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Abstract

We introduce a construction for discrete gradient operators that can be directly applied to arbitrary polygonal surface as well as
polyhedral volume meshes. The main idea is to associate the gradient of functions defined at vertices of the mesh with diamonds:
the region spanned by a dual edge together with its corresponding primal element — an edge for surface meshes and a face for
volumetric meshes. We call the operator resulting from taking the divergence of the gradient Diamond Laplacian. Additional
vertices used for the construction are represented as affine combinations of the original vertices, so that the Laplacian operator
maps from values at vertices to values at vertices, as is common in geometry processing applications. The construction is local,
exactly the same for all types of meshes, and results in a symmetric negative definite operator with linear precision. We show
that the accuracy of the Diamond Laplacian is similar or better compared to other discretizations. The greater versatility and
generally good behavior come at the expense of an increase in the number of non-zero coefficients that depends on the degree
of the mesh elements.
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1. Introduction

Discrete Laplace operators are an important tool in geometry pro-
cessing, for surface as well as volumetric meshes [SCV14]. In
many graphics applications, the mesh is given and not altered
throughout interaction and processing. It provides the natural do-
main for discretizing differential operators. We dare say that, unlike
in scientific computing, in graphics and geometry processing we fit
the operator to the mesh rather than optimizing the mesh for solv-
ing the differential equation. Depending on the application, these
meshes may contain different types of elements, such as triangles,
quads, and general polygons for surface meshes, or tetrahedra, hex-
ahedra, and general polyhedra for volumetric meshes.

If the mesh happens to be composed entirely of triangles or tetra-
hedra, the one operator that is used almost exclusively in geome-
try processing is the cotan Laplacian [PP93, MDSB03, DMSB99,
Dzi88]. For surface meshes composed of higher order elements,
i.e. polygons, possibly non-planar, there are several generalizations
that reduce to the cotan Laplacian for triangle meshes [BHKB20,
dGBD20,AW11,HKA15]. For volumetric meshes, besides tetrahe-
dral elements [AHKSH20, Cra19], most other discretizations are
based on hexahedra [SDG∗19]. There are only few approaches
for more general polyhedral meshes and they typically require
numerical integration to obtain the basis functions for each ele-
ment [WBG07, MKB∗08, KBT17, MRS14].

In this paper we propose a simple and unified construction of
gradient, divergence, and Laplace operators for general polygonal
and polyhedral meshes. Our main idea, following the Discrete Du-
ality Finite Volume approach (DDFV, Section 4), is to incorporate
the primal as well as the (typically non-orthogonal) dual mesh and
accommodate the oblique intersection of primal and correspond-
ing dual elements. Specifically, we define discrete gradients, re-
spectively divergences, per diamond: the region spanned by a dual
edge and corresponding simplicial primal element. In 2D, the cor-
responding primal element is an edge; in 3D it is a triangle. If facets
have degree higher than three, we insert an additional virtual vertex
and in this way triangulate the facet. In all cases, the primal element
is incident on two cells, and the dual vertices in these cells define
two simplices. In other words, in 2D a diamond is spanned by two
triangles; in 3D it is spanned by two tetrahedra.

In the spirit of the original mesh defining the domain for dis-
cretization we also want that the Laplace operator maps from val-
ues at vertices to values at vertices. We achieve this by com-
bining the DDFV approach with the “sandwiching” of Bunge et
al. [BHKB20]. This means all vertices except the primal ones are
virtual: They are defined as affine combinations of primal vertices.
These affine combinations are encoded as prolongation matrices
and multiplied onto the DDFV Laplacian, thereby effectively hid-
ing from the user the involved diamonds and virtual vertices.
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The resulting construction is comparatively simple and seam-
lessly generalizes from arbitrary polygons (Section 5) to arbitrary
polyhedra (Section 6). We discuss properties like locality, linear
precision, semi-definiteness, the kernel, and the maximum prin-
ciple in Section 7. The prolongation matrices lead to a decreased
sparsity, resulting in increased computation cost. A range of numer-
ical experiments (Section 8) suggests that the effort is well-spend:
The accuracy is, in most cases, at least as good and even better than
other constructions.

2. Problem Statement

We assume a mesh is given. The particular types of meshes we con-
sider are two-dimensional surface meshes immersed in 3D and vol-
umetric meshes embedded in 3D. Because they are most common,
we focus here on the gradient, the divergence, and the Laplacian
resulting from taking the divergence of the gradient.

We denote edges by tuples (i, j), triangles by (i, j,k), and tetra-
hedra by (i, j,k, l), and use ‖(i, j)‖, |(i, j,k)|, and |(i, j,k, l)| to refer
to their length, (signed) area, and (signed) volume, respectively. We
use the operator ∗ to map between primal and dual entities, such
that, e.g., ∗i denotes the dual region of a vertex i and ∗(i, j) denotes
the dual edge of the primal edge (i, j).

