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Abstract

We study the landmark distance function between two points in a simply connected planar polygon. We show that if the polygon
vertices are used as landmarks, then the resulting landmark distance function to any given point in the polygon has a maximum
principle and also does not contain local minima. The latter implies that a path between any two points in the polygon may
be generated by steepest descent on this distance without getting “stuck” at a local minimum. Furthermore, if landmarks are
increasingly added along polygon edges, the steepest descent path converges to the minimal geodesic path. Therefore, the
landmark distance can be used, on the one hand in robotic navigation for routing autonomous agents along close-to-shortest
paths and on the other for efficiently computing approximate geodesic distances between any two domain points, a property
which may be useful in an extension of our work to surfaces in 3D. In the discrete setting, the steepest descent strategy becomes
a greedy routing algorithm along the edges of a triangulation of the interior of the polygon, and our experiments indicate that

this discrete landmark routing always delivers (i.e., does not get stuck) on “nice” triangulations.

CCS Concepts

o Mathematics of computing — Paths and connectivity problems; Graph algorithms; e Theory of computation — Routing

and network design problems;

1. Introduction

Designing routes (or paths) between points in a given planar do-
main is an important problem arising in many contexts, for exam-
ple, network routing and robotic navigation. It is especially impor-
tant to be able to easily generate routes on the fly which have desir-
able properties, such as short length or moderate curvature and rely
only on local knowledge of the domain [SBD*13]. One way to do
this is to associate with each domain point a set of coordinates, and
to define a distance function between points based on those coordi-
nates. A route between a source point and a target point may then
be generated by moving from the source to the target along a path
in the domain which always decreases this distance from the target.
The main challenge is to design a distance function with a global
minimum at the target and no other local minima in the domain.
This guarantees that a steepest descent strategy always succeeds,
namely, to never get “stuck” until the target is reached. We derive
a distance function with this property, which additionally approxi-
mates the geodesic distance function. It can be evaluated knowing
only a small number of precomputed geodesic distances from the
target and the current point to certain landmarks, but without global
knowledge of the domain. The latter would instead be needed for
computing the exact geodesic distance, which is not difficult per se,
using the visibility graph of the domain, and part of our precompu-
tation step.

In this paper, we consider the case where the domain is a simple
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planar polygon P with n > 3 vertices py, ..., pn, and we study the
use of the landmark distance, based on the classical geodesic dis-
tance, for routing. For any two points x,y € P, the geodesic distance
g(x,y) is the length of the shortest path between x and y within P.
Given a set of m landmark points ¢1,..., ¢, € P, we denote the
geodesic distance between any x € P and ¢; by g;(x) = g(¢;,x). For
a fixed target point t € P, we define the landmark functions

Ai(x) = lgi(x) —gi(t)], i=1,....m (D

and the landmark distance between t and x as
= Ai(x). 2
Li(x) max i(x) 2

Note that the landmark functions (see Figure 6) and the land-
mark distance (see Figure 5) are non-negative and £,(r) = 0. If
L (x) = Ai(x), then we say that L;(x) is determined by the land-
mark /;. If this is true also for the landmark /;, then we say that
L;(x) is co-determined by {; and £ ;. For example, £;(z) is trivially
co-determined by all landmarks.

After introducing the concept of generalized hyperbolas based
on the geodesic distance and deriving an intimate connection to
the landmark distance (Section 3), we primarily deal with the case
where the landmarks ¢; are naturally chosen to be the vertices of P
and the target ¢ is an arbitrary point within P. Our main objective
is to show that, in this case, £;(x) is free of local minima within
P, except for the unique global minimum at x = ¢. Therefore, the
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steepest descent path, starting at any source s € P leads to the tar-
get ¢ without getting stuck at a local minimum (Section 4).

The landmark distance induces a partition of P into regions,
where a region is characterized by a common set of co-determining
landmarks. We discuss the geometry of this partition, and observe
that the steepest descent paths are piecewise conics that have an
initial straight segment and then follow the boundaries of these re-
gions (Section 5).

While the steepest descent path is not identical to the geodesic
path, in practice it is quite similar, and it reproduces the latter if
the landmarks are dense along the boundary of P (Section 6.2).
We further observe that taking only a subset of the polygon ver-
tices as landmarks is usually not sufficient to preserve the land-
mark distance (Section 6.1) and that the absence of local minima
property does not hold in the case of multiply connected poly-
gons (Section 6.3). Despite this, the landmark distance is still a
good approximation of the geodesic distance when landmarks are
dense along the polygon edges. Finally, we discuss possible ex-
tensions of our method to the computation of geodesic distances
on 2-manifold surfaces with boundaries in 3D (Section 6.4) and to
discretizations of the continuous domain by well-formed triangula-
tions (Section 6.5). Our experiments demonstrate that the discrete
analogue of the steepest descent path — so-called “greedy routing”
— always “delivers”, specifically, it finds a path along the edges of
a triangulation 7 of the interior of P, between any two vertices of
T without getting stuck, as long as T is “nice”.

A concrete application of our results can be found in robotic
navigation. Instead of searching for the globally shortest path from
source to target with the classical Dijkstra or the more sophisticated
A* algorithm, greedy routing with our landmark distance function
is completely local and efficiently determines which edge to fol-
low in each step, so as to eventually arrive at the target. In fact,
after precomputing the geodesic distances from each vertex of T'
to the vertices of P, the landmark distance (2) between any vertex
of T and the target can be determined in O(m) time, and greedy
routing simply follows the edge to the neighbor with the small-
est landmark distance. In contrast to previous work in this direc-
tion [CGH18a, CGH18c] our theory indicates that these paths con-
verge to the globally shortest geodesic paths as the resolution of
the triangulation and the density of vertices on the domain bound-
ary increase.

2. Previous Work

A number of coordinate-based distance functions have been pro-
posed, in particular for discrete graphs, which model many real-
world networks. In this scenario, each graph vertex is assigned a
vector of coordinates, or embedding, carefully designed to support
greedy routing on the graph, namely, that for each vertex there ex-
ists a neighbor which decreases some distance in embedding space
to any target vertex. These are sometimes called greedy embed-
dings. While a celebrated result due to Bose and Morin [BM04]
shows that the simple Euclidean coordinates support greedy rout-
ing on Delaunay triangulations, this does not generalize to arbitrary
plane graphs, especially those discretizing a non-convex domain.

