
shading [NON85] solves special cases in closed form and relies
on quadrature for the general case. Approximate [PA91] and ex-
act [BP93] closed-form solutions for Phong shading followed. Pi-
cott [Pic92] presents a closed form for diffuse shading using a
slightly different formulation, where the linear light is not an in-
finitesimally thin cylinder but a sequence of point lights. For spec-
ular shading, he proposes a most representative point approach,
an approximation that persists in real-time rendering until to-
day [Dro14, dCI17].

These older works advocate variants of shadow volumes
[NON85, PA91, BP93, Pic92] whereas our method offers sampling
for Monte Carlo integration. Ramamoorthi et. al. [RAMN12] use

ray tracing and study the impact of different strategies for stratifica-
tion on shadows (see Sec. 5.3). As a form of importance sampling,
Gamito [Gam16] samples the solid angle of cylinders and disks of
finite radius uniformly. The method samples a bounding rectangle
using an exact method [UnFK13] and rejects samples outside of
the relevant solid angle at the caps. Our method does not reject any
samples because it takes the cylinder radius to zero in the limit.

Solid angle sampling is available for all common types of
area lights. For spheres [Wan92] and triangles [Arv95, Pet21],
there are closed-form solutions. For ellipses and ellipsoids [Hei17]
a method involving Newton-Raphson iterations and look-up ta-
bles exists [GUnK∗17]. Still more effective importance sam-
pling for diffuse shading takes samples proportional to the cosine
term 〈n, ωi〉 (like our technique). For spheres that can be done
through iterative root finding [UnG18] or in closed form [PD19].
For polygons, there are methods based on recursive subdivi-
sion [Un00], Newton’s method [Arv01] or special iterative algo-
rithms [Pet21]. All of these could be combined with rejection sam-
pling [Gam16] to sample cylinders of finite size in proportion to
projected solid angle.

However, we strive for a faster, more specialized solution. Pro-
jected solid angle sampling and LTC importance sampling of linear
lights are also useful for differentiable rendering because moving
edges make strong contributions to derivatives [LADL18]. The im-
plementation used there employs costly Newton bisection for in-
verse function sampling. Our method uses a more specialized pro-
cedure that always converges in two iterations and is more thor-
oughly optimized.

Recently, sampling problems have been studied more fundamen-
tally. The triangle cut parametrization warps samples of a suitable
approximate density into samples of another density [Hei20]. In
one dimension, it still consumes two random numbers such that
stratification is lost. Hart et al. [HPM∗20] approximate a target den-
sity in primary sample space with linear or quadratic polynomials
and sample proportional to those.

LTCs [HDHN16] provide good approximations of many specu-
lar BRDFs. With this approximation, computation of unshadowed
specular shading reduces to computation of the projected solid an-
gle of the transformed light source. We use them for sampling.
They also work for linear lights [HH17a] and disk lights [HH17b].
Dupuy et al. [DHB17] present a similar method for specular impor-
tance sampling of spherical lights. It is efficient but struggles with
anisotropic highlight shapes.

Moureau et al. [MPC19] describe a GPU-friendly hierarchi-
cal data structure to select important lights among thousands
of dynamic lights. Most renderers combine strategies for sam-
pling of light sources with methods to sample in proportion
to the BRDF [Hd14] through multiple importance sampling
(MIS) [VG95]. However, this approach is ineffective for linear
lights since all samples miss the light.

3. Sampling Linear Lights for Diffuse Shading

Our method samples the solid angle of linear lights exactly pro-
portional to the cosine term 〈n, ωi〉. Then the Monte Carlo estima-
tor for Lambertian emitters is proportional to V (ωi) f (ωi,ωo). For
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(c) View of the st-plane.

Figure 2: A cylinder and its solid angle. Looking straight at a cap of the cylinder, we see that the solid angle has an opening angle ϕR. A
side view reveals that its extent can be described by the projection of its end points onto the sphere in the limit case R→ 0.

diffuse BRDFs that gives low variance and we address specular
BRDFs in Sec. 4. In the following, we derive formulas for the solid
angle (Sec. 3.1) and projected solid angle of linear lights (Sec. 3.2).
To perform inverse function sampling, we introduce an iterative in-
version method (Sec. 3.3) with low error (Sec. 3.4). We optimize
these methods thoroughly and also apply them for solid angle sam-
pling (Sec. 3.5).

