
Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

Geodesic Distance Computation via Virtual Source Propagation

P. Trettner1, D. Bommes2, and L. Kobbelt1

1RWTH Aachen University, Germany
2University of Bern, Switzerland

vertices: 785415
triangles: 1571022

GSP (ours): 171.9 ms
0.18% error

[QHY∗16]: 7601.6 ms
exact

Figure 1: Single-source-all-destination approximate geodesics computed by our method, Geodesic Source Propagation (GSP), on a large
mesh with complex topology. Exact geodesic iso-contours are shown in sharp red lines and ours as color gradients in dark blue to avoid
occlusion. Source is the red sphere. On a single 4.5 GHz core, our method can process about 4–10 million vertices per second. Speed and
accuracy (as mean relative error) are representative of what our method achieves on the Tet Meshing in the Wild [HZG∗18] data set.

Abstract
We present a highly practical, efficient, and versatile approach for computing approximate geodesic distances. The method is
designed to operate on triangle meshes and a set of point sources on the surface. We also show extensions for all kinds of
geometric input including inconsistent triangle soups and point clouds, as well as other source types, such as lines. The algo-
rithm is based on the propagation of virtual sources and hence easy to implement. We extensively evaluate our method on about
10000 meshes taken from the Thingi10k and the Tet Meshing in the Wild data sets. Our approach clearly outperforms previous
approximate methods in terms of runtime efficiency and accuracy. Through careful implementation and cache optimization, we
achieve runtimes comparable to other elementary mesh operations (e.g. smoothing, curvature estimation) such that geodesic
distances become a “first-class citizen” in the toolbox of geometric operations. Our method can be parallelized and we observe
up to 6× speed-up on the CPU and 20× on the GPU. We present a number of mesh processing tasks easily implemented on the
basis of fast geodesic distances. The source code of our method is provided as a C++ library under the MIT license.

CCS Concepts
• Computing methodologies → Mesh geometry models; • Theory of computation → Computational geometry;

© 2021 The Author(s).
Computer Graphics Forum published by Eurographics - The European Association for Computer
Graphics and John Wiley & Sons Ltd.
This is an open access article under the terms of the Creative Commons Attribution NonCommercial
License, which permits use, distribution and reproduction in any medium, provided the original work
is properly cited and is not used for commercial purposes.

DOI: 10.1111/cgf.14371

https://doi.org/10.1111/cgf.14371

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

1. Introduction

Geodesic distance is the generalization of Euclidean distance to man-
ifold domains and, as such, it is the natural metric for geometric con-
stellations on meshes. This makes it a fundamental tool in geome-
try processing and important for many techniques such as remesh-
ing [PC06], shape descriptors [IAP∗08, GBK16, TBIpS11], shape in-
terpolation [SdGP∗15], animations [WLCJ12], deep learning on ge-
ometry [BMM∗15, MBBV15], and many more.

Computing exact geodesic distances on meshes turns out to be im-
possible in linear or quasi-linear time because the distance function
itself is only piecewise analytic—empirically with O(|V |1.5) pieces
and O(|V |2) in the worst case [SSK∗05, MMP87].

Thus, a lot of research went into fast but accurate approximations.
While most of the exact algorithms are based on window propagation
[SSK∗05, CH90], approximation algorithms take many forms: from
graph-based Dijkstra-style or fast marching solutions of the Eikonal
equation, to the heat method which is based on a connection between
geodesic paths and physical heat propagation.

For practical applications, exact methods are often too slow and
the approximation algorithms all come with trade-offs or limitations
such as expensive or memory-intensive pre-computation, parameter
fine-tuning, or strong requirements on mesh tessellation quality. This
makes it hard to choose any particular algorithm without knowing the
exact use case. To be considered a first-class citizen in the standard
toolbox of geometric processing, an algorithm for geodesic distances
should practically run in linear or quasi-linear time, have low and pre-
dictable approximation error, be usable in an unsupervised setting,
and be versatile enough to be used as a sub-component of other algo-
rithms. These are the criteria that we aim to improve and that guide
the structure of this paper. Through careful analysis we developed a
conceptually simple but thoughtfully assembled method.

Many methods for approximate geodesics, such as fast march-
ing [NK02] or DGPC [MR12], propagate per-vertex distance values.
When a new vertex distance is computed, previous distances are used
to reconstruct a virtual geodesic source from which the new distance
can be derived. In Section 3.1 we argue that this only works well if
the mesh is roughly convex and isotropic. Otherwise, the previous
distances may not refer to the same virtual source resulting in a poor
reconstruction, jeopardizing following computations. We solve this
by propagating an explicit representation of the virtual source instead
of reconstructing it on-the-fly. An efficient representation and update
step is presented in Section 4.1.

A central component of most Dijkstra-based algorithms is a prior-
ity queue. From a performance point of view, such a queue is subopti-
mal in theory due to itsO(|V | log |V |) complexity and in practice due
to multiple indirect memory access and bad cache locality. It is also
notoriously hard to parallelize, especially on the GPU. In Section 4.2
we present an efficient alternative using two FIFO queues that we call
a dual queue system. These queues can be processed independently,
within certain limits, allowing a parallel implementation.

In Section 4.3 we show that with a sufficiently fast update step the
layout of the mesh in memory now becomes a bottleneck due to cache
misses. Hence, we provide a simple topological bottom-up clustering
algorithm that significantly improves cache locality.

1.1. Contribution

Our Geodesic Source Propagation (GSP) is a propagation-style ap-
proximation algorithm for geodesic distances on triangular meshes.

• To improve accuracy, we propagate virtual geodesic sources in-
stead of just scalar distance values.

• To improve performance, we replace the priority queue by a dual
queue system based on two FIFO queues, formulate the algorithm
in an intrinsic parametrization, and optimize the memory layout.

• The explicitly propagated virtual sources improve robustness.
• Being an iterative propagation at core and having access to richer

information provides significant flexibility and versatility.
• Our dual queue system enables an efficient parallel implementation

with up to 6× speed-up on the CPU and 20× on the GPU.

To demonstrate that we achieve these goals, we evaluate our method
on about 10000 meshes taken from real-world data sets representing
both low and high quality input. We show that our method is faster
than state-of-the-art algorithms for approximate geodesic distances—
even faster than the pre-factorized heat method. At the same time,
our algorithm only produces a fraction of the error of second-order
fast marching or the heat method, especially for challenging tessel-
lations. With no precomputation required, it is now possible to com-
pute single-source-all-destination geodesic distances as fast as other
elementary mesh operations.

In this paper we present the fundamental concepts and ideas of
our method. More details on the implementation, additional evalu-
ation, and a C++ implementation under MIT license is provided at
https://graphics.rwth-aachen.de/geodesic-source-propagation.

2. Related Work

2.1. Window Propagation

Most algorithms based on window propagation can be traced back to
the work of [MMP87], called the MMP algorithm. The original work
turned out to be too complex to implement with the first practical
version of this algorithm proposed and implemented by [SSK∗05],
sometimes known as the SU algorithm. Their algorithm also sup-
ports approximative geodesics by merging windows during the update
step. [BK07] extends Surazhsky’s window propagation from point
to polygonal sources. An alternative class of algorithms was started
by [CH90] known as the CH algorithm, later improved by [XW09].

Many papers focused on improving the performance of window
propagation style algorithms. [XWL∗15] use a bucket queue to be
able to process many windows in parallel, resulting in the FWP-MMP
and FWP-CH algorithms. [YXH14] propose a parallel version of the
CH algorithm, PCH. A GPU version of the CH algorithm was de-
veloped by [YHF∗19]. By cleverly culling redundant windows, VTP
[QHY∗16] is currently one of the fastest exact geodesics algorithm.
Even with all the improvements, window propagation algorithms re-
main slow, memory demanding, and difficult to implement robustly.

2.2. Partial Differential Equations

The classical approach to generating distance functions is to find a
function φ : Ω → R satisfying the eikonal equation |∇φ| = 1, as
well as φ(x) = 0 for all source points x ∈ S ⊂ Ω. One of the most

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

248

https://graphics.rwth-aachen.de/geodesic-source-propagation

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

popular class of methods for solving this equation is fast march-
ing [KS98]. The original update step computes a linear approximation
of the distance function. [NK02] raise the approximation quality to
second order while [TWZZ07] improve the handling of boundaries.
Fast marching also works on incomplete data, point clouds, and in
volumetric scenarios [MS01, MS05, CK11].

Instead of trying to solve the non-linear hyperbolic eikonal equa-
tion, the heat method [CWW13] solves a linear elliptic partial dif-
ferential equation for heat transport. This leads to a very efficient
algorithm that requires solving one diffusion and one Poisson equa-
tion which can both be pre-factorized per mesh. [BF15] provides sev-
eral improvements and alternative algorithms for geodesic distances
based on PDEs. Finally, [SSC18] extend the heat method to vector
fields while also making the original formulation more robust by uti-
lizing an intrinsic Delaunay triangulation. A parallel version of the
heat method was proposed by [TZD∗18].

For meshes that can be partitioned into a few grid-like domains,
[WDB∗08] propose an efficient, parallel fast marching on the GPU.
Using similar domain decomposition techniques, [KCP∗16] were
able to achieve significant speedups. While showing substantial
speedups, their dependence on domain decomposition limits their ap-
plicability.