In the continuous case, given a polygon P, it may be possible

to move from s € P towards ¢ € P by following a direction that
decreases the Euclidean distance to 7. Obviously, such a direction
always exists if s is an interior point and, in this case, the decrease
is maximized in the (negative) gradient direction of the Euclidean
distance. It also exists in many cases if s is a boundary point, typ-
ically by following the boundary of P. But there will be boundary
points at which no such direction exists within P and the routing
procedure will get stuck at this local minimum. Subregions of P
within which this type of greedy routing is possible (independent
of the target point ¢) are called greedy-routable regions (GRR) and
can be identified, and a routing procedure must be able to transition
between the regions when stuck. Optimal decomposition of poly-
gons into a minimal number of GRR’s (which may be non-convex)
is a difficult problem which has been treated by Tan and Kermar-
rec [TK12] and by Nollenburg et al. [NPR17]

Going back to the discrete case of graphs, the landmark dis-
tance (2) is particularly attractive as each (graph-theoretic) land-
mark distance function A; may be viewed as a precomputed “co-
ordinate” of a graph vertex, and the landmark distance as the /oo
(or max) norm on those coordinates. The distance is used to guide
the routing process, essentially by trying to reduce this distance to
a given target vertex + when moving from a vertex to one of its
neighbors. Keeping the number of coordinates small is crucial for
effective storage of this “embedding” of the graph. While we study
the /oo norm of the landmark functions, other norms, in particu-
lar the /; and /> norms, have been considered [FGG*05, FRZ*05]
for greedy routing on graphs. In those papers, landmarks are typi-
cally chosen as random vertices in the graph. Unfortunately, these
distance functions do not support greedy routing, in the sense that
local minima exist, and the router can get stuck there. Despite a
number of “fixes”, there does not seem to be a complete under-
standing of how to make this work.

The landmark distance has also been used [Cho05, GHOS5] as a
heuristic function in the context of the A* algorithm for shortest-
path computation on graphs. This is a well-known admissible and
consistent heuristic and sometimes quite effective if the landmarks
are chosen judiciously.

Our work considers the continuous version of the landmark dis-
tance within a simply connected planar polygonal domain P. In
a nutshell, each point x € P is assigned the coordinate vector
g(x) = (g1(x),...,gm(x)) of geodesic distances to the vertices of
the polygon. We will show that this suffices to generate a steep-
est descent path from any source point to any target point, albeit
the path will not be the geodesic path, that is, the shortest possi-
ble. However, as more “virtual” vertices are added along the poly-
gon boundary, the coordinate vectors become longer but the path
becomes shorter. In the limit, each point is assigned a continuous
boundary function and the steepest descent path converges to the
geodesic path. This is similar to the continuous “divergence dis-
tance” coordinates [CGH18c] of a point associated with the planar
polygonal boundary, which also support the generation of a steep-
est descent path from source to target. However, those coordinates
are derived from conformal theory and generate paths of a hyper-
bolic nature, which are not geodesic paths. The continuous coor-
dinate vectors may be discretized to “reduced divergence coordi-
nates” [CGH18a] containing a finite number of coordinates, at the
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expense of further distortion of the resulting gradient descent paths.
It seems that these coordinates support steepest descent routing also
in multiply connected polygonal domains [CGH18b].

A concept similar in spirit to landmark routing, called “beacon
routing”, was introduced by Biro et al. [BIKM13]. In this method,
a finite number of “beacon” points are positioned within a polygon
and routing proceeds towards the closest beacon until a boundary is
reached or the Euclidean distance to the beacon is identical to that
of the target from the beacon. If a boundary is reached, it is fol-
lowed as long as the distance to the beacon decreases. At that point
the beacon is replaced with another one and the process continues
until the target is reached. The main challenge is, given a poly-
gon, to position a finite number of beacons in the polygon which
can support beacon routing between any two points without getting
stuck.

The main goal of this paper is to show that the simple and natural
choice of using the vertices of P as landmarks, coupled with the
o landmark distance, avoids all the problems outlined above and
provides a simple method to route between any two points within a
simple polygon.

3. Preliminaries
3.1. The Geodesic Distance

The fundamental distance function that we rely on to define land-
mark distances in a polygon P is the geodesic distance, which is
the length of the geodesic curve between two points x,y € P. The
geodesic curve Y(x,y) is the shortest path between two points within
P, which is well-known to be a polyline between x and y, bending at
a subset of the reflex (i.e., non-convex) vertices of P, and relatively
easy to compute based on the visibility graph of P [dBCvKOO0S].
The last vertex of P on Y(x,y) before y is called the anchor vertex
of y(x,y). Obviously, if P is convex, then Y(x,y) is the straight line
between x and y and its anchor is x, otherwise the anchor is a reflex
vertex. The shortest-path tree from any point x to the vertices of P
has leaves at a subset of the vertices, called the extreme vertices of
P relative to x. If z lies on y(x,y), then we say that x, y, and z are
co-geodesic. Denote by g(x,y) = |y(x,y)| the geodesic distance be-
tween x and y, and by e(y,x) and e(x,y) the geodesic straight-line
extensions of y(x,y) beyond x and y towards the boundary dP of P
(see Figure 1), which may degenerate to a single point, if x or y are
boundary points.

Geodesic distances within polygons have been studied exten-
sively. We state here some basic but useful properties.

Proposition 1 (see [Aro89, Note 3.4]) The geodesic distance
g(x,y) is a metric and continuous in both x and y.

Proposition 2 (see [Aro89, Note 3.12]) The geodesic distance
g(x,y) is a continuously differentiable function of y, and its gra-
dient with respect to y is the unit vector in the direction of e(x,y),
thatis, Vg(x,y) = (y—a) /||y — a||, where a is the anchor of y(x, y).

Lemma 1 (see [PSR89, Lemma 1]) Let a,b,c € P. Then, as x
varies along Y(b,c), g(a,x) is a convex function of g(b,x) and
8(a,x) < max{g(a,b),g(a,c)}.

Corollary 11f a € P, then g(a,x) is a convex function of x within P.
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Figure 1: Shortest-path tree (red) from target point t to vertices of a
non-convex polygon P. Here, the tree leaves are the convex vertices
of P. The other vertices (E and F) are reflex vertices. Vertex F is the
anchor vertex for B and vertex E is the anchor for C and D. Points
t, E B and points t, E, E, C are co-geodesic, thus L;(s3) = g(s3,1),
co-determined by landmarks F and B, and L;(sy) = g(s2,1), co-
determined by landmarks F, E, and C. However, L;(s1) < g(s1,t)
and is determined by landmark G. Dashed lines mark the geodesic
extensions e(t,E) and e(t,F) (blue) and e(E,t) = e(F,t) (green).