3.1. The Solid Angle of a Line

As starting point, we need a proper definition of a linear light and
we need to compute its solid angle. These considerations are not
novel [NON85, BP93] but serve to fix the notation and to establish
building blocks for an efficient algorithm. We follow the notion (un-
like Picott [Pic92]) that a linear light is an infinitesimally thin cylin-
der. This model is a good fit for fluorescent tubes. Lambertian emit-
ters are the easiest to implement but arbitrary emission profiles are
applicable, possibly at the cost of increased variance [Pet21]. We
could treat linear lights as limit case of rectangular lights [Pet21]
but the self-contained approach presented here leads to an efficient
formulation more easily.

Let l0, l1 ∈ R3 with l0 6= l1 be the end points of the cylinder, i.e.
the center points of its caps (Figure 2a). We work in a coordinate
frame where the shading point is the origin. Let R > 0 be the cylin-
der radius, which we take to zero in the limit. The normalized line
direction is given by

s :=
l1− l0
‖l1− l0‖

∈ S2,

where S2 ⊂ R3 denotes the unit sphere. We are interested in the
solid angle of this cylinder. To this end, we consider the point q
closest to the origin on the infinite central axis of the cylinder. We
are also interested in the direction t towards this point:

q := l0−〈l0, s〉s ∈ R3, t :=
q
‖q‖ ∈ S2.

Together, the directions s, t and u := s× t form an orthonor-

mal coordinate frame. Viewing the geometric configuration in this
frame simplifies the derivation of the solid angle. In the ut-plane,
the cylinder appears as circle of radius R (Figure 2b). Its opening
angle with respect to the shading point is

ϕR := arcsin
R
‖q‖ .

In the st-plane, the cylinder appears as axis-aligned rectangle of
height 2R (Figure 2c). Since we eventually take R to zero, there is
no need to bother with the exact shape of the caps. We capture the
extent by storing s-coordinates for the normalized end points of the
line:

l0,s :=
〈l0, s〉
‖l0‖

∈ R, l1,s :=
〈l1, s〉
‖l1‖

∈ R.

Now we are prepared to compute the solid angle of the cylinder
(with incorrect caps). We write it as integral over the hemisphere in
cylindrical coordinates (see [PJH16] chapter 13.6.1):

ΩR :=
∫ l1,s

l0,s

∫ ϕR

−ϕR

1dϕdωs = 2ϕR(l1,s− l0,s). (1)

The angle ϕ is an azimuthal coordinate around the central axis of
the cylinder and ωs ∈ [−1,1] is the s-coordinate of a unit-direction
vector. For R = 0, this solid angle is zero because ϕR = 0. Thus, we
divide out R > 0 before we take the limit:

dΩR

dR
:= lim

R→0

ΩR

R
= 2

dϕR

dR
(l1,s− l0,s),

dϕR

dR
:=

1
‖q‖ .

According to L’Hôpital’s rule, the same result is attained by taking
the derivative at R = 0. Hence, the choice of notation. We discuss
the construction of Monte Carlo estimates in this setting below.

This derivation directly implies a strategy to sample linear
lights proportional to solid angle, which is a limit case of prior
work [Gam16]. Since the integrand in Equation (1) is constant, we
simply sample ωs uniformly in [l0,s, l1,s], set ωt :=

√
1−ω2

s and
return ωss+ωt t as sampled direction. Sec. 3.5 describes the imple-
mentation in more detail.
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The limit of the sampled density times radius is the reciprocal
of the solid angle per radius dΩR

dR . We specify the brightness of the
linear light through the limit of radiance times radius. Then the
integrand of the rendering equation and the term for the density
both contain the infinitesimal radius as factor. It cancels out and we
are left with a finite radiance. With this convention, the brightness is
a physically meaningful quantity with unit W

sr·m (or the photometric
counterpart nit ·m).