2.3. Precomputed Graphs

Another interesting trend is to compute a graph structure in an expen-
sive pre-processing step. Using this graph, subsequent queries can be
answered efficiently and with high accuracy. While the precomputa-
tion makes them unsuited for dynamic data or infrequent queries, they
shine if the mesh is static and many queries must be answered.

The GTU method [XYH12] precomputes a sparse geodesic trian-
gulation and a large lookup table to answer approximate geodesic in
O(1) time per query. The Saddle Vertex Graph (SVG) [YWH13] is
a sparse undirected graph containing an edge for every pair of sad-
dle vertices that are connected by a straight geodesic path. This graph
can be constructed in an incomplete fashion to obtain an approximate
but faster solution. A similar idea is the Discrete Geodesic Graph
(DGG) [WFW∗17]. Instead of using saddle vertices, the DGG can
use arbitrary points as relays.

2.4. Other

[CR87] show that the construction of exact geodesic paths in three di-
mensions is NP hard. Their construction relies on extremely small dif-
ferences in paths and thus does not rule out existence of efficient ap-
proximation algorithms. [MVC04] provide an iterative scheme to im-
prove approximate geodesic paths by use of the straightest geodesic
theory. For anisotropic geodesic distances, [CHK13] develop a so
called short-term vector-valued Dijkstra.

Local texture coordinates for meshes can be computed via
geodesics as well. [SGW06] approximate a discrete exponential map
by propagating a single source vector over edges. Their approach is
only used locally and never introduces new virtual sources, effec-
tively only computing completely straight geodesics. DGPC [MR12]
computes polar coordinates using a propagation with an update step
similar to fast marching with the improvement by [TWZZ07]. They

Figure 2: Geodesic paths on triangle meshes consist of piecewise
linear segments when unfolding the triangles from target to source.
Tangent discontinuities, “corners”, can only occur at boundary ver-
tices with angle sum above 180◦ or interior vertices with angle sum
over 360◦, i.e. saddle vertices. Top shows the convex case, bottom the
saddle vertex case. In both cases, the unfolded triangles are shown
dashed with a transparent blue filling. The geodesic path is shown
in solid red on the mesh and dashed red on the unfolded triangles.
Corners also act as “virtual sources”, which we exploit in order to
propagate accurate, yet compact information over the mesh.

additionally propagate an angle in order to reconstruct texture coor-
dinates.

3. Method

3.1. Virtual Geodesic Sources

The core intuition for our method is shown in Figure 2. Geodesic
paths are piecewise straight lines [MMP87]. When viewed on the un-
folded path from target to source, we even get a stronger guarantee
where tangent discontinuities, “corners”, can occur: at boundary ver-
tices with angle sum above 180◦ or interior vertices with angle sum
over 360◦, i.e. saddle vertices.

σ
s

virtual geodesic source

These virtual (geodesic) sources
are the central piece of information
that our method propagates over the
mesh. Instead of computing com-
plete geodesic paths, we only need
to propagate the virtual sources s
and the length of geodesic path that is “behind the corner”, σ. In the
unfolded domain from target to source, this virtual source is the first
corner on the geodesic path and the rest of the path length is stored
in σ. Thus, the geodesic distance from target t to source is simply
|t − s|+σ, given that t and s are represented in the same unfolded
space, e.g. in the tangent space of the triangle containing t as shown
in Figure 2 (bottom).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

249

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

Window propagation algorithms that compute exact geodesics
propagate these virtual sources with extra distance σ. However, one
virtual source per triangle is insufficient in general and many might be
required. Thus, the exact algorithms typically store a variable number
of such sources on edges, enough information to reconstruct exact
distances to vertices.

On the other side of the spectrum, approximation algorithms often
only propagate scalar distance values, incurring a heavy loss in infor-
mation. A simple Dijkstra using edge lengths can be considered the
most trivial geodesic approximation algorithm. Creative update rules
have been proposed that try to locally reconstruct as much informa-
tion as possible in order to increase the accuracy. The most accurate
of these are fast marching using the update step from [NK02] with ex-
tension from [TWZZ07] and DGPC [MR12]. Given two vertex dis-
tances in a triangle, they try to find a virtual source s that satisfies
these distance constraints in the supporting plane of this triangle. Us-
ing this virtual source they compute the distance to the third vertex
and apply a heuristic when the geodesic path should bend and get a
new corner.

There are two obvious sources for inaccuracies: the reconstruction
and the bending heuristic. Reconstructing s from two vertex distances
is not possible in general. Even if the two distances are exact, they
might already contain extra distances σ before the last corner. In
that case, the radius for the radial reconstruction is not the complete
distance, but only a part of that. Without explicit tracking, it is impos-
sible to know what radius to use. The two vertex distances could also
belong to different virtual sources, for example behind a saddle vertex
or if multiple geodesic fronts meet. And finally, as soon as even one
distance becomes inaccurate, the reconstruction cannot recover.

The bending heuristic determines whether the update uses a
straight geodesic or if a new corner should be introduced. Fast march-
ing with Novotni’s update step never bends. The third vertex is always
computed assuming the path to the reconstructed source is straight.
Tang’s extension to fast marching and DGPC, on the other hand,
bend if the quad formed by the triangle and the virtual source is non-
convex. This is equivalent to testing if the line from the third vertex
to the source intersects the gate edge e.

Our method, called GSP, avoids the first problem by propagating
an explicit representation of the virtual source s, including the ex-
tra distance σ as a separate value. Instead of propagating over ver-
tices, we propagate from triangle to triangle. A triangle has a well de-
fined tangent space in which we can express the virtual source s. The
bending—in contrast to the reconstruction—cannot be made fully ac-
curate as that would require storing and processing a variable number
of virtual sources per triangle. However, we can refine the heuristic.

3.2. Data-Driven Visibility Heuristic

The propagation of geodesic distances from triangle D to a point p in
triangle E across the common edge e is only valid if the line of sight
from p to the virtual source s (in tangent space) crosses the edge e.
Since the visibility status of s can vary for different positions of p in
E, exact geodesic distance computation requires the storage of multi-
ple sources (“windows”) for each triangle. To reduce complexity and
increase efficiency, approximate geodesic distance computation relies
on storing just one virtual source per triangle and hence may over- or

s

start step 1 step 2

v
σ
′

step 3

Figure 3: Propagation of virtual geodesic sources over triangle
edges. When propagating from one triangle into a neighboring one,
both triangles are unfolded over the shared edge (green) into a com-
mon tangent space first. The virtual source s of the first triangle
can now be used in the second triangle. If the line from the second
triangle’s heuristic point (here visualized as the center) to the vir-
tual source does not intersect the shared edge, a new virtual source
is created at the closest edge vertex v and the additional distance
σ
′ = |s− v| is added to the previous extra distance σ (step 3).

under-estimate the true distance depending on the local mesh config-
uration. Propagation algorithms for approximate geodesics differ in
the heuristic they apply to determine source visibility.

D
E

F

s

v

p

D
E

G

s

v

q

undecidable case

The inset shows that
perfect accuracy cannot be
achieved: the two meshes
have the same triangles D
and E. Only considering
the triangle E and previ-
ously computed geodesic
paths from D, it is impossible to determine what virtual source to
store in E. If a new virtual source is introduced at v, G will use that
new source and q’s geodesic would be (q,v,s), which is too long. On
the other hand, if no new source is introduced, F will also point to s
and p’s geodesic ends up being (p,s), which is too short. This simple
example demonstrates that the correct source information for propa-
gation cannot be predicted from triangles D and E.

A conservative choice is to test source visibility with respect to
the corner in triangle E, opposite to e. If the source is visible from
the opposite corner, it is visible from any other point in E (i.e. the
quad spanned by E and s is convex). This heuristic is conservative
since it introduces a new virtual source as soon as s is not visible
from some point in E. As a consequence geodesic distances tend to
be over-estimated. In our algorithm described so far, we use the cen-
ter of gravity c for the visibility heuristic which is a balance between
over- and under-estimation because some points in E lie above and
some below the line of sight from the center of gravity to the vir-
tual source. For irregular triangulations, however, this heuristic can
also cause significant approximation errors. Instead of deriving more
sophisticated heuristics, we determine one in a data-driven fashion.

a

c
b

E

D

Let c be the center of gravity of triangle E
and a the opposite corner to triangle D. Then
we check virtual source visibility for a point
b = λ · c + (1− λ) · a between c and a. The
point b acts as a kind of visibility probe. The
blending weight λ is derived as a function of
some anisotropy measures on E.

More concretely, we compute the following four anisotropy mea-
sures for the triangle E given its edge lengths ei (shared edge is e1)

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

250

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

and height h of triangle E on e1:

τ1 =
maxei

minei
, τ2 =

maxei

e1
, τ3 =

h
maxei

, τ4 =
h
e1

.