Proof A bivariate function over P is convex, if and only if it is
convex on any line segment in P. Let b and ¢ be two points in P,
such that the line segment [b,¢] is also in P. This line segment is
therefore also the shortest path (b, ¢). Lemma 1 implies that g(a, x)
is a convex function of g(b,x), which is a uniform parameterization
of [b,c]. So, g(a,x) is convex over [b,c], hence also over all P. [

3.2. Generalized Hyperbolas

The landmark distance is closely related to the definition of hy-
perbolas with respect to the geodesic distance instead of the usual
Euclidean distance. To this end, let s, € P be fixed and consider
the function

D(x) = g(x,s) — g(x,1)

for x € P. Obviously, D is continuous in P, and it turns out that D
is bounded and has the following properties.

Proposition 3 Let A = g(s,#). Then —A < D(x) < Afor any x € P.
Moreover, D(x) = —A, if x € e(t,s) and D(x) = A, if x € e(s,7). In
particular, D(s) = —A and D(r) = A, and D increases linearly by
arc length along Y(s,?).

Proof By the triangle inequality, g(x,7) < g(x,s) + g(s,#), which is
equivalent to the lower bound —A < D(x), with equality if and only
if s lies on Y(x,), which includes the case x € e(z,s). The upper
bound follows similarly from g(x,s) < g(x,t) 4 g(¢,s). Finally, if
x € Y(s,t) splits y(s,?) in the ratio A : 1 — A for some A € [0, 1], then
it follows from the subpath property of shortest paths that g(x,s) =
Ag(s,t) and g(x,7) = (1 —A)g(s,2), hence D(x) = 2A—1)A. [

We denote the contour line of D for iso-value § € [—A,A] by
Bs = {x € P:D(x) =8}.

The contour line By contains all points that are equidistant from s
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Figure 2: Partitioning of a non-convex polygon P into regions
Qo,...,0s5 with anchor vertices §| =f| =§) =A, i3 =84 =4 = F,
§o =83 =s, and fy =t =1. The 8-bisector Bg, connects the regular
endpoint v with the degenerate endpoint A and contains the entire
shadow Q1 of A, including the convex vertex B. The 8-bisector B,
has two regular endpoints and consists of two hyperbolic arcs, one
in the region Qg with foci s and t, the other in the region Q3 with
foci s and F.

and ¢ and is called the bisector of s and . The bisector is a straight
line if P is convex, and for general simple polygons, we recall a
result from [Aro89, Lemma 3.22].

Lemma 2 If s and ¢ are in general position, namely, By does not
contain a vertex of P, then By is a smooth curve connecting two
points on dP and having no other points in common with dP. It is
the concatenation of O(n) straight lines and hyperbolic arcs.

The proof of this lemma uses a partition of P into polygonal
regions, where each region Q contains two vertices § and 7, such
that g(s,x) = g(s,8) + ||§ — x|| and g(z,x) = g(¢,7) + ||f — x|| for all
x € Q (see Figure 2). Apart from special cases that may occur at
the boundary of Q, this means that § and 7 are the common anchors
of the geodesic paths from s and ¢ to all points in Q. The restriction
of By to Q is either empty, the straight-line bisector of § and 7, or a
hyperbolic arc with foci § and 7. If the two anchor vertices coincide
for some Q and § = f is equidistant from s and ¢, then s and ¢ are
not in general position and By contains the entire region Q.

For & # 0, the contour line Bs, which we call the 3-bisector of
s and ¢, behaves similarly. If P is convex, then By is a hyperbolic
arc with foci s and ¢, and essentially a piecewise hyperbolic curve,
otherwise.

Lemma 3 If s and ¢ are in general position with respect to 8 €
(=A,A), namely, Bg does not contain a vertex of P, then By is a
smooth curve connecting two points on dP and having no other
points in common with dP. It is the concatenation of O(n) straight
lines and hyperbolic arcs.

Proof As in the proof of Lemma 2, let Q be a region from the
partition of P with anchor vertices § # 7. The condition x € Bg N Q
is then equivalent to ||§— x|| — || — x|| = 8 — g(s,§) + g(¢,7), which
implies that Bg M Q is either empty or a hyperbolic arc with foci
§ and 7, which degenerates to a straight line, if and only if & =
g(s,8) — g(2,7). The rest of the proof is exactly as in [Aro89]. [

Figure 3: Notation used in the proof of Theorem 1.

As for the bisector By, it can happen that the §-bisector Bg con-
tains an entire region Q, if the two anchor vertices of Q coincide
and § =7 € By (see Figure 2). Such a region, which can also be the
union of several regions O, may occur at either end of Bg, in the
shadow of a reflex vertex p of P (with respect to s and ¢), defined as
the set of all points x € P, for which Y(x, p) = y(x,s) NY(x,#). In this
case, we call p a degenerate endpoint. Apart from this degeneracy,
Bg is always as described in Lemma 3 (see Figure 4).

The special case |§] = A is not covered by Lemma 3, but it fol-
lows from Proposition 3, that the contour line B_, is the straight
line segment e(z,s), which connects s with some point g_, € 0P,
and B, is the straight line segment e(s, ), connecting ¢ with some
point g € dP. As before, these boundary points may be degenerate.

We now partition 0P at g_ and g, into two polygonal paths y"
and ¥y~ (see Figure 3), and we analyze the behavior of D(x) on dP.

Theorem 1 The function D increases monotonically along the
paths Y and y~ from g_ to ga.

Proof As D is continuous, with D(q_a) = —A and D(ga) = A,
it follows from the intermediate value theorem that there exist for
any 8 € (—A,A) two boundary points qg €y and g5 €Y with
D(qg) = D(gg ) = 8. By Lemma 3, these must be the endpoints (or
lie in the shadow of possibly degenerate endpoints) of the contour
line Bg. Moreover, it follows from Proposition 3, that there exists a
unique point g5 € Y(s,t) N Bg with D(gg) = d.