3.2. Sampling the Projected Solid Angle of a Line

To obtain the projected solid angle from the above formulation of
the solid angle, we introduce a cosine term for the surface normal
n ∈ S2. The normal has local coordinates ns := 〈n, s〉, nt := 〈n, t〉.
Recall that the local coordinate ωs ∈ [l0,s, l1,s] corresponds to the
normalized direction ωss+

√
1−ω2

s t. Thus, the projected solid an-
gle per radius for R→ 0 is

dΩ
⊥
r

dR
:= 2

dϕR

dR

∫ l1,s

l0,s

〈
n, ωss+

√
1−ω2

s t
〉

dωs

= 2
dϕR

dR

∫ l1,s

l0,s
nsωs +nt

√
1−ω2

s dωs

=
dϕR

dR
(Fns,nt (l1,s)−Fns,nt (l0,s)), (2)

where we use the indefinite integral

Fns,nt (ωs) := nsω
2
s +nt

(√
1−ω2

s ωs + arcsinωs
)
. (3)

The dot product in this integral must not be negative. Therefore,
we clip the line connecting l0 to l1 against the tangent plane of the
surface.

We intend to use inverse function sampling to sample this pro-
jected solid angle uniformly. Our sampling procedure consumes a
single uniform random number ξ in [0,1). The sample coordinate
ωs has to be chosen so that the value of the distribution function
matches the random number, i.e.

dϕR

dR
(Fns,nt (ωs)−Fns,nt (l0,s)) = ξ

dΩ
⊥
r

dR
. (4)

Assuming that we can evaluate the inverse distribution function
F−1

ns,nt , the solution is

ωs = F−1
ns,nt

(
ξ

dR
dϕR

dΩ
⊥
r

dR
+Fns,nt (l0,s)

)
.

The whole sampling procedure, including optimizations described
in Section 3.5, is summarized in Algorithm 1.

3.3. Inversion of the Distribution Function

Inversion of Fns,nt is challenging. A closed-form solution appears
to be impossible. Since scaling of (ns,nt) only scales the inte-
gral Fns,nt , we are dealing with a one-dimensional family of func-
tions to invert. Fig. 3 shows examples. It is possible to use a
two-dimensional lookup table but that requires a high resolution
at boundaries and memory access at random locations thrashes
caches. Instead, we take inspiration from recent work [Pet21] and
design a specialized iterative procedure with rapid convergence.
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Figure 3: Plots of the inverse distribution function F−1
ns,nt for five

choices of ns,nt . At the left domain boundary, the derivative al-
ways approaches infinity. For nt near −1 (orange, blue), the do-
main shrinks and the function becomes steep. F−1

1,0 (green) is simply
a square root.

For our iterative procedure, we make the substitution α :=
arcsinωs and consider

Gns,nt (α) := Fns,nt (sinα) = ns sin2
α+nt(cosαsinα+α).

Evaluation of this function does not involve costly inverse trigono-
metric functions and it is more well-behaved. In fact, quadratic
Taylor expansions give good local fits of Gns,nt (α). Our itera-
tive method exploits that. In each step, it constructs a quadratic
Taylor polynomial around the current estimate of α and solves
Equation (4) with this approximation. The equation turns into a
quadratic. Among the two solutions, we pick the one that is closer
to the current estimate. If there are no roots, we take the extremum
of the quadratic instead to safeguard against rare numerical issues.

This approach can be thought of as quadratic generalization
of Newton’s method. It is known as Halley’s irrational formula
or Laguerre’s method [ST95]. Laguerre’s method is popular for
polynomial root finding but uncommon as general root finding
method [PTVF07]. Sec. 3.4 demonstrates that it works well here.

For the initialization, we use solid angle sampling. As derived in
Sec. 3.1, that means that we simply set ωs to

l0,s +ξ(l1,s− l0,s).

Thus, this initialization is extremely efficient. We proceed to show
that it is also accurate enough. Algorithm 2 summarizes our inver-
sion procedure.

3.4. Error Analysis

To avoid branch divergence on GPUs, we want to use a small, fixed
iteration count. However, we also want our renderer to be unbiased.
Thus, we have to be sure that our method converges to sufficient ac-
curacy in all cases. Since the beginning and the end of the line influ-
ence the initialization, the set of all test cases is four-dimensional.