By comparing them to four thresholds τ
∗
1 . . .τ

∗
4 , we obtain a four-bit

binary signature (i.e. 16 possible patterns). Via a small look-up ta-
ble we get the blending weight λ. This procedure has 20 parameters
(4 thresholds plus 16 look-up table entries) which are optimized once
via a simple genetic optimization algorithm and then kept fixed for
all meshes. Using this data-driven heuristic instead of always using
the center c (λ = 1) or the opposite corner a (λ = 0) leads to an ob-
served reduction of the average approximation error by about 20%
in our experiments. The setup for training this function and the exact
parameters can be found in the supplemental material.

While more complex heuristics might lead to better approxima-
tion errors, they also tend to be more expensive to evaluate. Our
heuristic might seem arbitrary, but it does not increase the runtime
noticeably and is motivated by the fact that mesh anisotropy corre-
lates strongly with approximation error (Figure 9). In general, the
problem is not curvature-related anisotropy, but slivers and thin trian-
gles caused by modeling tools, e.g. due to decimation, hole filling, or
fan-based polygon triangulation. All geodesic paths through triangles
must be represented by a single virtual source and this assumption is
empirically violated for thin and long triangles more often than for
regular ones. The relative error is typically largest in the neighbor-
hood of these anisotropic triangles. We conjecture that this is also
the reason why our training on a few meshes nevertheless generalizes
well: The anisotropy measures τi roughly summarize the (very) lo-
cal neighborhood in a scale-independent manner. Training on a small
subset of meshes then still means that we optimize over a large variety
of local neighborhood scenarios as long as the meshes are sufficiently
diverse. We leave a full investigation into ideal trainings setups and
more general but still efficient heuristics to future work.

3.3. Propagation

Our algorithm starts by constructing the virtual source information
explicitly for all triangles that are adjacent to the real sources. For
sources inside a triangle only the triangle itself is initialized, for
sources on vertices all neighboring triangles are initialized. In both
cases σ = 0 and s is set to the tangent-space vector from the trian-
gle center to the source. All halfedges from the initialized triangles
are added to a queue. A halfedge represents the edge that we want to
propagate over but also indicates which triangle is source and which
is target.

Until the queue is empty, we take enqueued halfedges and com-
pute a new virtual source for the target triangle using the propagation
rules depicted in Figure 3. If the geodesic distance to the center using
the new source is lower than what the target triangle had previously
stored, we update the information in the target triangle and enqueue
its two remaining neighboring halfedges. The propagation can po-
tentially update triangles multiple times and from different incoming
edges.

This is similar to a label-correcting algorithm such as [Ber93].
Which type of queue we use has little effect on the result because
all triangles are updated until they contain the shortest geodesic path.
The traversal order mainly affects the runtime of the algorithm. An

obvious choice would be to use a priority queue using center dis-
tances as key, which would make this a Dijkstra-type algorithm. In
Section 4.2 we show how using two FIFO queues results in an algo-
rithm that is significantly faster in practice. Convergence of our prop-
agation is guaranteed because only shorter paths trigger additional
updates.

The actual step of propagating the information (s0,σ0) of the
source triangle t0 into the target triangle t1 over the halfedge h is:

1. Convert s0 from t0’s tangent space to t1’s by unfolding both trian-
gles along their shared halfedge h into a common plane. The result
is s1.

2. Test if h intersects the line from t1’s heuristic point to s1 (cf. Sec-
tion 3.2).

3. If yes, (s1,σ0) is the new virtual source for t1.
4. If no, use (v,σ0 + |v− s1|) where the new virtual source v is the

vertex of h closest to the old virtual source s1.

Step (3) and (4) will only override the previous information if the dis-
tance to the center is shorter. Notice that (4) can overestimate the true
geodesic distance but in this case it will be overwritten later, when the
propagation scheme reaches this triangle via another halfedge. Under-
estimation can also happen if s1 is not actually visible from the com-
plete shared edge. Visibility is only checked with local information,
but could be blocked later on the unfolded path. This is more serious
because it cannot be corrected later. The test in (2) ensures that the
geodesic path of the target triangle actually goes through the source
triangle and is key to maintaining accuracy. If not for this test, all
geodesics would be considered straight and impossible paths would
compromise accuracy as can be seen in Figure 3 (step 3). Algorithm 1
lists the full procedure. Note that this is only a conceptual description
of how the propagation works. Section 4.1 describes a way to perform
this update step efficiently using an intrinsic parametrization.

4. Algorithm Design

The previous section introduced our method on a conceptual level.
We complement this by discussing the necessary steps to implement
our approach in an efficient and robust manner. In particular, Sec-
tion 4.1 presents how the virtual source update step can be made fast
and robust by using an intrinsic parametrization. Section 4.2 presents
our dual queue propagation scheme based on two FIFO queues that
is easy to implement and more efficient than a priority queue. In Sec-
tion 4.3 we highlight the importance of (and present solutions to)
traversing the mesh in a cache coherent manner. Finally, Section 5.7
discusses parallel implementations on the CPU and GPU.

4.1. Efficient and Robust Parametrization

In Section 3.3, the information that is propagated per triangle T is
(sT ,σT) where sT is a 2D vector living in the tangent space of the
triangle pointing to the previous geodesic event, i.e. a virtual or real
source. σT is a scalar tracking the additional distance from the virtual
source to the original one.

The update step, propagating over edges, requires expressing the
adjacent triangles in a common coordinate system and even with pre-
computation and optimizing operations, this causes non-negligible
cost. However, the change of coordinate system is not required if

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

251

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

ALGORITHM 1: Geodesic Source Propagation (GSP)
Input: vertex sources S, mesh M
Output: per-triangle virtual geodesic sources (sT ,σT)

Q←∅
for si ∈ S: // seed sources

for T ∈ adjacentTriangles(si):
σT ← 0
sT ← si in tangent space of T
h← halfedge not adjacent to si in T
Q.enqueue(h)

while Q is not empty: // geodesic source propagation
take h ∈ Q
if h is boundary:

skip

t0←face(h)
t1←face(opposite(h))
s0,σ0← data stored in t0
s1← s0 unfolded along h into tangent space of t1

if h intersects (s1, heuristic_point(t1)): // straight
geodesic

(sT ,σT)← (s1,σ0)
else: // new virtual source

v← vertex of h closest to s1 in tangent space of t1
(sT ,σT)← (v,σ0 + |v− s1|)

if (sT ,σT) is shorter than the previous path of t1:
store (sT ,σT) for t1
Q.enqueue(prev(opposite(h)))
Q.enqueue(next(opposite(h)))

the algorithm operates purely on an intrinsic parametrization of the
mesh. In this parametrization, the input are not 3D vertex positions
but edge lengths ei. s is not propagated as a vector but instead each
vertex v of a triangle T stores the distance dv,T to s. Because vertex-
triangle pairs (v,T) can be identified with halfedges, we store dv,T
per halfedge. σT is still stored per triangle and we additionally store
dT , the geodesic distance of the triangle center in order to simplify
the test whether the propagated distance is shorter than the previ-
ously stored one. In the actual implementation we store d2

v,T in-
stead of dv,T to save a few operations. Thus, per triangle the 5-tuple(

σT ,dT ,d2
v0,T ,d

2
v1,T ,d

2
v2,T

)
∈ R5 is stored. This parametrization is

similar to the window propagation of [SSK∗05] and a logical evo-
lution of [TWZZ07]’s update step.

[
0
0

] [
e1
0

]
A B

P

C
dT ,σT

S

h

h1

h2h3
e2e3

te1

n3 n2

d2
A,U d2

B,U

d2
A,T d2

B,T

d2
P,T

To demonstrate
the simplicity
of the formulas
and provide a
reference for
implementation,
the update step
is given in full
detail. The in-
set shows static
(black), given (red), and computed (green) variables. We are free to
choose a local coordinate system, so we place the edge that we are
propagating through on the x axis with vertex A being at the origin.

The propagation happens over the halfedge h, from the previous
triangle U into the current triangle T . At the beginning of the update
step we know the values d2

A,U and d2
B,U , representing the distance to

the virtual source S, and σU , denoting the additional distance to the
real source. We want to compute all required values for the current
triangle T .

Given edge lengths e1, e2, and e3 we can reconstruct the third tri-
angle point P via

Px =
e2

1 +(e2
3− e2

2)

2e1
, Py =

√
e2

3−P2
x .

The virtual source S is reconstructed with a similar formula:

Sx =
e2

1 +(d2
A,U −d2

B,U)

2e1
, Sy =−

√
d2

A,U −S2
x

Py and Sy have different signs because they lie on opposite sides of h.
The barycenter C of the triangle is easily found with

Cx =
1
3

Px +
1
3

e1, Cy =
1
3

Py.