Given a polygonal or polyhedral mesh with vertices V , edges
E , faces F , cells C, and diamonds D, our aim is to generate the
following matrices, representing discrete linear approximation of
differential operators:

• The gradient G ∈ Rd·|D|×|V|, where d ∈ 2,3 is the intrinsic di-
mension of the mesh and |D| is the number of diamonds to which
the operator assigns constant gradients.
• The divergence D ∈ R|V|×d·|D|, which we assume to be con-

structed as D = GTM�. Here, M� ∈ Rd·|D|×d·|D| is a diagonal
matrix containing d-times the diamond masses.
• The operator matrix for the Laplacian is then constructed as
−DTG = L ∈ R|V|×|V|.

This construction ensures that the discrete operator is symmetric
negative semi-definite. These properties are commonly considered
desirable. In addition, we ask that the Laplacian operator maps con-
stant vectors to zero and has linear precision, i.e. maps linear func-
tions to themselves. For more information on these and potential
additional properties we point the reader to the excellent discussion
by Wardetzky et al. [WMKG07].

3. Related Work

The literature on discretizations of differential operators is vast. In
computer graphics and geometry processing, discretizations based
on the finite element method (FEM) and discrete exterior calculus
(DEC) are most frequently used, with the cotan Laplacian for tri-
angle meshes [PP93, MDSB03, DMSB99, Dzi88] and tetrahedral
meshes [AHKSH20, Cra19] being the most prominent operator.
Since our goal is a Laplacian operator for general polygonal sur-
face meshes or general polyhedral volume meshes, we focus our
discussion on operators that are not restricted to standard trian-
gle/tetrahedral or quadrangle/hexahedral meshes.

There have been a couple of approaches for discretizing differ-
ential operators on polygonal meshes. These methods have to han-
dle the problem that non-planar polygons do not bound a canonical
surface in 3D. Alexa and Wardetzky [AW11] circumvent this prob-
lem by considering the projection of the polygon resulting in the
largest area, combined with a MFD-based inner product stabiliza-
tion [BLS05]. A drawback of this discretization is that it requires
the suitable choice of a scalar parameter, and that the potentially
large number of negative entries in the Laplacian matrix violates
the discrete maximum principle [WMKG07].

Herholz et al. [HKA15] extend the definition of desirable prop-
erties of discrete Laplacians to polygon meshes, where they char-
acterize polygon tessellations that admit a “perfect” operator with
only non-negative weights. Sharp et al. [SSC19] handle potentially
non-planar polygons by deriving a version of the “connection”
Laplacian, which, in contrast to the standard expression as the di-
vergence of the gradient, is given by the trace of the second covari-
ant derivative. This operator fulfills many of the same properties as
the cotan Laplacian and enables the diffusion of vectors from one
tangent space to another on curved domains.

De Goes et al. [dGBD20] go beyond the Laplace operator and
generalize a whole set of discrete differential operators to general
polygonal meshes. They extend the approach of [AW11] by defin-
ing a new discrete gradient operator, which can be interpreted as a
generalization of mimetic finite differences [BLS05] and the virtual
element method [dVBM13]. Using the weak form of the cogra-
dient operator and the divergence theorem, they bypass the need
for an interpolation of the non-planar polygon surface. Bunge et
al. [BHKB20] adapt the virtual node method [DLN07,TWZZ09] to
polygon meshes by refining each face with a virtual vertex to span
an implicit triangle fan, on which they apply the standard cotangent
Laplacian. These virtual vertices are removed from the differential
operators using special prolongation/restriction matrices. We make
use of their idea of virtually refining the mesh and also use similar
prolongation matrices, but use different, finite-volume-based dis-
crete operators on the virtually refined mesh.

An alternative use of prolongation/restriction matrices was pro-
posed by de Goes et al. [dGDMD16]. Their Subdivision Exte-
rior Calculus (SEC) combines the Laplacian operator introduced
by [AW11] with prolongation matrices corresponding to Catmull-
Clark or Loop subdivision. Similar to our work, the prolongation
results in a larger stencil for the discrete differential operators.
However, SEC was designed to work on the geometry of the limit
surface of the subdivision process, and hence is not suitable for
computing directly on the user-provided polygon mesh.

While there is a certain variety of approaches for polygonal sur-
face meshes, we are not aware of simple discrete differential opera-
tors for polyhedral volume meshes. Early works in computer graph-
ics extended conforming FEM frameworks by using generalized
barycentric coordinates [HS17] as custom shape functions for poly-
hedral elements, using either mean value coordinates [WBG07],
harmonic coordinates [MKB∗08, SDG∗19], or maximum entropy
coordinates [HS08]. This idea, which is also common in the com-
putational mechanics literature [MRS14], has the drawback that
both the computation and the numerical integration of these custom
shape functions is rather complex and computationally expensive.
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These methods do therefore not meet our goal of a simple Laplacian
operator for polyhedral domains.