Once again, we take inspiration from recent work [Pet21]. We
run the Nelder-Mead optimizer [NM65] in 80-bit float arithmetic to
find a line that maximizes the error of our iterative procedure. Since
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Figure 4: Errors for diffuse samples in a variant of Fig. 6. The
linear light is cut in half such that it does not get close to the back
wall.

Nelder-Mead is just a local optimizer, we try 28 billion random ini-
tializations. Sometimes the iteration is unstable near the endpoints
of the linear light. However, the initialization is nearly perfect there.
Thus, we skip the iteration if ξ < 10−5 or ξ > 1−10−5.

As error metric, we use a backward error, namely the perturba-
tion in the random number ξ that suffices to explain the error in
the output. This way, we find that the worst possible error after two
iterations is 1.58 ·10−5. On this basis, we consider our method un-
biased.

In practice, rounding errors in single-precision arithmetic are far
more influential than these theoretical errors (Fig. 4a). The main
problem is a cancellation in Equation (2). The indefinite integral
Fns,nt corresponds to the projected solid angle of a line starting at
the closest point q. When the actual projected solid angle is much
smaller, we lose precision. However, that only happens in dark re-
gions along the infinite extension of the line. If we take that into
account, errors are always low (Fig. 4b). Therefore, we choose not
to invest computational resources to avoid this cancellation.

3.5. Optimizations

Conceptually, it is useful to work with the coordinate frame s, t but
in practice we skip computation of t ∈ S2. We only need it for two
purposes: To compute nt and to construct directions ωss+ωtt. In
both cases, we exploit

t =
1
‖q‖ (l0−〈l0, s〉s) .

Then

ωss+ωt t =
(

ωs−
ωt

‖q‖ 〈l0, s〉
)

s+
ωt

‖q‖ l0,

nt =
1
‖q‖ (〈n, l0〉−ns 〈l0, s〉) .

For efficiency reasons, lines are represented by their beginning l0 ∈
R3, their direction s ∈ S2 and their length L := ‖l1− l0‖. We pre-
compute these attributes per linear light. Since l1 = l0+Ls, we have
〈l1, s〉= 〈l0, s〉+L.

Algorithms 1 and 2 implement our method with these opti-
mizations. Our supplementary code additionally eliminates com-

Algorithm 1 sample_line_projected_solid_angle
Input: Line begin l0 ∈ R3, line direction s ∈ S2, line length L > 0,
shading normal n ∈ S2, uniform random number ξ ∈ [0,1).
Output: Sampled direction ωi, density in solid angle measure
times radius p(ωi)dR.

Clip the line against the plane through the origin with normal n

If the clipped line is empty: Return no sample.

‖q‖2 := 〈l0, l0〉−〈s, l0〉2

1
‖q‖ :=

1√
‖q‖2

l0,s :=
〈l0, s〉√
〈l0, l0〉

l1,s :=
〈l0, s〉+L√

(〈l0, s〉+L)2 +‖q‖2

ns := 〈n, s〉

nt :=
1
‖q‖ (〈n, l0〉−ns 〈l0, s〉)

E := Fns,nt (l1,s)−Fns,nt (l0,s) // see Equation (3)

dΩ
⊥
r

dR
:=

1
‖q‖E

ωs := l0,s +ξ(l1,s− l0,s)

If ξ≥ 10−5 and ξ≤ 1−10−5 :

ωs,ωt := invert_line_sampling_cdf
(
ns,nt ,ωs,ξE +Fns,nt (l0,s)

)
else: ωt :=

√
1−ω2

s // solid angle sampling

ωi :=
(

ωs−
1
‖q‖ωt 〈l0, s〉

)
s+

1
‖q‖ωt l0

Return ωi, (ωsns +ωtnt)
(dΩ

⊥
r

dR

)−1

mon subexpressions like 〈l0, s〉, 〈l0, l0〉 and Fns,nt (l0,s). We always
clamp coordinates ωs to [−1,1] to avoid invalid results. Blinn’s
quadratic solver [Bli06] makes Algorithm 2 more stable. Besides,
it is useful to split Algorithm 1 into a part that executes once per
line and another part that runs once per sample.

Minor changes turn Algorithm 1 into a heavily optimized imple-
mentation of solid angle sampling. We simply omit all lines that
deal with n and always take the else-branch for computation of ωt .