At this point, the heuristic of Section 3.2 is invoked and returns a
new point Q that should be used to test visibility. (The previous inset
shows the case Q =C.) The x coordinate of the intersection between
QS and AB, called t, can be computed via linear interpolation:

α =
Qy

Qy−Sy
, t = Qx +α · (Sx−Qx)

We can now distinguish three cases:

1. if t < 0, there is no intersection and the source is in negative x
direction. A is the new virtual source, resulting in:

d2
A,T = 0, d2

B,T = e2
1, d2

P,T = e2
3

σ
′
T =

√
S2

x +S2
y +σU

d′
T = σ

′
T +

√
C2

x +C2
y

2. if t > e1, there is no intersection and the source is in positive x
direction. B is the new virtual source, resulting in:

d2
A,T = e2

1, d2
B,T = 0, d2

P,T = e2
2

σ
′
T =

√
(Sx− e1)2 +S2

y +σU

d′
T = σ

′
T +

√
(Cx− e1)2 +C2

y

3. there is an intersection and the virtual source stays the same:

d2
A,T = d2

A,U , d2
B,T = d2

B,U , d2
P,T = (Px−Sx)

2 +(Py−Sy)
2

σ
′
T = σU

d′
T = σT +

√
(Cx−Sx)2 +(Cy−Sy)2

Additionally, there is the case that the virtual source and triangle lie
on the same side of h, which can happen in situations as depicted in
step 3 of Figure 3 (step 2 still uses the original source and propagates
that over the last halfedge in step 3. From that perspective, the original
source is on the same side as the triangle center and we always intro-
duce a virtual source at a vertex.) In this case we will never have an
intersection of QS and AB. Instead we directly compute two lengths:

l1 =
∣∣∣∣(Cx

Cy

)∣∣∣∣+ ∣∣∣∣(Sx
Sy

)∣∣∣∣ , l2 =
∣∣∣∣(Cx− e1

Cy

)∣∣∣∣+ ∣∣∣∣(Sx− e1
Sy

)∣∣∣∣
© 2021 The Author(s)

Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

252

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

l1 corresponds to the length of the path from S to C over A while
l2 corresponds to the length of the path from S to C over B. If l1 is
shorter, we use case (1), otherwise case (2).

In the end, a new triangle distance d′
T is computed. If it is smaller

than the previously stored one, we replace the values dT , σT , d2
A,T ,

d2
B,T , and d2

P,T . The propagation continues by enqueuing h2 and h3.
At this point we can compute the 2D normals n2 and n3 (of the edges
e2 and e3):

n2 =

(
−Py
Px

)
, n3 =

(
−Py

Px− e1

)
Using the sign of the dot products (S−A)T n2 and (S−B)T n3, we

can check if the virtual source S lies on the same side of h2 or h3. This
one bit of additional data is also propagated in the queue and used in
the update steps for h2 and h3 to check which case we are in.

4.2. Dual Queue Propagation

Section 3.3 outlined the basic propagation and suggested that
Dijkstra-style priority queues might not be the best choice when
optimizing for performance. A priority queue, even cleverly imple-
mented, has logarithmic complexity, multiple memory accesses per
look-up, and bad cache behavior. Instead, we employ two FIFO
queues A and B in a dual queue scheme:

1. initialize A
2. while A is not empty:

a. for all entries e in A:

i. if skip-condition, add e to B,
ii. otherwise compute update step for e

iii. and enqueue new entries in A or B (based on queue-policy)

b. start next iteration by setting A←B and B ← ∅

Entries are enqueued in step (iii) only if a new shortest path is found,
making this a label-correcting instead of label-setting method. Ad-
ditionally, entries are skipped if they became stale, i.e. if a shorter
path for them was enqueued. Depending on skip-condition and queue-
policy we can formulate different propagation strategies:

• By never skipping and always enqueuing in B we recover the clas-
sical breadth-first search, effectively expanding in order of topo-
logical distance. Because there is typically a mismatch between
topological and geodesic distance, many duplicate expansion steps
and label corrections must be performed.

• For the speed limiter strategy we never skip but enqueue inA if the
geodesic distance dT is smaller than f · i and in B otherwise. This
roughly causes all triangles up to f · i distance to be expanded in the
i-th iteration and delaying expansion of triangles “further away”.

• In the postpone strategy, new entries are always enqueued in B
but we skip the update step (postpone the entry) if dT > di for
some per-iteration fixed maximal distance di. In static postpone we
choose di = f · i. Dynamic postpone sets di = minprev dT + f using
the minimum geodesic distance of the previous iteration. As a mid-
dle ground, hybrid postpone uses di = max(minprev dT + f0,di−1+
f1). The postpone strategies are feasible because skipping entries
is a lot cheaper than duplicated updates. In the limit f = ε, they
mimic the behavior of a priority queue because the next expansion
would always be the next bigger dT .

f , f0, and f1 are global parameters, i is the index of the current it-
eration. These strategies differ in the average number of enqueue and
update operations and how well they adapt to anisotropic meshes.
In addition to the propagation strategy, there is the choice to store(

σT ,d2
v0,T ,d

2
v1,T ,d

2
v2,T

)
either in the mesh (lean queue) or in the

queue entries (fat queue).

0.0 0.2 0.4 0.6 0.8 1.0 1.2 1.4
0

1

2

3

4

5

6

7

m
ill

io
n

ve
rt

ic
es

pe
rs

ec

strategy

bfs

speed limiter

static postpone

dynamic postpone

hybrid postpone

throughput versus factor f

In our extensive exper-
iments, we found that for
a single-threaded imple-
mentation, speed limiter
with f = 1 and a lean
queue works best. In a
parallel setting (cf. Sec-
tion 5.7), speed limiter is
problematic because the
size of A changes during
execution and the lean
queue requires a critical section when updating the per-triangle tuple.
There, we found that hybrid postpone with f0 = 1, f1 = 0.1 and a fat
queue works best. As the same halfedge can be in the queue multiple
times, the lean queue approach saves memory bandwidth. However,
it requires more elaborate locking in the parallel case (the update of
all values must be atomic), which is why the fat queue is preferable
there (only dT requires an atomic update). For a similar reason, the
postpone strategies are a good fit for parallel implementations. As al-
ready stated, speed limiter uses concurrent modification of the queue
that is iterated over, which interferes with parallel scheduling. In con-
trast, the postpone variants embrace the “ping-pong” strategy that is
typical for parallel implementations. One “wave” of jobs is sched-
uled for processing A and the result is written to B. Then, the roles
of A and B are swapped. The “Parallel Implementation” Section of
the supplemental material contains more details. The inset shows
the single-threaded performance of these strategies on a few isotropic
and anisotropic meshes. Shaded region is standard deviation. Note
that the edge lengths are normalized such that f = 1 corresponds to
the average edge length.

triangle updates: 1 (blue),
5 (green), 10 (red)

The main advantage of the dual
queue schemes is that they have
little overhead and are simple to
implement. They exploit the inher-
ent regularity in mesh graphs which
is strongest for isotropic meshes.
This is reminiscent of the bucket
queue used in [XWL∗15] but sim-
pler (while still being effective). For
meshes with roughly uniform trian-
gle size, our algorithm empirically runs in linear time. The intuition
behind this is that each iteration updates a certain “geodesic distance
band”. For roughly regular triangulations, the number of times a tri-
angle can be updated before the next “band” is reached tends to be
bounded. Even when this uniformity constraint is not satisfied, the
simplicity of this dual queue approach beats the priority queue in
most cases. In Section 5.3 we evaluate real-world performance of this
approach on a big data set consisting of meshes of both types, in-
cluding stress tests with highly non-uniform meshes. The dual queue
approach is applicable to many Dijkstra-style algorithms, especially

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

253

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

0.0 2.5 5.0 7.5 10.0 12.5 15.0 17.5
million vertices

0

200

400

600

800

1000

cy
cl

es
pe

ru
pd

at
e

st
ep

ordering

random

rows

BFS

Z

optimized (ours)

Figure 4: Cost of GSP on different memory layouts across differ-
ent sizes measured in cycles per update step. Standard deviation over
multiple runs is shown shaded. The test mesh is a grid. See Section 4.3
for a description of the different layouts. Our layout algorithm per-
forms as well as the Z-order curve, which is only well defined for
power-of-two grid sizes. Note that in all cases the executed instruc-
tions are the same. The only difference is the memory layout.

if the actual update step is simple or if a label-correcting approach
must be used anyways. The inset shows the number of times a trian-
gle’s value was updated on a challenging mesh. The source is on the
cat’s right ear.

In the worst case, the strategies degenerate (at least locally) to
the breadth-first search (BFS) and expand in topological instead of
geodesic order. This can for example happen if f for the static post-
pone strategy is chosen so large that nothing is postponed in prac-
tice. Dynamic postpone has a large execution time if the mesh has ar-
eas with dense and coarse triangulations. The whole front is slowing
down if parts of it touch the dense region (as the di is increased only
slowly). We observe linear time for roughly regular triangulations.
However, even for the Thingi10k meshes, we encountered only
locally quadratic growth, mainly around abnormally large or long tri-
angle triangles.

4.3. Cache Coherent Mesh Layout

rows bfs random ours

With the update step and dual queue
propagation scheme presented in
the last sections, the cost of propa-
gation is now dominated by mem-
ory access. In general, we cannot
expect the order of vertices, faces,
and halfedges to be optimized for
algorithms that traverse the mesh
in an unpredictable manner. In our
experience, meshes usually have a
recognizable memory layout. Some result from isosurface extraction
or laser scans where the line-by-line processing is still visible. Others,
like incremental decimation, tend towards random layouts. Different
cache layouts with memory index coded as hue are shown in the inset.