We believe that finite volume (FV) discretizations [Dro14],
in particular the Discrete Duality Finite Volume (DDFV)
method [Her00, DO05, Her09, CH11], offer an interesting alterna-
tive to deriving discrete differential operators for geometry process-
ing applications. As our approach is inspired by and extends upon
DDFV, we describe this approach in more detail in the next section.

4. Finite Volume Discretizations

Finite Volume (FV) methods are based on the idea to consider the
integral of a differential in a small region. There exist a number of
identities that allows expressing such integrals of a differential as
an integral over only the boundary of the region. For the divergence
of a vector-valued function u over a flat two-dimensional region Ω

we have

¨
Ω

divu dA =

˛
∂Ω

uTnds, (1)

where n is the outward normal along the boundary ∂Ω. For u = uc
with constant vector c and a scalar function u we can exploit the
“product rule”

div(uc) = udivc︸︷︷︸
=0

+cT∇u = cT∇u. (2)

Plugging this into the divergence theorem above for c = ek (the
canonical unit vectors) and combining the results we find the
vector-valued identity

¨
Ω

∇udA =

˛
∂Ω

unds. (3)

Applying the divergence theorem to the vector field∇u we get

¨
Ω

∆udA =

˛
∂Ω

∇uTnds. (4)

All identities straightforwardly extend to higher dimensions.

The basic derivation of the Laplace operator with FVs in 2D
makes the assumption that the mesh is Delaunay. This means the
dual mesh is the Voronoi diagram, such that primal and dual edges
are orthogonal. Consider a vertex i with position xi, the dual re-
gion associated to it is its Voronoi cell Ωi. The function values of
the unknown piecewise linear function u at vertex i are ui = u(xi).
For the integrated Laplacian over the region Ωi, the boundary ∂Ωi
is piecewise linear and consists of the dual edges ∗(i, j), with
j ∈ N(i) denoting the one-ring neighbors of vertex i. If we denote
by ei j = x j−xi and e∗i j = x∗j −x∗i the primal/dual edge vectors, re-
spectively, and exploit that the normal n on the dual edge ∗(i, j) is

parallel to ei j and that the gradient of the piecewise linear function
on the vertices points along this edge, we get

¨
Ωi

∆udA = ∑
j∈N(i)

ˆ
∗(i, j)
∇uTnds

= ∑
j∈N(i)

ˆ
∗(i, j)
∇uT

ei j∥∥ei j
∥∥ ds

= ∑
j∈N(i)

ˆ
∗(i, j)

(
u j−ui

) 1∥∥ei j
∥∥ ds

= ∑
j∈N(i)

∣∣e∗i j
∣∣∥∥ei j
∥∥ (u j−ui

)
.

(5)

The last expression directly describes the construction of a lin-
ear operator that maps values at vertices {ui} to the integral over
the region associated to vertex i of the Laplacian. Note that the
(i, j) entry in the matrix L is given by the (signed) length of the
dual edge divided by the length of the primal edges. One obtains
exactly the same result with the DEC approach [Hir03], which is
based on similar arguments. Interestingly, also the Finite Element
Method applied to triangles leads to these weights [PP93]. This
suggests that the derivation extends to arbitrary triangulations, al-
beit carefully assigning signed lengths to the dual edges. The result-
ing negative coefficients for edges without the Delaunay property
have undesirable consequences (see, for example, the discussion
in [SSC19]). While this is often accepted for applications in graph-
ics, in the FV community it is not considered admissible, which
restricts the meshes to be (weighted) Delaunay. From a practical
perspective, however, one is often given a mesh and it is costly to
generate an orthogonal dual, if one exists [Aur87, Ale20].

Discrete Duality Finite Volume (DDFV)

The FV method that deals with this problem is to give up orthogo-
nality. Rather, the idea is to construct a gradient operator and asso-
ciate it to the region spanned by a pair of a primal edge (with end-
points x1 and x2) and its corresponding dual edge (with endpoints
xl and xr). This region, depicted in Figure 1, is called a diamond.

Notice that a diamond is always a quadrilateral, regardless of the
degree of the faces. The DDFV approach is to associate function
values ul and ur to the dual vertices – thereby introducing a second
set of degrees of freedom – and to associate a constant gradient
with the diamond. As shown in Figure 1, left, we denote by D the
diamond built from the four points (x1,x2,xl ,xr), by (i, j) ∈ D its
edges, and by ei j = x j−xi the edge vectors. Making use of Stokes’
theorem gives
¨

D
∇udA =

˛
∂D

unds

= ∑
(i, j)∈∂D

e⊥i j∥∥ei j
∥∥ ˆ 1

0

∥∥ei j
∥∥((1− t)ui + tu j

)
dt

= ∑
(i, j)∈∂D

e⊥i j
ui +u j

2
.