We now partition P by the extended geodesic e(t,s) U7y(s,t) U
e(s,t) =Y(g—a,qa) through s and 7 into two regions and focus on
the region P that contains y'. Let x{,x, € y" be any two points or-
dered in the sense that x| is encountered first when travelling from
g_n 1o ga along y*, and assume that 8; = D(x;) > D(xz) = §,.
Further let y; = g5, and y, = g5, be the unique points on (s, )
with D(y;) = 8; and D(y,) = &,. By the linearity of D along Y(s,?),
the point y; is encountered first when travelling from s to ¢ along
¥(s,t). This, however, implies that the contour line By , which con-
nects x; and y;, and the contour line B, from x; to y, must inter-
sect, which is impossible. By contradiction, we must therefore have
3 < 85, which asserts that D is monotonically increasing along y".
The same argument works fory~. []

In analogy to the case when the geodesic distance is identical to
the Euclidean distance, we call

Hs=B_5UBs={x € P:|g(x,s) —g(x,1)| = 8}

for & € (0,A) a (generalized) hyperbola with foci s and ¢ and semi-
major axis 8/2. We further refer to B_5 and Bg as the s-branch and
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Figure 4: Hyperbolas Hg with foci s and t in a convex (left) and
a non-convex polygon (right). The branches of Hg are the contour
lines B_g and Bg of D. The bisector By is shown in red and the
tightest hyperbola in blue. The green hyperbola has a degenerate
endpoint (E) and contains all points in the shadow of E (green).

the ¢-branch of Hg, because they bend around s and ¢, respectively.
The vertices of Hg are the two points g_g and g5 where the two
branches intersect Y(s,#). As & — 0, both branches converge to the
bisector By, and we get the degenerate hyperbola Hy = By. As 8 —
A, the two arms of B_g and of Bg both converge to e(z,s) and e(s, ),
respectively, and we obtain the degenerate hyperbola Hy = e(t,s) U
e(s,t) with infinite curvature at its vertices s and ¢. Consequently,
we say that Hy, is tighter than Hy, if 8 > ;.

We are now ready to establish the connection between the land-
mark distance and generalized hyperbolas.

Proposition 4 Let 8 = £;(s) be the landmark distance between ¢
and s. Then Hjy is the tightest hyperbola that contains at least one
landmark and £ (s) is co-determined by all landmarks on Hj.

Proof By the definition of the landmark function, the landmark /;
lies on the hyperbola Hs, with §; = A;(s), and the statement then
follows directly from the definition of the landmark distance. [

Proposition 4 gives rise to a geometric procedure for determining
the landmark distance between ¢ and s and the landmarks that co-
determine £;(s). Start with the degenerate hyperbola Hg for § = A
and “open” it by continuously decreasing & until Hy “hits” a land-
mark. This and all other landmarks that are “hit” by this tightest hy-
perbola Hg, including landmarks that lie in the shadow of a degen-
erate endpoint, co-determine the landmark distance at s (see Fig-
ure 4), and its value £;(s) = § is the geodesic distance between the
vertices of Hy.

4. The Landmark Distance
4.1. Basic Properties

Using the landmark distance £; in (2) for routing from some source
s € P to the target t € P by steepest descent is possible only if £;
has a global minimum at the target and no other local minima in P.
If the landmarks are the vertices of P, thatis, m =n > 3 and ¢; = p;
fori=1,...,n, then the first condition is not hard to show.

Proposition 5 The landmark distance has a unique global minimum
atr.

Proof By definition, £;(x) > £;(t) = 0. Suppose there exists some
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x # t with L;(x) = 0. Then, again by definition, A;(x) = 0, hence
l; € Hy for i = 1,...,n. But this contradicts Lemma 2, by which
the bisector By = Hy contains at most two landmarks. If By has de-
generate endpoints, then there might be more co-determining land-
marks in the shadow of those endpoints, but never all of them. [

For this choice of landmarks, the landmark distance turns out to
induce a metric on P, which justifies calling £; a distance function.

Theorem 2 The bivariate function £(x,y) = Ly(x) is a metric.

Proof By Proposition 5, L£(x,y) = 0 < x =y, and the symmetry
L(x,y) = L(y,x) follows directly from the definition. To show the
triangle inequality, assume that £y (x) is determined by landmark
£, Lz(x) by £}, and Ly(z) by £j. Then,
L(x,y) =gi(x) —&i()]
< lgi(x) —&i(2)| + 18i(z) — &)
< lgj(x) =g (@) +[8k(z) — gk = L(x,2) + L(z,)-
|

Note that Proposition 5 and Theorem 2 are not true for arbitrarily
chosen landmarks, especially if they are not constrained to lie on
the boundary of P, as it may then happen that all landmarks lie on
the bisector By of some s and ¢ with s # 7 and then £;(s) = 0.

The following three observations, however, are true for any
choice of landmarks. We first show that the landmark distance is
a lower bound on the geodesic distance.

Lemma 4 For any x € P,
L:(x) < g(x,1),
with equality if and only if ¢; € e(x,r) Ue(z,x) for some i.
Proof By the triangle inequality,
gilx) gl +gi(t) = gilx)—gilt) <glx1),
gilt) < glt,x)+gilx) = gilr)—gilx) <g(t,x),

hence A;(x) = |gi(x) — gi(t)| < g(x,t), with equality if either ¢; €
e(x,t) or {; € e(t,x). Since this is true for all i = 1,...,m, the state-
ment follows from the definition of £;(x) in (2). [

An immediate consequence of Lemma 4 is that the landmark
distance £; at the landmark /; is determined by ¢; itself.

Corollary 2 For any landmark ¢;,
Li(4) = Ni(€i) = g(¢i1).

Moreover, the landmark distance satisfies a maximum principle
on the geodesic between any two landmarks.

Lemma 5 For any landmarks ¢; and £; and any x € y(¢;,;),
Ly(x) < max{L:(€;), L (L))}
Proof To prove the statement, note that
£4(x) < glx,1) < max{gi(r). g (1)} = max{ i (6:), £:(6))},

where the first inequality follows from Lemma 4, the second from
Lemma 1, and the last equality from Corollary 2. []

A more general maximum principle holds if all landmarks are
located on the boundary of P, but not necessarily at the vertices.
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Figure 5: Contours of the landmark distance from t (black point).

Theorem 3 For any region O C P and any x € O,
L:(x) < max{L:(y) : y € 00}.

Proof Assume that £;(x) is determined by ¢;, and consider the
geodesic y(¢;,x). Since ¢; € dP and x € O, this geodesic must inter-
sect dO at some y;. Likewise, let y, be the intersection of dO with
the extension e(¢;,x) of y(¢;,x). By Lemma 1, g;(z) increases from
0 as z varies along Y(¢;,x) Ue(¢;,x), hence g;(y1) < gi(x) < gi(y2)-
We now distinguish two cases. If g;(x) < g;(¢), then

Li(x) = gi(t) — gi(x) < gi(t) —&i(v1) = hi(y1) < Li(y1)-
Otherwise, if g;(x) > g;(), then

Li(x) =gi(x) —gi(t) < gi(y2) — &i(t) = Mi(y2) < Le(y2).
In both cases the statement follows, because y1,y, € 0. []

The global maximum of £; can then be identified easily by using
Corollary 2, Theorem 3, and Lemma 5.