With the above optimizations applied, the computational cost of
a propagation step is only about 100 CPU cycles. However, taking

it. 0

it. 3 6 verts 5 verts 8 verts 5 verts 7 verts
4 2 1 3

3 1 2

it. 4 11 vertices 8 verts 12 vertices

1

3 3

it. 5 31 vertices

Figure 5: Simple but effective bottom-up clustering scheme for opti-
mizing cache layouts: In iteration i, sets of vertices (black) are merged
unless the result exceeds 2i vertices. Order of merging is determined
by number of original mesh edges between two clusters (red), in de-
scending order. An in-order traversal of the leaf nodes of the resulting
tree gives a cache layout that considerably reduces cache misses for
mesh-traversal type algorithms.

memory access into account, it can increase this to over 800 cycles
on bad layouts.

Optimizing the layout of a graph for random walk traversal, or even
specifically the layout of a mesh are well-researched topics. See for
example [YLPM05] or [YL06]. For high quality layouts refer to those
papers. Nevertheless, we want to briefly present a very simple and fast
algorithm for optimizing mesh layouts that proved to be sufficient
in our tests to significantly reduce the cost-per-update-step, even for
bigger meshes. This is closely related to fill-in reduction strategies
[CM69, KK98].

Figure 4 shows the effect of different memory layouts on our al-
gorithm. We used a grid mesh of different sizes to compare several
“natural” layouts. The seed vertex is the center of the grid.

• rows. Line-by-line layout. Traversing in one direction is cache-
friendly, the other is always a miss.

• random. Shuffled layout. Every traversal is a cache miss.
• BFS. Breadth-first order starting from the seed vertex. While en-

tries in the current queue tend to be cache-friendly, other neighbors
are usually not in the same cache line.

• Z. Z-order curve fractal. This layout is only defined for power-of-
two grid sizes but has the property that neighbors in all directions
tend to be close in memory.

• optimized. Our simple but effective layout optimization via bottom-
up clustering.

For small meshes that can be kept completely in the L1 or L2 cache,
layout does not matter much. However, for large meshes the effect can
be drastic. Almost random layouts can incur up to 700% overhead.
Semi-structured layouts such as “rows” or “BFS” still have 150–
200% overhead. Only optimized layouts such as the Z-order curve
or our approach can bring the overhead down to about 50%.

The idea of our layout optimization is a simple greedy bottom-up
clustering approach. A cluster consists of vertices and initially each
vertex is in its own cluster. Clusters are progressively merged, result-
ing in a tree of merge operations. Traversing the tree leaves in-order
produces the final memory layout. Child order did not matter much
in our tests.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

254

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

(a) (b) (c)

Figure 6: Our method can be extended easily. The update step can be
formulated to include other primitive types, such as lines (a). The in-
trinsic parametrization makes anisotropic metrics almost trivial (b).
Using k nearest neighbor queries, geodesics on point clouds can be
computed (c).

We perform the clustering in iterations as depicted in Figure 5.
Each iteration has a vertex limit that grows exponentially: the first
iteration has a maximum cluster size of 1, the second of 2, the third
of 4, and so on. In each iteration we greedily merge pairs of clusters
if the result obeys the vertex limit. Merge attempts are ordered by
the number of mesh edges connecting two clusters. Pairs of clusters
with many edges between the clusters are merged first. The intuition
here is that in order to keep cache misses low, neighboring vertices
should get similar indices in memory. The earlier two clusters are
merged, the more similar their indices become. To avoid an O(|V |2)
algorithm, pairs of clusters should be considered only if they have
connected vertices.

To implement this approach efficiently we recommend using a
union-find data structure [TvL84] as each iteration produces a disjoint
partitioning of the vertices. In our evaluation, the layout optimization
only took a few milliseconds per mesh on average.

The effect of cache optimization on various geodesics algorithms
can be seen in Table 1. Note that this optimization is purely topologi-
cal and does not consider positions or edge lengths. Geometric infor-
mation is not required because propagation-based algorithms expand
the topological neighborhood of their propagated primitives and we
optimized the probability that, given a primitive, its direct neighbor-
hood is nearby in memory. As a side remark, our optimization also
benefits the heat method because sparse matrices derived from cache-
optimized meshes tend to have less fill-in.

4.4. Other Extensions

As a propagation-style algorithm, extending and customizing the up-
date step is rather simple. Some examples for such extensions are
custom source types, anisotropic metrics, and unstructured domains
(shown in Figure 6). The explicitly propagated virtual source infor-
mation can be used to increase reconstruction accuracy (Figure 7).
More details can be found in the supplemental material.

5. Evaluation

Evaluation was done on a 4.20 GHz Intel Core i7-7700K (4.5 GHz
single core turbo) with 16 GB RAM and an NVidia GeForce RTX
2080. Except if otherwise noted, all computations were performed on
a single CPU thread, time was measured using the rdtsc instruc-
tion which measures CPU cycles. Using cycles as the measurement
unit makes the results better comparable across different CPUs and

(a) (b) (c) (d) (e)

Figure 7: Geodesic distances for a tessellated cube. The source is on
the back side. (b) shows linear interpolation of vertex distances. In
(c), the per-triangle virtual source is used to compute the distances.
The transition between different virtual sources can be refined by also
considering neighboring triangles (d). Exact result is shown in (e).

clock rates. It also mitigates inaccuracies caused by the turbo mode,
which dynamically changes the CPU frequency. All algorithms were
implemented in C++, compiled with Clang 7 using the flags -O3,
-march=native, and -ffast-math.

5.1. Methods

Dijkstra is implemented using an std::priority_queue. For
GSP on point clouds domains we used the nanoflann library
[BR14] and 10 neighbors per propagation step.

Our implementation of the heat method uses the Simplicial-
LLT solver from Eigen [GJ∗10] and the Supernodal solver from
SuiteSparse [CDHR08], both with double precision sparse matrices.
Note that contrary to our method, 64 bit precision is required. Cotan-
gent weights are part of the precomputation step and do not contribute
to the solve part of the heat method. Fine tuning of the time step t
was not possible due to the number of evaluated meshes. As sug-
gested in [CWW13], we uniformly used t = 1.0 ·h2 where h is the av-
erage edge length. An intrinsic Delaunay triangulation as suggested
in [SSC18] was not used as this is another costly preprocessing step
and has its own problems with malign meshes.

To the best of our knowledge, there is no reference implementa-
tion for fast marching, so we used our own that is reasonably opti-
mized and includes triangle unfolding to deal with obtuse meshes.
We compare different update steps: the original gradient update step
from [KS98], the radial update step from [NK02], and the improve-
ment on Novotni’s update from [TWZZ07]. The implementation of
the Local Vector Dijkstra is kindly provided by [CHK13]. [MR12]
published a reference implementation for DGPC. For evaluating ac-
curacy, we use the VTP window propagation [QHY∗16] to obtain the
ground truth.

5.2. Evaluation Data Set

Thingi10k Tet10k

Accuracy and performance strongly de-
pends on the mesh and source. Memory
layout is seldom accounted for. For a
robust comparison, we chose to evalu-
ate on the Thingi10K data set [ZJ16]
consisting of real-world meshes used in
3D printing. These are mostly gener-
ated from CAD programs and include
highly anisotropic meshes as well as

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

255

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

method original optimized random
Dijkstra (priority queue) 43 ms 34 ms 110 ms
Dijkstra (dual queue) 20 ms 13 ms 66 ms
VTP 1940 ms 1836 ms 2278 ms
Heat Method (Eigen) 73 ms 69 ms 227 ms
Heat Method (CHOLMOD) 216 ms 119 ms 322 ms
FMM 275 ms 240 ms 372 ms
DGPC 275 ms 263 ms 387 ms
GSP (ours) 56 ms 38 ms 160 ms

Table 1: Timings excluding precomputation for single-source-all-
destination geodesics on the 300000 vertices statue from Section 4.3
using different memory layouts: original mesh, our cache-optimized
layout, and a random layout. Precomputation was omitted, i.e. the
heat method only consists of SOLVE.

wildly varying triangle sizes. Many triangles are degenerate and many
meshes are non-manifold. For geometry processing, this is a malign
data set. [HZG∗18] took these meshes and applied their tetrahedral
meshing algorithm on it, making the result freely available. We took
the surface of these tetrahedral meshes and used them as a benign
data set which we call Tet10k. The triangles are mainly isotropic
but somewhat feature sensitive. Overall, edge lengths can vary 1 : 20
while on average edge lengths inside a triangle are 1 : 2. The inset
shows an example mesh from each data set.

Both data sets mainly consist of meshes with 1000 to 100000 ver-
tices. Each mesh was reordered using our cache layout optimization.
This is a generic optimization for algorithms that traverse the mesh
and helps make the timings more consistent for all compared meth-
ods. See Table 1 for how this optimization affects different methods.

Our method works robustly on all meshes but other methods or
their implementation required some sanitization. For the compari-
son with other methods, we only kept watertight, manifold meshes
with a single component and removed meshes with zero-length edges.
In the end, the methods were evaluated on about 6400 meshes from
Tet10k and 3400 meshes from Thingi10k. Each experiment was
repeated 20 times with a new random source. In total, each method
was evaluated on about 200000 mesh-source configurations.

5.3. Performance Comparison

Figure 8 shows the accuracy-performance characteristics of each
method as a scatter plot. For evaluating performance, each experiment
(i.e. mesh-source combination) was timed and converted to vertices
per second throughput. This assumes linear time algorithms which
all these methods practically are. There are some non-linear effects
but they are mainly caused by caching and memory access patterns.