(6)
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Figure 1: Different formulae and interpretations of the per-diamond gradient in 2D DDFV. Left: The vectors e⊥i j orthogonal to the diamond
edges ei j needed to compute our gradient for the diamond cell. Center: The midpoints mi j of the diamond edges and their enclosed subarea.
Fitting an affine function to the function values at these midpoints is another possibility to obtain the 2D derivation of the diamond gradient.
Right: Constructing gradients from primal and dual axes ν,ν∗ and their enclosed angle α.

For the discrete gradient of the diamond we take the mean over the
region, so we have to divide the integral by the area |D|, leading to

∇u|D =
1

2 |D| ∑
(i, j)∈∂D

e⊥i j
(
ui +u j

)
. (7)

The literature on DDFV [Her00, DO05, Her09, CH11] provides
different derivations for the per-diamond gradient∇u|D and several
interpretations and corresponding formulae:

• Fitting the gradient to directional derivatives along the primal
and dual edges:

∇u|D · (xl−xr) = ul−ur,

∇u|D · (x1−x2) = u1−u2.
(8)

• Fitting an affine function w(x,y) to the function values ui j =
1
2 (ui+u j) at the midpoints mi j =

1
2 (xi+x j) of the four diamond

edges (i, j) ∈ ∂D, and taking the gradient∇w of this affine func-
tion (see Figure 1, center). Note that fitting an affine function to
the four diamond vertices is an over-determined problem, while
the midpoint fit is uniquely determined.
• A formulation based on the primal/dual axes ν = (x2 −

x1)
⊥/‖x2−x1‖ and ν

∗ = (xr−xl)
⊥/‖xr−xl‖ as well as their

enclosed angle α (Figure 1, right):

∇u|D =
1

sinα

(
ul−ur

‖xl−xr‖
ν+

u1−u2
‖x1−x2‖

ν
∗
)
, (9)

Although these formulations are all equivalent, we believe our
formulation (6) to be more intuitive when handling boundary
cases and when generalizing to polyhedral meshes in Section 6.
For boundary edges, the diamond consists of a single triangle
(x1,x2,xl) only. The typical DDFV approach is to replace xr by
the edge midpoint 1

2 (x1 +x2) and to properly deal with degenerate
edges/faces. In contrast, our formulation (7) remains unchanged.

The divergence divu and the Laplacian ∆u = div∇u can be ob-
tained through very similar derivations. The resulting DDFV gra-
dient operator maps from function values at primal and dual ver-
tices to gradients at diamonds, the divergence operator from vectors
at diamonds to scalars at primal/dual vertices. The DDFV Lapla-
cian therefore maps functions values at primal/dual vertices to their
Laplacians sampled at primal/dual vertices.

5. Diamond Laplace for Surface Meshes

In its standard formulation, the DDFV operators are not directly
useful for applications in computer graphics and geometry pro-
cessing, since they have two main drawbacks: First, by introducing
function values at dual vertices it significantly increases the num-
ber of degrees of freedom (DoF) to be solved for. For instance, the
DoFs are roughly tripled for triangle meshes and roughly doubled
for quad meshes. Second, the approach is defined for planar 2D
meshes only, but not for two-manifold surface meshes embedded
in 3D, which we are mostly interested in.

In this section we address both problems. Replacing the extrin-
sic per-diamond gradient by a version that is intrinsic w.r.t. the
polygonal mesh allows us to generalize the 2D DDFV scheme
to embedded surface meshes (Section 5.1). Following Bunge et
al. [BHKB20] and representing the dual DoFs as interpolations of
the primal DoFs and incorporating this through special prolonga-
tion/restriction matrices will remove the dual DoFs and eventually
keep only the primal ones.

5.1. Intrinsic Gradient

Compared to mesh faces, diamonds are the better entity to associate
gradients with, since for general polygonal meshes higher-degree
faces might not be planar and typically cannot be flattened with-
out introducing distortion. Diamonds spanned by a pair of primal
vertices x1,x2 and dual vertices xl ,xr are not necessarily planar
in the 3D embedding, but can be isometrically unfolded into the
plane around their primal “hinge” edge (x1,x2). We can therefore
represent the diamond in an intrinsic 2D coordinate system, which
allows us to then directly apply the gradient construction of (7).

It is convenient to choose the primal edge as the first coordinate
axis, i.e.,

u =
x j−xi

‖x j−xi‖
. (10)

The second coordinate axis has to be orthogonal to this axis, con-
tained in the planes spanned by the two triangles (x1,x2,xl) and
(x2,x1,xr), and consistently oriented w.r.t. u. We achieve this by

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

220



A. Bunge, M. Botsch, M. Alexa / The Diamond Laplace for Polygonal and Polyhedral Meshes

projecting the edges (1, l) and (1,r) onto the orthogonal comple-
ment of the first axis u and normalizing the result:

ṽl =
(

I−uuT
)
(xl−x1) , vl = ṽl/‖ṽl‖ ,

ṽr =
(

I−uuT
)
(x1−xr) , vr = ṽr/‖ṽr‖ .