Corollary 3 The global maximum of the landmark distance is ob-
tained at the landmarks /; that are farthest from ¢, by geodesic dis-
tance, and equal to the distance of these landmarks from ¢,

meagﬁz(x) =Li(4) =g(li,1) <= i€argmaxg({),1).
X i

=1,....m

Going back to the case where the landmarks are the vertices of P,
it further follows that the global maximum of £, is obtained at one
(or several) of the convex vertices of P. Often, but not always, local
maxima occur at the other vertices (see Figure 5).

4.2. Absence of Local Minima

We now turn to the central result of this paper, namely that the
landmark distance £; has no local minima inside the polygon P,
except at the target ¢, in the case when the landmarks are the ver-
tices of P. The key insight for proving this property is that for any
point s € IntP \ {¢}, the number of different (negative) gradients
of the landmark functions corresponding to the landmarks that co-
determine £, (s) is at most four, even though there can be more than
four such landmarks, and that they all point in a common direction.

Recalling the definition of the landmark function A;(x) in (1),
it follows directly from Proposition 2 that its gradient is the unit
vector in the direction of the extension e(¢;,x) of Y(¢;,x).

Figure 6: Contours and examples of (negative) gradients of the
landmark functions for the cyan and orange landmarks of the poly-
gon in Figure 5 (b). The zero contour passing through t is marked
in red.

Corollary 4 For any landmark ¢; and any x € P\ {{;}, letu = (x —
a)/||x — al|, where a is the anchor of Y(¢;,x). Then (see Figure 6),

u, if gi(x) > gi(1),
—u, if gi(x) < gi(t).

If g;(x) = gi(¢), then A;(x) = 0 and its gradient is undefined, and
likewise at x = ¢;, where A; has a local maximum.

VAi(x) = {

We now observe that the co-determining landmarks of £;(s) are
in very specific places. To this end, let E; and E; be the edges of P
that intersect with the extended geodesic between s and ¢, that is,
q—na € Eg and gp € E; (see Figure 3). If g_ 5 happens to be a vertex
of P, then Ej is defined as the degenerate edge that consists of only
this vertex, and likewise for gp and E;.

Theorem 4 If the landmark ¢; co-determines £;(s), then ¢; is an
endpoint of Es or E;, or ¢; lies in the shadow of one of these end-
points. In the latter case, the corresponding edge endpoint is itself
a co-determining landmark ¢; of £;(s) and a degenerate endpoint
of the hyperbola H for 8 = £L;(s). Moreover, VA;(s) = VA;(s).

Proof Tt follows from Lemma 3 that for any 8 € (—A, A), the hyper-
bola Hy has exactly four (possibly degenerate) endpoints on dP. By
Theorem 1, these four points move monotonically along dP as & de-
creases from A to 0, two starting at g_, moving along Yy and y~,
and likewise for the other two starting at g, until they meet at qar
and ¢, , the endpoints of the bisector By. Following the geometric
interpretation of Proposition 4, the opening process will therefore
terminate as soon as an endpoint of Es or E; is “hit”. Hence, these
endpoints are the only candidates for co-determining landmarks of
L:(s), with one exception: if a co-determining landmark ¢; is a
degenerate endpoint of the hyperbola Hg for & = L;(s), then all
landmarks in the shadow of ¢ ;j are co-determining landmarks, too.
In fact, if ¢; is one of these landmarks, then g;(s) = g;(¢;) +g;(s)
and g;(t) = g;(¢;) +g;(t), because £; is a point on both y(¢;, s) and
Y(€;,1), and therefore A;(s) = A;(s). Moreover, e((;,s) = e({},s),
which implies VA;(s) = VA(s) by Corollary 4.  []

For 8 = L:(s), let a1 and a; be the anchors of the paths Y(q_g, s)

and 'y(qfs,s) from the endpoints qzs,qfs € Ej of the s-branch
of the tightest hyperbola Hg to s. Similarly, let a3 and a4 be the
anchors of the paths from the endpoints qg ,45 € E of the t-branch

(© 2021 The Author(s)
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Figure 7: Notation used in the proof of Lemma 6.

of Hg to s. Moreover, letu; = (a; —s)/||la;—s|| for j=1,...,4 (see
Figure 7). Corollary 4 and Theorem 4 then imply that —V2;(s) €
{—uy, —up,u3,u4} for all co-determining landmarks ¢;, and it turns
out that these four vectors all point in a common direction.

Lemma 6 There exists a vector v € Rz, such that v-u; < 0 for
j=1,2andv-u; >0for j=3,4.

Proof First note that the u;, since they point in the direction of the
first segment of the geodesics from s to the corresponding endpoints
of Hg, have the same order by angle around s as those endpoints
along dP, which, by construction, is the order given by their indices.
Next consider the angles oj = <(uj,uji () for j=1,...,4, where
us is identified with u;. Since qfﬁ and qg lie in P, the region
“above” Y(q_a,qa), then so do the geodesics between s and these
endpoints, and in particular a, and az. As the boundary of P is
locally straight at s, we conclude that o, < 7, and likewise 0y < .
To see that o; < 7, imagine first the case where s = g_x, so that
o = . Then observe that o decreases first strictly, then mono-
tonically, as we move s along Y(g_a,ga) to its actual position, and
a similar reasoning shows that o;3 < 7.

Since all oj < 7, there exists some line V through s that separates u;
and uy from u3 and uy (see Figure 7). The unit vector v perpendic-
ular to V, in the direction of u3 and u4 then satisfies the conditions
in the statement. []

Theorem 5 The landmark distance £;(x) does not have any local
minima in Int P, except at x = 1.

Proof We have already established in Proposition 5 a unique global
minimum of 0 at x = ¢. For any other x € IntP, we know from
Lemma 6 that there exists a common direction v, in which all land-
mark functions A; that co-determine £;(x) decrease. By construc-
tion, £; must therefore also decrease in this direction and hence
cannot have a local minimum atx. [

In Section 5, we state the actual direction of steepest descent of
the landmark distance £;, but let us first take a closer look at the
behavior of £; on the boundary of P.

Lemma 7 The landmark distance £; is convex along any edge of P.

(© 2021 The Author(s)
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Figure 8: Landmark distance fromt (black point) for a convex poly-
gon: contours (top left), color-coded by the determining landmark
(top right), and behavior on the boundary with the same color-
coding (bottom). Note the local maximum at and the piecewise-
linear behavior in the neighborhood of each landmark, and the
two points (marked by red arrows), where two such regions meet.
At these points, the landmark distance has a saddle and decreases
(only) in the inward direction perpendicular to the edge.