4. Sampling Linear Lights for Specular Shading

By itself, our projected solid angle sampling gives low variance
for diffuse BRDFs but not for specular BRDFs, especially at low
roughness (Fig. 1). The same is true for sampling of polygonal
lights and we overcome this limitation in the same way [Pet21].
This section briefly describes the necessary steps. For a detailed
discussion, we refer to prior work [Pet21].
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Algorithm 2 invert_line_sampling_cdf
Input: ns,nt ∈ R, an initialization ωs ∈ [−1,1], F ∈ R
Output: ωs = F−1

ns,nt (F) ∈ [−1,1], ωt =
√

1−ω2
s

α := arcsinωs

ωt :=
√

1−ω2
s

Repeat twice:

Gδ := (nsωs +ntωt)ωs +ntα−F // = Gns,nt (α)−F

G′ := 2(nsωs +ntωt)ωt

G′′ := 2(nsωt −ntωs)ωt −2(nsωs +ntωt)ωs

Solve
G′′

2
β

2 +G′β+Gδ = 0

Let β be the root of smaller magnitude (extremum if none exists)

α := min
(

max
(

α+β,−π

2

)
,

π

2

)
ωs := sinα

ωt := cosα

Return ωs,ωt

(a) LTC integral in world space (b) Clamped cosine integral

Figure 5: Integration over an LTC is equivalent to integrating a
clamped cosine over the solid angle of the transformed light source.
Note that the horizon H changes through the transformation. The
LTC is zero in parts of the upper hemisphere and non-zero in parts
of the lower hemisphere.

4.1. Sampling Linearly Transformed Cosines

LTCs [HDHN16] are probability density functions of the form

pM(ω) :=
1
π

max

(
0,

〈
M−1

ω

‖M−1ω‖
, (0,0,1)T

〉)
|M−1|
‖M−1ω‖3 ,

where M ∈ R3×3 is chosen so that pM fits a specular BRDF times
cosine for a particular outgoing light direction. By construction, in-
tegrating an LTC over a solid angle is the same as integrating a co-
sine distribution over the linearly transformed solid angle (Fig. 5).

For sampling, we transform the clipped end points of the linear
light to cosine space through

l0,c := M−1l0, l1,c := M−1l1.

Since this transformation changes the horizon (Fig. 5a), we clip
the line between l0,c and l1,c a second time. Then we apply our

projected solid angle sampling procedure. Resulting samples ωc ∈
S2 get transformed back to world space through Mωc

‖Mωc‖ .

When using LTCs for linear lights, there is a potential pitfall:
Linear transformations change the opening angle of the cylinder.
To account for this effect, we use the correction factor [HH17a]

dR
dRc

:=
‖MT(s× l0)‖
‖s× l0‖

. (5)

We multiply it onto densities and divide it out of projected solid
angles and LTC shading estimates.

4.2. Combining Diffuse and Specular Samples

The LTC density pM is zero in parts of the upper hemisphere
(Fig. 5). Thus, we have to combine the corresponding samples with
samples from projected solid angle sampling to get an unbiased
estimate. Standard MIS heuristics introduce considerable variance
outside of penumbrae. For example, the balance heuristic effec-
tively samples the sum of both densities but this density differs
from the BRDF times cosine. Therefore, we use clamped optimal
MIS [Pet21], which is designed specifically for this situation.

To use it, we have to compute estimates of unshadowed dif-
fuse and specular shading c0,c1 as in the original work on LTCs
[HDHN16, HH17a]. Both of these are computed per color channel
using the readily available projected solid angle of the linear light.
All entries of c0 must be non-zero, so we clamp diffuse albedos to a
minimum of 0.01. Then clamped optimal MIS weights are [Pet21]

w j(ω j) := v
c j p j(ω j)dR

∑
1
k=0 ck pk(ω j)dR

+(1− v)
p j(ω j)dR

∑
1
k=0 pk(ω j)dR

.

where j ∈ {0,1} is the index of the technique that generated the
sample ω j ∈ S2 and pk(ω j)dR is the density times radius for tech-
nique k. The parameter v ∈ [0,1] blends between the standard bal-
ance heuristic and a weighted balance heuristic, which is optimal
under idealizing assumptions such as no occlusion [Pet21]. Setting
v = 0.5 works well in practice.