Note that this comparison only contains the actual computation.
Any pre-processing that can be done before knowing which source
is used is not counted here. Most notably, the heat method is fully
prefactored and only consists of two back substitutions, gradient, and
divergence computation. Our method requires no precomputation.

For the benign data set, our dual queue propagation is really fast
and thus GSP only takes about 450 cycles per vertex, followed by
the heat method at 580 cycles. We tested Eigen’s SimplicialLLT

0 2 4 6 8 10 12 14
94.0%

96.0%

98.0%

100.0% GSP

ED
HM

DGPCFM-T

FM-N

FM-S

STVD Tet10k

0 2 4 6 8 10 12
million vertices per second

85.0%

90.0%

95.0%

100.0%
GSP

ED
HM

DGPC
FM-T

FM-NFM-S

STVD

Thingi10k

Figure 8: Accuracy (in 100%− avg error) versus throughput (in
vertices per second) for different algorithms evaluated on our two
test data sets. Note the different axis scales. For each mesh, the
same 20 experiments with a single source located at a random ver-
tex were performed. The compared algorithms are our GSP, Dijkstra
on edge lengths (ED), the heat method (HM), fast marching from
Sethian (FM-S), Novotni (FM-N), Tang (FM-T), discrete geodesic po-
lar coordinates (DGPC), and the short-term vector Dijkstra (STVD).
Box plots of performance and accuracy can be found in the supple-
mental material.

solver as well as CHOLMOD’s parallel Supernodal solver. While
the latter was 3–4 times faster in the preprocessing, the actual solve
time was comparable for both with the Supernodal solver being
slower on small meshes and slightly faster above a million vertices.
Fast marching is slower due to the non-local unfolding which is nec-
essary for most meshes. On the Thingi10k data set, our propaga-
tion strategy is not optimal since the uniformity assumption is wildly
violated. However, the simplicity still beats more elaborate schemes
in practice. The prefactored heat method also loses some speed due
to a more unfavorable matrix structure such that both methods have a
similar performance.

We found no reference implementation for the graph-based meth-
ods but extrapolating from Table 5 of [WFW∗17] it seems that—
ignoring preprocessing time—the runtime of DGG is similar to our
method.

While an exhaustive comparison against parallel methods would
extend the scope of this paper too much, we provide a brief discussion
by extrapolating from their published results. [TZD∗18] presented
a parallel version of the heat method. Judging from their Table 1,
GSP on a single core is about 15–50 times faster than their method
on an octa-core. We cannot compare against [KCP∗16] because they
only published relative speedups and no absolute values. The highly
specialized grid-based method of [WDB∗08] is — when applicable

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

256

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

1 2 4 8 16 32 64 128
0

1000

2000

3000

4000

5000

(a) Runtime in cycles per vertex depending on mesh anisotropy

1 2 4 8 16 32 64 128
0%

2%

4%

6%

(b) Average relative error depending on mesh anisotropy

Figure 9: Runtime and accuracy of GSP depending on mesh
anisotropy measured as longest edge divided by shortest edge of a tri-
angle, averaged over the mesh. Our approach works best for roughly
isotropic meshes (average edge ratio not exceeding 1 : 2).

— probably slightly faster than our method (see their Table I): their
SSE2 implementation achieves a throughput roughly 4 million ver-
tices per second. They did not specify the exact processor but our
4–10 million single core throughput was probably on a slightly faster
processor. They achieved 240 million vertices per second on the GPU
where our method, on a newer GPU, achieves only 200 million per
second. However, their method only applies to parametric surfaces,
i.e. surfaces with grid topology, and thus only solves a special case of
our problem.

5.4. Memory Consumption

Our method uses roughly 53 B per vertex persistently. The size of
the queues has little impact. A half-edge data structure typically re-
quires about 120 B per vertex. For example, a 5.5 million vertices
mesh takes about 630 MB while our approach additionally requires
about 300 MB. Propagation-based methods, such as window propa-
gation and fast marching, that only persistently store vertex distances
and rely on the enqueued data typically require less than 100 MB in
this case. PDE-based methods such as the heat method empirically
scale roughly linearly with vertex size as well but have a much higher
constant factor. In this example, the SimplicialLLT solver from
Eigen used 12200 MB, CHOLMOD’s Supernodal solver about
10% less. Technically, the fill-in could scale quadratically. However,
popular solvers have fill-in reduction strategies, which are quite ef-
fective [BBK05].

(a) ours (b) exact (c) rel. error

Figure 10: Error pattern of our method: 0% (blue), 1% (green), 2%
(red). Jumps in error typically appear behind a wrongly inserted vir-
tual source.

5.5. Accuracy Comparison

Figure 8 also shows the accuracy of each method. For each single-
source-all-targets experiment we computed the mean relative er-
ror (MRE) which is commonly used to evaluate the accuracy of
geodesics.

The benefit of the update step presented in Section 3.1 is especially
visible for the Tet10k data set where GSP only produces 0.19%
relative error on average. The update step used in fast marching is
crucially important for the accuracy. The original gradient update
step has a quite large MRE of 4.54% with a substantial improve-
ment caused by the radial update step which cuts the error in half,
to 2.20%. However, the little fix of the radial update step provided
by [TWZZ07] brings the MRE down to 0.59%. This fix adds two
cases to the radial update step that are similar to our intersection test
with the propagating edge. Fast marching with radial update step in
general suffers once the geodesic paths are not straight anymore be-
cause the reconstruction only works when the two known distances
of a triangle belong to the same virtual source. DGPC has basically
the same update rules as [TWZZ07] but uses a label-correcting prop-
agation instead of the non-local unfolding typically required by fast
marching. This results in a more accurate algorithm with only 0.43%
MRE. The Dijkstra executed on the edge graph is better than expected
with only 5.28% MRE which might be sufficient depending on the
application. However, the geodesic paths are of extremely poor qual-
ity because they follow edges and thus bend at every vertex. Without
fine tuning, intrinsic Delaunay triangulations, or more sophisticated
solvers, the heat method produces relatively high errors and shows
high variance. Especially the meshes of Thingi10k tend to cause
badly conditioned matrices.

The data for GSP used with double precision is not shown because
it is nearly indistinguishable from single precision. The performance
overhead of double precision is about 50% in our tests.

5.6. Mesh Operation Timings

Table 2 shows the results of our extensive benchmarks. Timings were
taken on a mesh with around 1 million vertices (the statue shown in
Figure 12 (c,d)) that was cache-optimized in a pre-processing step.
The given numbers represent broad averages. Some algorithms have
high variance, sometimes 20%+, depending on seed primitive and
mesh structure. Note that the results for heat method and fast march-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

257

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

operation cyc / op op / v cyc / v
geodesics
GSP 95 4.6 437
GSP (priority queue) 390 4.4 1716
GSP (point clouds) 520 45 23400
Dijkstra (edge lengths) 380 1 380
Heat Method (solve only) 1235

solve heat system 390 1 390
compute gradient 80 2 160
compute divergence 80 2 160
solve Poisson system 525 1 525

Fast Marching 2900 1 2900
other
face normal 35 2 70
edge length 10 3 30
vertex valence 44 1 44
vertex angle defect 520 1 520
vertex weights (uniform) 62 1 62
vertex weights (cotan) 1550 1 1550
vertex weights (cotan opt.) 210 1 210

Table 2: Timings in CPU cycles of various geodesic and other mesh
operations. On a 5 GHz CPU, 5 cycles correspond to 1 ns. Average
cycles per operation are given and together with average operations
per vertex the cycles per vertex are estimated. This enables easy com-
parison of the methods (bold). Note that some entries have caveats,
see Section 5.6 for a detailed discussion.

ing are higher than in Section 5.3 because they scale slightly non-
linearly and the evaluation meshes are smaller on average.

We found that on largely uniform meshes, our GSP update step is
computed about 2.3 times per triangle. For meshes with highly vary-
ing tessellation quality this value is typically higher. Note that an up-
date step only causes a triangle update if the new path is actually
shorter. GSP on unstructured domains propagates significantly more
and involves a k-d tree look-up. The heat method is broken down into
its components.

We included some basic operations on meshes for comparison.
Face normals and vertex valences require traversing the halfedge data
structure. Angle defect and cotangent weights require trigonometric
functions which can easily cost 100 cycles each. The optimized cotan-
gent weights use the fact that cotα = ⟨a,b⟩/ |a×b|. These bench-
marks should be taken with a grain of salt as doing cycle-precise rep-
resentative tests is a hard problem and out of scope of this paper.