Proof Let x1 and x, be two points on an edge E of the polygon,
and let s = oy + (1 — a)x; for some o € (0,1) be a point on the
same edge between them. Assume that the landmark distance at s
is determined by landmark ¢, that is,

Li(s) = |g(s) —gr (1) > |gi(s) —gi(®)],  i=1,...,n,

and distinguish two cases. On the one hand, if gi(s) > gx(¢), then,
by the convexity of g, (see Lemma 1),

Li(s) = gi(s) — gr(t) = gr(owey + (1 —a)xa) — gi ()
< ougg(x1) + (1 — a)gr(x2) — g (t) — (1 — o) gx ()
< algr(x1) — gk ()] + (1 — &) |gk(x2) — gk (1)l
<ols(x)+ (1 —0)Li(xz).

On the other hand, if g (s) < gx(#), then, following the arguments
in the proof of Theorem 4, ¢ is one of the endpoints of E = Ej, and

Le(s) = gx(t) — gu(s) = gi(t) — agr(x1) — (1 — a)gr(x2)
< ogr(t) — gr(x) [+ (1 — ) |gx(t) — gr(x2)]
< (XL[(.X]) + (1 — (X)ﬁz(xz),

where the second identity follows because gy is linearon E.  []

Figure 8 provides an example of this boundary behaviour and
also shows the linear behavior that £; inherits from A; in the vicin-
ity of each ¢; along the boundary. Note that the proof of Lemma 6
also extends to the open edges of P, with one exception.

If s € IntE for some edge E = [¢},{;] of P, it may happen that the
landmark distance £, (s) is co-determined (at least) by the two end-
points of E. In that case, the two corresponding landmark functions
A1 and A, have opposing gradient vectors, hence oy = 7. Taking
as v the unit vector in the inward direction perpendicular to E, we
getv-u;=0for j=1,2and v-u; > 0for j =3,4. AsA; and X,
decrease linearly in the distance to ¢; and ¢;, locally at s, this suf-
fices to conclude that the A; of all co-determining landmarks /;, and
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therefore also £;, decrease in the direction v. In fact, each such s is
a saddle point of £;, but not a local minimum (see Figure 8).

If s = ¢; is a vertex of P, then £;(s) is co-determined by ¢; itself
(by Corollary 2), but VA; is undefined at s (by Corollary 4) and the
reasoning in the proof of Lemma 6 cannot be applied. However,
it follows from Lemma 4 that £;(x) = A;(x) = g(x,¢) for any x €
¥(s,f), so the landmark distance is guaranteed to decrease in the
direction v pointing along Y(s,t). Overall, we conclude that £;(x)
is free of local minima in P, except for the global minimum at x =z.

5. Geometry of the Landmark Partition

For a given target point ¢ € P, it is useful to partition the interior of
the polygon as follows. For any x € P, let I = {i : £(x) = Ai(x)}
be the index set of all co-determining landmarks and denote by
N(x) = #{VA;(x) : i € It} the number of well-defined and different
gradients of the corresponding landmark functions. By Corollary 4,
N(x) = 0 for x = ¢ and also for x = ¢;, unless ¢; and  happen to be
co-geodesic with some other landmark /;. By Theorem 4, 1(x) < 4,
and we call x a double, triple, or quadruple point, if n(x) is 2, 3,
or 4.

A region of the landmark partition is then defined as the closure
of the set of all points x with a common index set I and n(x) = 1.
Note that in some special cases (e.g., when 7 is co-geodesic with
two landmarks), a region may be degenerate, namely, have no in-
terior. For a non-degenerate region R, Theorem 4 implies that the
co-determining landmarks at any x € IntR (i.e., the ¢; with i € Iy)
are the vertices of a common subtree 7 of the shortest-path trees
rooted at s and . We label R by the index of the landmark at the
root of T and call the latter the common anchor landmark of all
co-determining landmarks.

By definition, £; has a continuous gradient at any x € P with
N(x) = 1, in particular at the interior points of each region. More
precisely, VL;(x) = VA;(x) for any i € Ir. Although V.£;(x) is
undefined at all points x € P with 1(x) # 1, we know from Sec-
tion 4.2, that a direction of steepest descent does exist, except at
x =t. In practice, a path generation routine will “probe” in a small
neighborhood (e.g., a circle) around x to find the point/direction
which decreases the landmark distance the most.

‘We now provide some observations related to the geometry of the
landmark partition and the structure of the steepest descent paths.

5.1. Convex Polygons

Let us first study the basic case when P is a convex polygon. In
this case, the geodesic distance g(x,y) is equal to the Euclidean
distance ||x —y||. Denote r; = ||t — ¢;|| fori =1,...,n. See Figure 9
for a detailed example of the convex case.

Each region of the landmark partition is determined by a sin-
gle landmark. The boundary between adjacent regions are double
points s at which the distance is co-determined by two landmarks
¢; and ¢; satisfying |||s — £;|| — r;| = |||s — ;|| — r}|. There are four
possible cases, depending on the relationship between the distances
of s and f to /; and /;. We distinguish between two of these cases,
and the other two are essentially the same as these: 1) s is closer to

l;and to £; thant is, so ||s — 4| — ||s — ¢;|| = ri — rj; 2) s is further
from ¢; than ¢, but closer to £ thanz, so ||s — £;|| 4 |[s — £;|| = r; +7;.
In the first case s and ¢ lie on a branch of the hyperbola whose foci
are ¢; and £; with semi-major axis length |r; —r;| /2 and in the sec-
ond case s and ¢ lie on the ellipse whose foci are ¢; and /; with
semi-major axis length (r; +r;)/2. The triple points s at the in-
tersection of three regions (co-determined by three landmarks) are
at the intersection of two of the ellipses and one of the hyperbo-
las mentioned above. They are also the centers of Apollonius cir-
cles [Wik21] defined by the set of circles centered at ¢; with radii
ri, namely circles tangent (either interior or exterior) to these three
circles. It is easy to see that a triangle contains no triple points for
any target + € P, and that if s is a triple point for a target ¢, then
t is a triple point for s. Quadruple points are those at the intersec-
tion of four regions and co-determined by four landmarks. These
are at the intersection of four ellipses and two hyperbolas and are
very rare, usually occurring only when the polygon possesses some
symmetry, for example, a regular polygon (see Figure 10).

A path of steepest descent from s to ¢ proceeds in a straight line
from s away from the determining landmark of £; (s) until a bound-
ary between regions is encountered. Then it continues along region
boundaries until ¢ is reached. Note that since the boundaries are
conics, the direction of steepest descent, which is tangent to this
boundary, is well-known to be the bisector of the angle between
this point and the two foci of the conic (see Figure 9(f)). It is easy
to see that this is also the bisector of the angle between the two
extreme (of the up to four) gradients defined at this point.