(11)

Notice that both directions vl and vr are consistently oriented, are
intrinsically in one plane, and form an orthonormal frame with u.
In this frame, the 2D coordinates of the four diamond vertices are

x2D
1 = (0,0)T,

x2D
2 = (‖x2−x1‖ ,0)T,

x2D
l = (u,vl)

T(xl−x1),

x2D
r = (u,vr)

T(xr−x1).

(12)

These 2D coordinates can now be used in the gradient construction
of Equation (7), yielding an intrinsic 2D gradient per diamond.

From (7) we can then directly read off the the entries for the
diamond’s gradient operator matrix GD ∈ R2×4 by noticing that
the value i depends only on the two diamond edges incident on it.
Therefore, the i-th column of GD is

GD(:, i) =
1

2 |D| ∑
(i, j)∈∂D

e⊥i j . (13)

The matrix Ĝ for the global gradient operator, mapping from func-
tion values at primal and dual vertices to gradients at diamonds, is
then assembled from all diamond gradient matrices

Ĝ =
⊕

D∈D
GD, (14)

where
⊕

is the assembly operator that scatters and accumulates the
entries of the local matrices into the global matrix.

5.2. Dual Vertices as Affine Combinations

Our approach to remove the dual DoFs from the DDFV formulation
is inspired by Bunge et al. [BHKB20], who also introduce dual
vertices into primal faces, but represent their position and function
values as affine combinations of the positions/values of the face’s
vertices.

Consider a general polygonal face f with n vertices xi, i ∈ f . We
construct the dual face point x f , which takes the role of xl or xr in
the gradient construction described above, as an affine combination
of the face vertices

x f = ∑
i∈ f

ai, f xi with ∑
i∈ f

ai, f = 1. (15)

The dual DoFs, i.e., the function values at dual face vertices x f ,
are then represented in terms of the primal DoFs by the same affine
combination:

u
(
x f
)
= ∑

i∈ f
ai, f ui. (16)

For a polygonal mesh with |V| vertices and |F| faces, this construc-
tion can be packed into an (|V|+ |F|)×|V| prolongation matrix P
with entries

Pi j =


1 if i = j and i < |V|,
ai, f if i = |V|+ f and vertex j ∈ face f ,
0 otherwise.

(17)

Combining the gradient matrix (14) and the prolongation matrix
(17) yields our gradient operator for polygonal meshes

G = ĜP ∈ R2|E|×|V|, (18)

where |E| denotes the number of edges (and therefore of diamonds)
in the mesh. This matrix maps scalar function values ui at primal
vertices to 2D intrinsic gradient vectors∇u|D at diamonds.

While for standard FV methods with orthogonal duals the dual
point x f is the circum-center of triangle f , the canonical choice for
general polygonal meshes in the DDFV literature [Her00, DO05,
Her09,CH11] is the face’s barycenter. However, as the barycenter is
not necessarily inside a non-convex (planar) face, we instead follow
[BHKB20] and compute x f (respectively its affine weights ai, f ) by
minimizing the sum of squared triangle areas

min
x f

∑
(i, j)∈ f

∣∣(xi,x j,x f )
∣∣2 . (19)

For a face f with n vertices this minimization requires solving a
small n× n linear system (see [BHKB20] for details) and indeed
yields more accurate results than other point choices in case of non-
convex polygons (see Section 8).

5.3. Divergence and Laplacian

With the intrinsic gradient (18) in place, we can now define the
discrete divergence and Laplacian. The DDFV discretization of the
divergence operator leads to a matrix−ĜT M�, which we combine
with the transposed prolongation (or restriction) matrix to get the
diamond divergence matrix

D =−PTĜT M�. (20)

Here, Ĝ is the gradient matrix of (14) and M� is a 2 |E|× 2 |E| di-
agonal matrix with the area |Di| of diamond Di in its entries (2i,2i)
and (2i+1,2i+1). This operator maps intrinsic 2D vectors at dia-
monds to scalar values at primal vertices.