5.7. Parallel Implementation

Implementing a priority queue in a parallel setting is challenging be-
cause a global critical section around push/pop is typically needed.
With our dual queue system we can reduce the global locking to
a minimum. As written in Section 4.2, we recommend the hybrid
postpone strategy with a fat queue for parallel implementations. On
the CPU we used a job-based parallelism model backed by a thread
pool. On the GPU we used OpenGL’s Compute Shader and glD-
ispatchComputeIndirect to minimize the amount of synchro-
nization needed with the CPU. We added more implementation de-

1 2 3 4 5 6 7 8
x 0

x 1

x 2

x 3

x 4

x 5

x 6
chunk size

4

16

64

256

1024

(a) speed-up vs. CPU cores

1 2 3 4 5 6 7
x 0

x 5

x 10

x 15

x 20

method

cpu (1 core)

cpu (8 core)

gpu

(b) max speed-up vs. mil. vertices

Figure 11: For large meshes or many sources, a parallel implementa-
tion of our method can lead to significant performance improvements.
The first graph plots speed-up against CPU cores on a 4 million ver-
tices mesh with 1000 sources, the second plots the largest observed
speed-up against mesh size and compares CPU and GPU implemen-
tations.

tails for these to the supplemental material. Figure 11 shows results
of our parallel implementations. For these, we used an Intel i9-9900K
here to show the scaling up to 8 physical cores. Parallel implemen-
tations have a non-negligible per-iteration overhead and a communi-
cation overhead per update step. The speed-up is strongest for large
meshes and multiple sources, i.e. long geodesic fronts. Some use
cases naturally produce these, for example centroidal Voronoi tessel-
lations on large meshes.

5.8. Applications

Apart from the raw performance and quality, we also evaluated ver-
satility and flexibility by using our method to implement a few appli-
cations. These are shown in Figure 12 and more detail can be found
in the supplemental material. In particular, we were able to imple-
ment efficient pathfinding, approximate blue noise sampling, and cen-
troidal Voronoi tessellation using our algorithm as a building block.

In general, GSP is a good method for almost all cases where ap-
proximate geodesic distances are needed. As can be seen in Figure 8,
our method is 3–5× faster than fast marching and propagation based
methods while at the same time significantly more accurate. The only
contender is DGPC on the malign data set, where accuracy is tied.
These are the preprocessing-free methods, which are important if
only a few queries are needed or if the mesh changes frequently.

If preprocessing is tolerable, the heat method or graph-based meth-
ods can be considered. After preprocessing, these have comparable
timings to our method. Without an intrinsic Delaunay triangulation
(iDT), the heat method is on average less accurate than fast march-
ing methods. The Tet10k meshes are almost Delaunay and the iDT
should not change the accuracy much for those. The graph-based
methods (SVG and DGG) can conform to a user-provided accuracy
parameter, which can be more accurate than our method. However,
neither the preprocessing time nor the memory overhead can be ne-
glected. Multi-million vertices meshes can require tens or even hun-
dreds of GB of memory during the heat method preprocessing. DGG
at higher accuracies can do hours of preprocessing before the first
query can be answered.

One particular type of application where GSP shines is if only lo-
cal geodesic neighborhoods are needed. This is common for filtering-
type algorithms that convolve kernels over local neighborhoods. The
heat method cannot be easily executed for only a neighborhood of

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

258

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

(a) Dijkstra (b) A* (c) 30 seeds (d) 150 seeds

(e) 1 iteration (f) 2 iterations (g) 50 iterations

Figure 12: Termination criterion and propagation priority can be
tweaked to fit our algorithm to the desired application. (a,b) show
pathfinding with Dijkstra-style or A* expansion. In (c,d), new sources
are added iteratively and propagation is terminated after a fixed dis-
tance, leading to a blue noise sampling approximation. Together with
Lloyd relaxation, this can be used to implement an efficient centroidal
Voronoi tessellation on meshes (e,f,g).

the source. For DGG, the preprocessing time can be so high that GSP
might finish computing all neighborhoods before its done. For exam-
ple, for comparable accuracy, they cite 200 s precomputation for a
1 million vertices mesh with regular triangulation. In the same time,
GSP could compute geodesics in a 2000 vertices neighborhood for
each input vertex, before parallelization.

6. Limitations and Future Work

GSP is an approximation algorithm and while the error is on aver-
age lower than for other state-of-the-art methods, we believe that it is
still possible to design approaches with even less error without sig-
nificantly higher runtime cost. Our approach can over- and underes-
timate the true distance and currently tends to underestimate more.
Errors tend to be more common in regions with high edge anisotropy.
A viable approach to reduce the error might be to cleverly subdivide
highly anisotropic triangles or store multiple virtual sources for them.
This will probably result in an efficient trade-off between runtime and
error.

The dual queue approach from Section 4.2 works exceptionally
well for uniformly tessellated meshes and reasonably well for even
the hard cases in the Thingi10k data set. However, it is possible to
artificially construct worst case scenarios with quadratic runtime. De-
tecting those during runtime and switching to a priority queue might
be a way to get quasi-linear worst-case runtime. The GPU paralleliza-
tion is partly memory bound and it might be possible to achieve a big-

ger speed-up if more engineering time is spent optimizing the com-
pute shader and its memory access pattern.

Our data-driven heuristic currently has a relatively simple structure
with four thresholds and a look-up table. A viable avenue might be to
use genetic programming to explore more possible heuristics.

7. Conclusion

We proposed a new method for computing approximate geodesics
that outperforms the state of the art in terms of performance, accuracy,
robustness, and versatility. Accuracy and robustness are achieved by
a novel update step that propagates virtual geodesic sources and can
be seen as a hybrid between window propagation and fast marching
with radial update step, coupled with a data-driven heuristic of when
new virtual sources should be inserted. Performance is optimized by
careful parametrization of the problem, a relaxed wavefront propaga-
tion that works without a priority queue, and mesh layouts for cache-
optimized face traversal. Our dual queue approach can be parallelized
and we observe up to 6× speed-up on the CPU and 20× on the GPU.
Geodesic Source Propagation (GSP) is very versatile and does not re-
quire precomputation. Many extensions to the algorithm are possible,
such as anisotropic metrics or working on point clouds.

We support these claims with an extensive evaluation on about
10000 real-world meshes using the benign Tet10k and the malign
Thingi10k data set. With all optimizations computing geodesic
distances is now about as fast as other elementary mesh operations
such as smoothing or curvature estimation.

A C++ library under the permissive MIT license can be found at
https://graphics.rwth-aachen.de/geodesic-source-propagation.

Acknowledgements

This project was funded by the European Regional Development
Fund within the “HDV-Mess” project under EFRE-0500038. Open
access funding enabled and organized by Projekt DEAL. [Correction
added on 08 November 2021, after first online publication: Projekt
Deal funding statement has been added.]

References
[BBK05] BOTSCH M., BOMMES D., KOBBELT L.: Efficient linear system

solvers for mesh processing. vol. 3604, pp. 62–83. 11

[Ber93] BERTSEKAS D. P.: A simple and fast label correcting algorithm for
shortest paths. Networks 23, 8 (1993), 703–709. 5

[BF15] BELYAEV A. G., FAYOLLE P.-A.: On variational and pde-based
distance function approximations. Comput. Graph. Forum 34, 8 (Dec.
2015), 104–118. 3

[BK07] BOMMES D., KOBBELT L.: Accurate computation of geodesic dis-
tance fields for polygonal curves on triangle meshes. pp. 151–160. 2

[BMM∗15] BOSCAINI D., MASCI J., MELZI S., BRONSTEIN M. M.,
CASTELLANI U., VANDERGHEYNST P.: Learning Class-specific Descrip-
tors for Deformable Shapes Using Localized Spectral Convolutional Net-
works. Computer Graphics Forum (2015). 2

[BR14] BLANCO J. L., RAI P. K.: nanoflann: a C++ header-only fork of
FLANN, a library for nearest neighbor (NN) with kd-trees. https://
github.com/jlblancoc/nanoflann, 2014. 9

[CDHR08] CHEN Y., DAVIS T., HAGER W., RAJAMANICKAM S.: Al-
gorithm 887: Cholmod, supernodal sparse cholesky factorization and up-
date/downdate. ACM Trans. Math. Softw. 35 (01 2008). 9

[CH90] CHEN J., HAN Y.: Shortest paths on a polyhedron. In Proceedings
of the Sixth Annual Symposium on Computational Geometry (New York,
NY, USA, 1990), SCG ’90, ACM, pp. 360–369. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

259

https://graphics.rwth-aachen.de/geodesic-source-propagation
https://github.com/jlblancoc/nanoflann
https://github.com/jlblancoc/nanoflann

P. Trettner, D. Bommes & L. Kobbelt / Geodesic Distance Computation via Virtual Source Propagation

[CHK13] CAMPEN M., HEISTERMANN M., KOBBELT L.: Practi-
cal anisotropic geodesy. In Proceedings of the Eleventh Eurograph-
ics/ACMSIGGRAPH Symposium on Geometry Processing (Aire-la-Ville,
Switzerland, Switzerland, 2013), SGP ’13, Eurographics Association,
pp. 63–71. 3, 9

[CK11] CAMPEN M., KOBBELT L.: Walking on broken mesh: Defect-
tolerant geodesic distances and parameterizations. 623–632. 3

[CM69] CUTHILL E., MCKEE J.: Reducing the bandwidth of sparse sym-
metric matrices. In Proceedings of the 1969 24th National Conference
(New York, NY, USA, 1969), ACM ’69, Association for Computing Ma-
chinery, p. 157–172. 8

[CR87] CANNY J., REIF J.: Lower bounds for shortest path and related
problems. In In Proceedings of the 28th Annual Symposium on Foundations
of Computer Science (FOCS) (1987). 3