5. Results

In the following, we evaluate the quality of our importance sam-
pling for diffuse (Sec. 5.1) and specular shading (Sec. 5.2) in com-
parison to prior work. We also make recommendations on stratifi-
cation (Sec. 5.3) and measure timings (Sec. 5.4).

Our Vulkan renderer uses the extension VK_KHR_ray_query
to cast shadow rays. It is a deferred renderer with a 32-bit vis-
ibility buffer [BH13]. Unless stated otherwise, our experiments
use the isotropic Frostbite BRDF [LdR14]. For LTCs, we use a
64× 64× 51 table of transforms M parameterized by roughness,
outgoing inclination and Fresnel reflectance at 0◦. Support for arbi-
trary anisotropic BRDFs would require a 5D table, which is hardly
viable. We inherit this limitation from LTCs [HDHN16]. Linear
lights are displayed with finite extent to convey geometric relations
better. Alongside our results, we report root-mean-square errors
(RMSEs) computed from HDR frames.
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0.108
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Figure 6: A Lambertian diffuse Cornell box lit by a single linear
light just below the ceiling. All techniques use one sample per pixel.
Dependent on their geometric relation to the light, different sur-
faces benefit differently from better sampling. Our projected solid
angle sampling has zero variance outside penumbrae.

5.1. Diffuse Shading

Figure 6 compares different approaches for diffuse shading using a
Lambertian diffuse BRDF. Area sampling (Fig. 6a) places samples
uniformly along the length of the linear light. The square falloff
term and the two cosine terms introduce strong variance, especially
on the ceiling and near the light. These regions look darker because
sRGB values get clamped at one. Solid angle sampling (Fig. 6c)
is far better but the remaining cosine term still causes variance,
especially on the white wall, where it ranges down to zero. On the
box (orange inset) the linear light is partially below the horizon.
Clipping (Fig. 6d) eliminates samples without contribution.

We apply warping of random numbers [HPM∗20] on top of
clipped solid angle sampling to incorporate the cosine term into
the density. With a linear density, this approach is effective on the
back wall but barely improves results on the ceiling or the red wall
(Fig. 6e). Results deteriorate in the overexposed parts of the ceil-
ing, hence the bad RMSE. A quadratic density helps everywhere,
at an increased overhead (Fig. 6f).

As expected, our projected solid angle sampling achieves zero
variance outside of penumbrae (Fig. 6h). Noise in penumbrae is
not reduced significantly but stratification through blue noise works
well (red inset). The method of Li et al. [LADL18] gives identical
results at a higher cost.

5.2. Specular Shading

Fig. 1 demonstrates the benefits of our specular importance sam-
pling. The puddle in the foreground (red inset) has low rough-
ness such that solid angle sampling and projected solid angle sam-
pling rarely sample the peak of the specular BRDF. Thus, shading
is far from convergence at one sample per pixel. Using an addi-
tional specular sample distributed proportional to an LTC through
clamped optimal MIS with v = 0.5 improves the result drastically.
Remaining noise is mostly due to the penumbra of the bollard. Note
that the shadow of the bollard looks more like a glossy reflection
due to the narrow peak of the BRDF.

5.3. Stratification

We find two established methods to be particularly effective for lin-
ear lights. Ramamoorthi et al. [RAMN12] recommend uniform jit-
tered sampling for linear lights. That means that we only consume a
single random number ξ on [0,1) per technique per light. If we take
N ∈N samples, the random number fed to sampling algorithms for
sample k ∈ {0, . . . ,N− 1} is ξ+k

N . Indeed, this approach gives an
appreciable reduction of variance in penumbrae (Fig. 7). Addition-
ally, we use precomputed 64× 64 blue noise textures [Uli93]. The
blue noise patterns are preserved relatively well in penumbrae.