The (integrated) diamond Laplace operator is finally defined as
the diamond divergence of the diamond gradient, i.e.,

L = DG = −PTĜT M� ĜP, (21)

and maps from vertices to vertices. The pointwise Laplacian is ob-
tained as M−1L by multiplying with the inverse of the mass matrix
M. This mass matrix is defined as

M = PT M̂ P (22)

from the standard DDFV diagonal mass matrix M̂

M̂ii =


∑D3i

1
4 |D| if i is a primal vertex,

∑D3i
1
4 |D| if i is a dual face vertex,

0 otherwise,

(23)
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which assigns to the four (primal and dual) vertices of a diamond
one fourth of its area. The “sandwiching” with PT and P distributes
the mass from primal and dual vertices to the primal vertices only.
Note that the sandwiching leads to a non-diagonal mass matrix M.
We avoid lumping this matrix to a diagonal matrix, since numerical
results have shown that the initial matrix leads to higher accuracy of
our operator. Notice that in above construction, the dual points do
not have to be inserted into the mesh explicitly, nor do the matrices
Ĝ,M�,P have to be built explicitly. Instead, the matrices G and M
can directly be constructed through a diamond-based matrix assem-
bly, which implicitly computes the virtual vertices and their affine
weights, similar to the construction of Bunge et al. [BHKB20].

6. Diamond Laplace for Volume Meshes

One particular advantage of our diamond Laplace is that it can be
generalized to 3D polyhedral meshes in an intuitive and consistent
manner. Given a general polyhedral mesh with vertices V , edges E ,
faces F , and cells C, we will define diamonds D from primal and
dual vertices. The starting point of our construction is the general-
ization of the (integrated) gradient of a function u over a diamond.
Analogous to the 2D case, given the gradient operator G, we also
have a divergence operator D and can then assemble the Laplacian
L = DG. Representing the dual vertices as affine combinations of
primal vertices will again define the sandwiching operator PT(·)P
that removes the dual DoFs. In the following we provide the details
of these steps, in particular where they deviate from the case for
surface meshes.

6.1. Integrated Gradient

Before we focus on the particular shape and construction of the
diamonds, we derive the integral of the gradient (and, by analogy,
divergence) for an arbitrary region Ω bounded by a triangulated
surface. We assume the function over the triangulated boundary to
be linear on the triangles, defined by values ui at vertices i. If the
triangles are given as triples of indices (i, j,k) ∈ ∂Ω, we get
˚

Ω

∇udV =

‹
∂Ω

undA

= ∑
(i, j,k)∈∂Ω

ai jk∥∥ai jk
∥∥

1ˆ

0

tˆ

0

∥∥ai jk
∥∥((1− s− t)ui + su j + tuk

)
dsdt

= ∑
(i, j,k)∈∂Ω

ai jk
ui +u j +uk

3
,

(24)
where

ai jk =
1
2
(x j−xi)× (xk−xi) (25)

is the area vector of triangle (i, j,k), i.e., the vector pointing in
outward normal direction and with magnitude equal to the area of
the triangle (see Figure 3, left). Taking the mean over the region by
dividing the integral by the volume |Ω| leads to

∇u|Ω =
1

3 |Ω| ∑
(i, j,k)∈∂Ω

ai jk
(
ui +u j +uk

)
. (26)

Figure 2: A minimal diamond spanned by two cell points xl ,xr, a
face point x f , and a primal edge x1,x2.

The local gradient operator for the region Ω, mapping values at the
vertices i ∈ ∂Ω to a constant 3D gradient vector, is then built in a
column-wise manner as

GΩ(:, i) =
1

3 |Ω| ∑
(i, j,k)∈∂Ω

ai jk, (27)

which is consistent with the 2D version of Equation (13).

6.2. Diamond Rings and Minimal Diamonds

The canonical choice for a diamond in a volumetric mesh would
be associated with a dual edge (l,r) with endpoints xl ,xr. These
two dual vertices, together with the primal vertices x1,x2, . . . ,xn
of the face f = ∗(l,r) that is dual to (l,r), define a region that is
bounded by two triangle fans spanned by xl or xr and two neighbor-
ing vertices xi,xi+1 of the face f . Given that the integrated gradi-
ent can be computed easily for this region as shown above, it may
be tempting to assign a gradient to each such diamond (as done
in [Her09]). Yet, similar to other constructions for non-simplicial
meshes [AW11, dGBD20], constructing the gradient, divergence,
and Laplacian in this way and then sandwiching the resulting ma-
trices leads to spurious modes, i.e., a Laplacian operator with more
than the constant functions in its kernel. This would be a serious
drawback, and is a known limitation of the CeVe DDFV method
[Her09], as discussed for instance in [ABH13].

Since we are adding a dual vertex to each cell, all vertices in
a cell become connected in the operator. Consequently, adding a
dual vertex x f to each face f introduces no additional non-zeros
in the operator. Based on this virtual face vertex, the diamond is
decomposed into a ring of diamonds, where each individual dia-
mond is minimal, i.e., consists of two tetrahedra with tips xl ,xr and
a base triangle (xi,xi+1,x f ), as shown in Figure 2. Basing the con-
struction in these minimal elements ensures that the kernel of the
Laplace operator only contains the constants.