[CWW13] CRANE K., WEISCHEDEL C., WARDETZKY M.: Geodesics in
heat: A new approach to computing distance based on heat flow. ACM
Trans. Graph. 32, 5 (Oct. 2013), 152:1–152:11. 3, 9

[GBK16] GEHRE A., BOMMES D., KOBBELT L.: Geodesic iso-curve sig-
nature. In Vision, Modeling & Visualization (2016), The Eurographics As-
sociation. 2

[GJ∗10] GUENNEBAUD G., JACOB B., ET AL.: Eigen v3.
http://eigen.tuxfamily.org, 2010. 9

[HZG∗18] HU Y., ZHOU Q., GAO X., JACOBSON A., ZORIN D.,
PANOZZO D.: Tetrahedral meshing in the wild. ACM Trans. Graph. 37, 4
(July 2018), 60:1–60:14. 1, 10

[IAP∗08] ION A., ARTNER N. M., PEYRE G., MARMOL S. B. L.,
KROPATSCH W. G., COHEN L.: 3d shape matching by geodesic eccen-
tricity. In 2008 IEEE Computer Society Conference on Computer Vision
and Pattern Recognition Workshops (June 2008), pp. 1–8. 2

[KCP∗16] KOTAS P., CROCE R., POLETTI V., VONDRAK V., KRAUSE R.:
A Massive Parallel Fast Marching Method. 01 2016, pp. 311–318. 3, 10

[KK98] KARYPIS G., KUMAR V.: A fast and high quality multilevel
scheme for partitioning irregular graphs. SIAM Journal on Scientific Com-
puting 20, 1 (1998), 359–392. 8

[KS98] KIMMEL R., SETHIAN J. A.: Computing geodesic paths on man-
ifolds. Proceedings of the National Academy of Sciences 95, 15 (1998),
8431–8435. 3, 9

[MBBV15] MASCI J., BOSCAINI D., BRONSTEIN M. M., VAN-
DERGHEYNST P.: Shapenet: Convolutional neural networks on non-
euclidean manifolds. CoRR abs/1501.06297 (2015). URL: http://
arxiv.org/abs/1501.06297, arXiv:1501.06297. 2

[MMP87] MITCHELL J. S. B., MOUNT D. M., PAPADIMITRIOU C. H.:
The discrete geodesic problem. SIAM J. Comput. 16, 4 (Aug. 1987), 647–
668. 2, 3

[MR12] MELVÆR E. L., REIMERS M.: Geodesic polar coordinates on
polygonal meshes. Comput. Graph. Forum 31, 8 (Dec. 2012), 2423–2435.
2, 3, 4, 9

[MS01] MEMOLI F., SAPIRO G.: Fast computation of weighted distance
functions and geodesics on implicit hyper-surfaces. Journal of Computa-
tional Physics 173, 2 (2001), 730 – 764. 3

[MS05] MEEMOLI F., SAPIRO G.: Distance functions and geodesics on
submanifolds of rd and point clouds. SIAM Journal on Applied Mathemat-
ics 65, 4 (2005), 1227–1260. 3

[MVC04] MARTINEZ D., VELHO L., CARVALHO P. C.: Geodesic paths on
triangular meshes. In Proceedings. 17th Brazilian Symposium on Computer
Graphics and Image Processing (Oct 2004), pp. 210–217. 3

[NK02] NOVOTNI M., KLEIN R.: Computing geodesic distances on tri-
angular meshes. In The 10-th International Conference in Central Eu-
rope on Computer Graphics, Visualization and Computer Vision’2002
(WSCG’2002) (Feb. 2002). 2, 3, 4, 9

[PC06] PEYRÉ G., COHEN L. D.: Geodesic remeshing using front propa-
gation. Int. J. Comput. Vision 69, 1 (Aug. 2006), 145–156. 2

[QHY∗16] QIN Y., HAN X., YU H., YU Y., ZHANG J.: Fast and exact
discrete geodesic computation based on triangle-oriented wavefront propa-
gation. ACM Trans. Graph. 35, 4 (July 2016), 125:1–125:13. 1, 2, 9

[SdGP∗15] SOLOMON J., DE GOES F., PEYRÉ G., CUTURI M.,
BUTSCHER A., NGUYEN A., DU T., GUIBAS L.: Convolutional wasser-
stein distances: Efficient optimal transportation on geometric domains.
ACM Trans. Graph. 34, 4 (July 2015), 66:1–66:11. 2

[SGW06] SCHMIDT R., GRIMM C., WYVILL B.: Interactive decal com-
positing with discrete exponential maps. In ACM SIGGRAPH 2006 Papers
(New York, NY, USA, 2006), SIGGRAPH ’06, ACM, pp. 605–613. 3

[SSC18] SHARP N., SOLIMAN Y., CRANE K.: The vector heat method.
CoRR abs/1805.09170 (2018). URL: http://arxiv.org/abs/
1805.09170, arXiv:1805.09170. 3, 9

[SSK∗05] SURAZHSKY V., SURAZHSKY T., KIRSANOV D., GORTLER
S. J., HOPPE H.: Fast exact and approximate geodesics on meshes. ACM
Trans. Graph. 24, 3 (July 2005), 553–560. 2, 6

[TBIpS11] TEVS A., BERNER A., IHRKE I., P. SEIDEL H.: Intrinsic shape
matching by planned landmark sampling. In in Eurographics, 2011 (2011),
pp. 543–552. 2

[TvL84] TARJAN R. E., VAN LEEUWEN J.: Worst-case analysis of set union
algorithms. J. ACM 31, 2 (Mar. 1984), 245–281. 9

[TWZZ07] TANG J., WU G.-S., ZHANG F.-Y., ZHANG M.-M.: Fast ap-
proximate geodesic paths on triangle mesh. 8–13. 3, 4, 6, 9, 11

[TZD∗18] TAO J., ZHANG J., DENG B., FANG Z., PENG Y., HE Y.: Par-
allel and scalable heat method. CoRR abs/1812.06060 (2018). arXiv:
1812.06060. 3, 10

[WDB∗08] WEBER O., DEVIR Y., BRONSTEIN A., BRONSTEIN M.,
KIMMEL R.: Parallel algorithms for approximation of distance maps on
parametric surfaces. ACM Trans. Graph. 27 (10 2008). 3, 10

[WFW∗17] WANG X., FANG Z., WU J., XIN S.-Q., HE Y.: Discrete
geodesic graph (dgg) for computing geodesic distances on polyhedral sur-
faces. Comput. Aided Geom. Des. 52, C (Mar. 2017), 262–284. 3, 10

[WLCJ12] WAN X., LIU S., CHEN J. X., JIN X.: Geodesic distance-based
realistic facial animation using rbf interpolation. Computing in Science
Engineering 14, 5 (Sep. 2012), 49–55. 2

[XW09] XIN S.-Q., WANG G.-J.: Improving chen and han’s algorithm
on the discrete geodesic problem. ACM Trans. Graph. 28, 4 (Sept. 2009),
104:1–104:8. 2

[XWL∗15] XU C., WANG T. Y., LIU Y., LIU L., HE Y.: Fast wavefront
propagation (fwp) for computing exact geodesic distances on meshes. IEEE
Transactions on Visualization and Computer Graphics 21, 7 (July 2015),
822–834. 2, 7

[XYH12] XIN S.-Q., YING X., HE Y.: Constant-time all-pairs geodesic
distance query on triangle meshes. In Proceedings of the ACM SIGGRAPH
Symposium on Interactive 3D Graphics and Games (New York, NY, USA,
2012), I3D ’12, ACM, pp. 31–38. 3

[YHF∗19] YING X., HUANG C., FU X., HE Y., YU R., WANG J., YU
M.: Parallelizing discrete geodesic algorithms with perfect efficiency.
Computer-Aided Design 115 (2019), 161 – 171. 2

[YL06] YOON S., LINDSTROM P.: Mesh layouts for block-based caches.
IEEE Transactions on Visualization and Computer Graphics 12, 5 (Sep.
2006), 1213–1220. 8

[YLPM05] YOON S.-E., LINDSTROM P., PASCUCCI V., MANOCHA D.:
Cache-oblivious mesh layouts. ACM Trans. Graph. 24, 3 (July 2005), 886–
893. 8

[YWH13] YING X., WANG X., HE Y.: Saddle vertex graph (svg): A novel
solution to the discrete geodesic problem. ACM Trans. Graph. 32, 6 (Nov.
2013), 170:1–170:12. 3

[YXH14] YING X., XIN S.-Q., HE Y.: Parallel chen-han (pch) algorithm
for discrete geodesics. ACM Trans. Graph. 33, 1 (Feb. 2014), 9:1–9:11. 2

[ZJ16] ZHOU Q., JACOBSON A.: Thingi10k: A dataset of 10,000 3d-
printing models. arXiv preprint arXiv:1605.04797 (2016). 9

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

260

http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1501.06297
http://arxiv.org/abs/1805.09170
http://arxiv.org/abs/1805.09170
http://arxiv.org/abs/1805.09170
http://arxiv.org/abs/1812.06060
http://arxiv.org/abs/1812.06060