If s is one of the vertices of P, say s = ¢;, and L;(s) is co-
determined not only by £;, but also by another landmark /;, then
£; must be the endpoint g of the extended geodesic from s to ¢, by
Proposition 4 and Theorem 4, that is, s, 7, and ¢ j are co-geodesic.
In this case, the unique direction of steepest descent points towards
t, and the steepest descent path is identical to the geodesic path
Y(s,t). If ¢; is the only determining landmark of £;(s), then any
inward direction can be taken as the initial direction, because £;
inherits the local maximum at s from A; in this case and decreases
with the same rate in all directions. This includes the globally best
direction towards ¢ that yields y(s,) as the steepest descent path,
but a local probing procedure is not able to find it without being
given additional information.

5.2. Non-convex Polygons

The geometry of the landmark partition for non-convex polygons
is more complicated. See Figure 11 for a detailed example of this
case. Each region may be co-determined by multiple landmarks, but
the corresponding landmark functions all have the same gradient.

As in the convex case, the partition region boundaries are con-
ics, and the double points s are located on the boundary between
two adjacent regions, on an ellipse or hyperbola that depends on ¢
and the co-determining landmarks of these regions. However, un-
like in the convex case, the foci of these conics are not necessarily
the co-determining landmarks themselves, but more generally their
anchor landmarks, or even the anchors of the geodesics from these
anchor landmarks to s, and the semi-major axis length depends on
the geodesic distances between ¢, the anchor landmarks, and the
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Figure 9: (a) Convex polygon P and hyperbolic 8-bisectors between two (red) interior points s and t. The red curve is the O-bisector. The
tightest blue hyperbola passes through two polygon vertices, which are the two co-determining landmarks of L;(s). The two colored vectors
are the negative gradients of the corresponding landmark functions at s, one away from the cyan vertex and one towards the yellow vertex,
thus s is a double point. (b) Contours of the landmark distance from t (black point). The global maximum is obtained at the landmark farthest
from t and the global minimum at t. There are no local minima in P. (c) The five landmarks are color-coded and interior points s € P are
colored by the determining landmark for L (s), thus partitioning the interior of P. Boundaries between the regions are (red) ellipses or (blue)
hyperbola with foci at two landmarks. The two triple points where three regions meet are the intersection of two ellipses and one hyperbola.
(d) The tightest hyperbola with foci at t and one of the two triple points intersects the three co-determining landmarks. (e) The circles
centered at each landmark and intersecting t. The triple points are at the centers of Apollonius circles tangent to the three circles centered
at the landmarks defining the triple point. (f) Sample steepest descent paths to the target t. These are straight lines until a region boundary
is reached, at which point only boundaries are followed to t. At any double point s, the bisector of the negative gradients of the landmark
functions associated with the two co-determining landmarks is exactly the tangent to the ellipse or hyperbola defining the boundary. For
triple points, the tangent to the hyperbola is always between the two tangents of the two ellipses.

landmarks in common. In this case, the boundary is a degenerate
hyperbola and thus a straight line segment. However, the points on
these boundaries are not double points, because the gradients in-
herited from both regions are identical.

The characterization of triple points carries over similarly, and
they are located at the intersection of two ellipses and a hyperbola.
A “virtual” ¢, which is the second intersection of these three conics,
may be associated with this triple point (in the convex case this is
exactly t), and similarly for quadruple points.

Figure 10: A quadruple point s involves four ellipses and two hy-
perbolas (left). The tightest hyperbola passes through four land-

marks, whose landmark functions induce four aligned negative gra- As before, a path of steepest descent from s to 7 begins with a

straight line segment and then follows the region boundaries to-

dients (right). . . . . A
wards ¢. This path is uniquely determined, unless it starts at or
passes through a vertex of P at which £, is co-determined by a
single anchor landmark. At such points, similar to the convex case,
geodesic anchors. Moreover, for non-convex polygons it may hap- L; decreases with the same rate in any direction towards the interior
pen that two adjacent regions have two or more co-determining of the region associated with this common anchor landmark.

(© 2021 The Author(s)
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(b) (c)

Figure 11: (a) Non-convex polygon P with contours of landmark distance from t (black point), partitioned, labeled, and color-coded into
regions according to the common anchor landmark of the co-determining landmarks of the region. The global maximum is obtained at a
convex vertex and the global minimum at t. There are no local minima in P. The red region associated with reflex vertex number 7 is co-
determined also by vertices 8, 1, 2, and 3, and the brown region associated with reflex vertex number 8 is co-determined also by vertices 1
and 2. (b) Double points are on the boundaries between two regions, which are (red) ellipses or (blue) hyperbola with foci at two anchor
landmarks. The triple points, where three regions meet, are the intersection of two ellipses and one hyperbola. The boundary between regions
8 and 2 is a degenerate hyperbola with foci at vertices 8 and 2 and does not consist of double points. (c) Sample steepest descent paths
to the target t. These are straight lines until a region boundary is reached, at which point only boundaries are followed to t. These paths
were generated numerically by steepest descent, thus they may have slight precision issues. For the paths passing through vertex 8, our

implementation chose the “right-most” of all possible continuing directions out of vertex 8 and towards the interior of region 8.

6. Discussion
6.1. Fewer Landmarks

In the previous section we saw that some landmarks may play a
more significant role than others, for example, those at the leaves
of shortest path trees to the polygon vertices, which always includes
the subset of convex vertices. This begs the question as to whether
there is a subset of the polygon vertices which, when used as land-
marks, reproduces the same landmark distance function as when
all the polygon vertices are used. A related question is whether di-
Iuting the set of vertices to a subset (e.g., just the convex vertices)
perhaps does not exactly reproduce the full landmark distance, but
still yields a distance function which is free of local minima. We
suspect that in many cases this is true, and, if not, local minima
will be present only on the boundary of the polygon.

Figure 12 compares the contours of the landmark distance from
two target points in the “man” polygon when all polygon vertices
are used as landmarks vs. when only the convex vertices are used.
We observe that when some of the reflex vertices are extreme rel-
ative to the target (i.e., are leaves of the shortest path tree from the
target to the vertices), then the contours are different (see right leg),
albeit still with no local minima. If none of the reflex vertices are
extreme, it seems that their removal does not change the landmark
distance.

6.2. More Landmarks

Our work studies the landmark distance £; in the case when the
landmarks are positioned at all the polygon vertices. But what hap-
pens for other positionings of the landmarks, for example, if there
are additional landmarks in the interior of the polygon or on the
edges?