Incidentally, minimal diamonds are the right analogy to 2D di-
amonds, in the following sense: Consider a minimal diamond de-
fined by xl ,xr and (x1,x2,x3) and the midpoints of the 6 edges
emanating from xl and xr (see Figure 3, right):

mli =
1
2
(xl +xi), mri =

1
2
(xr +xi), i = 1,2,3. (28)
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Figure 3: For a minimal diamond consisting of two tetrahedra, the
gradient can be computed from the area vectors ai jk of its faces
(left) or by fitting an affine function to edge midpoints mi j (right).

We observe that these six midpoints form a parallelotope:

1. The two triangles (ml1,ml2,ml3) and (mr1,mr2,mr3) are par-
allel to the triangle (x1,x2,x3), in fact, translates scaled by a
factor of 1

2 .
2. The quad ml1,mr1,mr2,ml2 is a planar parallelogram, and like-

wise for the other two quads. All edges mli−mri connecting
corresponding points on opposite sides are copies of the vector
xl−xr, scaled by a factor of 1

2 .

This means any two edges of the triangle (x1,x2,x3) together with
the vector xl − xr span the linear part of the affine space defined
by the six points. Hence, an affine function can uniquely be fitted
to these midpoints – analogously to the 2D parallelogram version
show in Figure 1, center – and the gradient of this function can be
used as the diamond gradient (giving the same result as (27)).

6.3. Dual Vertices as Affine Combinations

There have been several extensions of the DDFV scheme to volu-
metric meshes, see Hubert and colleagues [CH11, ABHK12] for a
good overview. Most 3D DDFV methods define the gradient on
minimal diamonds, as proposed above, but require the insertion
of additional vertices (and their associated DoFs) per cell, face,
and edge, thereby significantly increasing the number of degrees
of freedom. Our construction requires virtual vertices per cell and
face only, but their DoFs are eventually removed by the sandwich-
ing operator.

Analogous to the surface case, we first insert for each face the
point that minimizes the sum of squared triangle areas (see Equa-
tion (19)), turning each face into a fan of (virtual) triangles. For a
polyhedral cell c, the virtual point xc is then computed to minimize
the sum of squared tetrahedron volumes:

min
xc

∑
(i, j,k)∈∂c

∣∣(xi,x j,xk,xc)
∣∣2 . (29)

For a cell c with m vertices (consisting of primal vertices and virtual
face vertices), the above minimization requires to solve an m×m
linear system for the affine weights defining xc.

This two-step sandwiching procedure results in two prolongation
matrices PF and PC for inserting face and cell points, respectively,
which are then combined to the prolongation matrix

P = PC PF . (30)

6.4. Gradient, Divergence, Laplace

The global gradient operator Ĝ, mapping values at primal vertices
and dual face/cell points, is again constructed by assembling per-
diamond gradient matrices GD, and is then combined with the pro-
longation matrix to yield G

Ĝ =
⊕

D∈D
GD, G = ĜP, (31)

where
⊕

again is the matrix assembly operator. Following the 2D
derivation, the divergence and Laplacian operators for polyhedral
meshes become

D =−PTĜT M�, L = DG, (32)

with a diagonal matrix M� containing diamond volumes. The mass
matrix M = PTM̂P, required for the point-wise Laplacian M−1L,
is defined in terms of the diagonal matrix M̂, which distributes the
volumes of the (minimal) diamonds D to the primal vertices, face
vertices, and cell vertices:

M̂ii =


∑D3i

1
6 |D| if i is a primal vertex,

∑D3i
1
6 |D| if i is a face vertex,

∑D3i
1
4 |D| if i is a cell vertex,

0 otherwise.

(33)

Analogous to the surface construction, we avoid lumping the mass
matrix and instead work with the non-diagonal matrix M.

7. Properties

We analyze the properties of our Diamond Laplacian with respect
to the criteria listed in [WMKG07].

Symmetry, Definiteness By construction, the Diamond Laplacian
L = DG = −PTĜTM�ĜP is a real-valued symmetric negative
semi-definite matrix, since the diagonal matrix M� (containing di-
amond areas/volumes) is symmetric positive definite.

Linear Precision If the mesh is flat, i.e., a polygon mesh embed-
ded in a plane, respectively a polyhedral mesh embedded in 3D,
then we expect that the discrete Laplacian vanishes on linear func-
tions away from the boundary of the domain. The DDFV gradient
Ĝ of a linear function over a closed region with polygonal or poly-
hedral boundary reproduces the constant gradient of this function.
The divergence operator−ĜTM� is exact on the resulting constant
vector fields, leading to linear precision of the DDFV Laplacian
−ĜTM�Ĝ [DO05, Her09, CH11]. The sandwiching PT(·)P pre-
serves this linear precision [BHKB20].
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Null-Space The Diamond Laplacian has a one-dimensional kernel
containing only the constant functions. It is obvious that constant
functions are sufficient for the gradient to vanish, implying that they
are in the kernel of the Laplacian. It remains to show that constant
values are necessary for the gradient to vanish.