5.4. Run Time

To measure timings, we use the same setup as previous
work [Pet21] such that numbers are comparable. Our test system
consists of an NVIDIA Geforce RTX 2080 Ti, an Intel Core i5-
9600K and 16 GB RAM. When ray tracing is enabled, our clipped
solid angle sampling and our projected solid angle sampling per-
form identically. The computation is hidden by the latency, even
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Figure 7: The bistro interior lit by a long linear light above the
counter. We compare white noise against blue noise and indepen-
dent sampling against uniform jittered sampling. All results use
clamped optimal MIS with v = 0.5 and six samples per pixel (three
diffuse, three specular). Uniform jittered sampling reduces vari-
ance, blue noise pushes it into higher frequencies in screen space.

with the geometrically simple Cornell box (Fig. 6). Adding one
sample per pixel at 1920× 1080 resolution for the bistro exterior
(Fig. 1) takes 0.45 ms.

Therefore, we focus on computational cost and disable ray trac-
ing. We point the camera at a plane and either take 128 samples
from 128 different lights or from a single light. Our renderer has
an overhead per sample, e.g. to evaluate the BRDF. To measure
this overhead separately, we define a cheap baseline sampling tech-
nique, namely area sampling without proper density computation.

Table 1 lists the results. Our optimized solid angle sampling
is extremely fast, especially regarding the cost per sample. Note
however, that the marginal cost of the baseline sampling technique
comes on top of that. Even area sampling has a higher cost per sam-
ple due to the more complex density. Clipping doubles the cost per
light. Warping [HPM∗20] benefits from our fast implementation of
solid angle sampling. The quadratic variant with closed-form cu-
bic solver performs similarly to our projected solid angle sampling.
The linear variant is faster but both of these have inferior quality.

Compared to the method with Newton bisection [LADL18], our
projected solid angle sampling costs 2.5 times less per sample and
2 times less per light. However, Newton bisection has a variable
iteration count and potentially divergent execution. Therefore, we
repeat this experiment on the geometrically more complex scene in
Fig. 1 and find that our cost per sample is 4.5 times lower. This gap
could grow further in a full path tracer.

Through rejection sampling, rectangle sampling techniques can

Table 1: Delta timings in milliseconds for rendering a frame at
1920× 1080 resolution using 128 samples per pixel. The samples
are either taken from 128 different linear lights or all from the same
light. The baseline timings have been subtracted from each of the
timings in the rows above to isolate the cost of sampling itself.

128 lights 128 samples
Area 0.47 0.41

Solid angle, ours, Sec. 3.1 0.75 0.17
Clipped solid angle, ours, Sec. 3.1 1.29 0.17

Linear cosine warp [HPM∗20] 2.32 0.49
Quadratic cosine warp [HPM∗20] 4.78 1.97

Projected solid angle [LADL18] 10.0 5.20
Projected solid angle, ours, Sec. 3 4.40 2.05

+ Baseline 3.25 2.99
Projected solid angle, Fig. 1 [LADL18] 13.6 10.6

Projected solid angle, Fig. 1, ours 4.13 2.34
+ Baseline 3.36 2.55

Rectangle solid angle [UnFK13] 3.65 1.11
Quad projected solid angle [Pet21] 28.9 11.5

+ Baseline 6.46 3.61

sample cylinders [Gam16]. However, our specialized methods
for the limit case are considerably faster for solid angle sam-
pling [UnFK13] and projected solid angle sampling [Pet21], re-
spectively.

6. Conclusions

Our work takes importance sampling of linear lights to its natural
conclusion. Except for visibility, all terms of the reflection equation
are accounted for and the method is stable and inexpensive. It is a
valuable addition to any path tracer and also offers efficiency im-
provements for differentiable rendering [LADL18]. Methodically,
our work reinforces the value of tailor-made iterative algorithms for
sampling problems in computer graphics. Since we guarantee ac-
curate results with two inexpensive iterations, there is no practical
reason to prefer closed-form solutions.

Now that fast projected solid angle sampling and LTC impor-
tance sampling are available for polygonal [Pet21] and linear lights,
the most important remaining light type are ellipsoids. Spheres
have been addressed [PD19] but that is not sufficient for LTC im-
portance sampling. We hope that similar iterative methods will be
applicable. Our optimizations may also apply to rectangle solid an-
gle sampling [UnFK13]. Besides, our work further motivates the
generalization of LTCs to arbitrary anisotropic BRDFs.
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