It is easy to see that Theorem 5 is not necessarily true when P
has interior landmarks, as there may be local maxima of £; at the
interior landmarks. Typically, each local maximum introduces an
additional local minimum and two saddle points (see Figure 13).

However, if we stay with landmarks on the edges of the polygon,
the situation only improves if more and more landmarks are added
(see Figure 14), as the following theorem predicts.

Theorem 6 If P is a simple polygon and the landmarks are dense
along the boundary of P, then £, delivers for all # € P and the steep-
est descent path reproduces Y(s, ).

Proof Given s,t € P, consider the extensions e(t,s) and e(s,?) of
Y(s,t) towards g_a € P and g € 9P (cf. Section 3.2). If there
happens to be a landmark ¢; at g_a or ga then, by Lemma 4,
L:(s) = g(s,t), so L; will deliver and reproduce Y(s,#). This will
happen as more landmarks are added along the edges of P. []

6.3. Multiply Connected Polygons

Our results have been obtained for simply connected polygons. It
would be nice if they could be generalized to multiply connected
polygonal domains, that is, those with “holes”. Alas, experiments
show that local minima cannot be avoided in this case, even at the
limit where landmarks are placed densely along all edges of the
polygon. The fundamental reason seems to be that a geodesic be-
tween two interior points cannot always be extended to the bound-
aries of the polygon while preserving the geodesic property, or al-
ternatively, the geodesic diameter of such a polygon is not always
determined by two vertices of the polygon [BKO13]. The top row
of Figure 15 shows some examples of local minima of the landmark
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Figure 12: Comparison of the landmark distance when using all
27 vertices (left) of the non-convex “man” polygon or just the sub-
set of 16 convex vertices (right) as landmarks. If the (red) shortest
path tree to the polygon vertices rooted at t (black point) has no
leaves at the reflex vertices, then the landmark distance seems to be
unaffected by their removal (top). If the shortest path tree rooted at
t has leaves at some of the reflex vertices (shoulder and armpits),
then their removal may change the landmark distance, which can
be seen in the right leg (bottom).

Figure 13: Interior landmarks may introduce local minima and
maxima into the landmark distance.

distance in two multiply connected polygons. However, this prob-
lem seems to be mitigated somewhat as more landmarks are posi-
tioned on the boundaries, in which case the resulting landmark dis-
tance, as in the simply connected case, approaches the true geodesic
distance. This is demonstrated in the middle and bottom rows of
Figure 15.
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Figure 14: Adding successively more landmarks along the polygon
edges (from top to bottom) makes the landmark distance closer to
the geodesic distance.

6.4. 2-Manifold Surfaces in 3D

We have demonstrated that the landmark distance may be an ex-
cellent approximation for the geodesic distance in simple planar
polygons, and even in multiply connected polygons, by position-
ing landmarks densely along the boundaries. A natural question is
whether this generalizes to 2-manifolds with boundaries in three
dimensions. These types of questions have been treated by mathe-
maticians interested in solving “inverse problems” where the metric
structure of a manifold with boundary is to be derived from infor-
mation relating the boundary to the interior. This seems to be possi-
ble under suitable conditions on the surface (e.g., that its curvature
is bounded) [KKLO7], so there is good reason to believe that our
method may be applied also to manifolds.

Efficiently computing geodesic distances and their contours over
3D surfaces has been the focus of much attention in the geometry
processing community (see, e.g., [KS98, SSK*05, CWW13] and
the survey [CLPQ20]). The objective of recent work [CWW13]
is to preprocess the surface (or some discretization of it), so that
“queries” for the geodesic contours from arbitrary target points
may be computed very quickly based on that preprocessing. Our
work may follow this approach, where once a surface is discretized
into, say, a triangle mesh, the geodesic distances of each interior
vertex to all boundary vertices are precomputed and stored. As-
suming N vertices in the mesh, the boundary will typically con-
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Figure 15: Landmark distance on multiply connected polygons.
With landmarks on the polygon vertices, the landmark distance
from the black point is not necessarily free of local maxima or
minima (top). Adding landmarks along the boundary (middle)
brings the landmark distance closer to the true geodesic distance
(bottom), although there are a few inaccuracies where geodesic
“fronts” meet.

tain n = O(v/N) vertices, so the size of the resulting data struc-
ture would be O(N+/N). Computing all landmark distances as an
approximation to the geodesic distances in a naive serial manner
will cost O(v/N) time per triangulation vertex for the max oper-
ator in (2), in total O(N+/N) for the entire mesh, which is quite
expensive compared to other methods. However, the computation
is “embarrassingly parallel”, meaning, given enough processors,
the task can be trivially parallelized down to almost constant time,
something which is far from obvious for the competing meth-
ods. Moreover, the landmark distance allows us to query a single
vertex-to-vertex distance in O(+/N) time, while some other meth-
ods, like [CWW13], can only compute the distance between a ver-
tex and all other vertices at the same time. Beyond that, it may
be possible to reduce the O(+/N) time per mesh vertex by a more

m=25,N =244

m=15,N =293

Figure 16: Landmark distance routing trees for two (red) target
vertices in a triangulation of the interior of a non-convex polygon
with N (blue) vertices and m (green) landmarks. We have checked
(exhaustively) that the landmark distance delivers to all possible
target vertices of these triangulations.

efficient search procedure to quickly identify the boundary vertex
that determines the landmark distance for that vertex. We leave this
very interesting direction of using our results to efficiently compute
geodesic distances on surfaces for future work.

6.5. The Discrete Case

Given that the continuous landmark distance £; is void of local
minima at the interior of a simple polygon P, it is natural to ask
what happens when the interior of P is discretized by a triangula-
tion 7', and routing is attempted along the edges of this plane graph.
Will the landmark distance, now formulated using the (weighted)
graph theoretic distance between vertices of the graph in lieu of
the continuous geodesic distance, support greedy routing, namely
guarantee delivery? In other words, for each vertex v of 7', will there
always exist a neighboring vertex w of v such that £;(w) < £;(v)?
It seems that for a general triangulation the answer is no. However,
we have experimentally observed that for “well-behaved” triangu-
lations, namely a “nice” (uniform) distribution of the triangulation
vertices with a “nice” triangle structure (e.g., constrained Delau-
nay), seems to always result in delivery (see Figure 16), without the
need to augment 7" with additional edges, as in [CGH18a]. How-
ever, proving this observation requires more investigation, as does

(© 2021 The Author(s)
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the question of the resulting stretch of the generated paths, namely,
the ratio between their lengths and the length of the true shortest
path. Ideally, this should not be too large. In fact, in the examples
of Figure 16, the stretch was no more than 1.03 on average.
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