We explain the situation for minimal diamonds in 3D – the case
for surface meshes works analogously. The gradient of a minimal
diamond can be interpreted as the gradient of the affine function
interpolating the values on the edge midpoints mli, mri, i = 1,2,3
(Section 6.2). For these values to be identical it is necessary that
(i) the values at x1, x2, and x3 are identical and (ii) the values at
xl and xr are identical. Because the mesh is connected, it follows
that the values at all primal vertices and at all dual vertices need
to be identical. Notice that this argument cannot be extended to
diamonds with a non-triangular base: If the base is a polygon with
more than three vertices already the gradient within this polygon
may vanish for non-constant values on the vertices. This problem
for diamonds with non-triangular base has also been described in
the DDFV literature (cf. [ABH13]).

It remains to explain why the constant values on primal vertices
and the constant values on dual vertices are identical. In our setup
this follows directly from the fact that values on dual vertices are
affine combinations of the values in primal vertices. In other words,
while Ĝ may have a two-dimensional kernel, the kernel of ĜP is
guaranteed to contain only the constant functions. As long as the
diamond mass matrix M� has full rank this implies that also L has
the desired kernel.

Lastly, note that the DDFV literature only considers meshes with
boundary, where values on primal and dual vertices are connected
through identification on boundary edges. In this case, Ĝ already
has the desired kernel [ABH13]. For meshes without boundary this
fails. Our sandwiching approach rectifies the situation.

Locality The Diamond Laplacian is local, but less local than re-
lated existing schemes, since the diamond gradient couples neigh-
boring cells and the sandwiching couples all primal vertices in-
cident on a cell. For simplicial meshes, the cotan Laplacian
of a vertex i depends on all vertices sharing an edge with i.
For the polygonal Laplacians [AW11, BHKB20, dGBD20] it de-
pends on all vertices sharing a face with i. For the Diamond
Laplacian it depends on the vertices of (i) the cells incident
on vertex i and (ii) the cells sharing a face with these cells.

This set is larger than the vertices in
the edge-based or cell-based one-ring
neighborhood, but generally smaller
than edge-based two-ring neighbor-
hood. For instance, on a regular trian-
gle mesh the Laplacian of vertex i de-
pends on 12 neighbors, which is in be-
tween the 6 and 18 vertices of the one-
ring and two-ring neighborhoods, re-
spectively (see inset figure).

Maximum principle The maximum principle for discrete Laplace
operators is commonly derived from the sign structure of the op-
erator matrix. If the diagonal elements are all negative and the off-
diagonal elements are all positive, then the operator is an M-matrix,

Figure 4: Color-coded absolute mean curvature for two different
tessellations computed with the Diamond Laplacian (left: hexagon-
dominant, right: triangles). The results are visually identical.

implying the maximum principle. The sign of the off-diagonal en-
tries in L depends on the input mesh, and like other Laplacians
the Diamond Laplacian, in general, has no maximum principle. A
Delaunay triangle mesh guarantees the desired signs for the coeffi-
cients of the cotan operator. For Delaunay tetrahedral meshes, the
cotan operator has no maximum principle. The DEC construction
does provide the maximum principle for Delaunay meshes, but may
lack semi-definiteness if the mesh is not Delaunay [AHKSH20].
The Diamond Laplacian, in contrast, has no maximum principle
even for Delaunay triangle or tetrahedral meshes.

8. Results

We evaluate the Diamond Laplacian in a variety of geometry pro-
cessing operations for both volume and surface meshes. We focus
our presentation of results on quantitative tests, in particular on
comparisons to other constructions for non-simplicial meshes.

8.1. Surface Meshes

On surface meshes, we compare our Diamond Laplacian to the
polygon Laplacians of Alexa and Wardetzky [AW11], Bunge et
al. [BHKB20], and de Goes et al. [dGBD20]. According to the rec-
ommendation of the original authors, we chose the involved hyper-
parameters as λ = 2 for [AW11] and λ = 1 for [dGBD20].

Mean Curvature When applied to the coordinate function of the
surface mesh, the Laplace operator yields an approximation of the
integrated mean curvature vector. We approximate the point-wise
mean curvature H at a vertex i as

H(i) =
1
2

∥∥∥(M−1LX
)

i

∥∥∥ ,
as visualized for a triangle mesh and a general polygon mesh in
Figure 4. Quantitative comparisons to other methods are provided
in Figure 5, where we compare root-mean-square errors (RSME)
on different tessellations of the unit sphere. Since the convergence
of point-wise mean curvatures under refinement is not guaranteed
and depends on the type of tessellation, we restrict our evaluation
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Figure 5: Root-mean-square error of absolute mean curvatures in
log-log scale for different tessellations of the unit sphere. The dif-
ferent tessellation types are depicted in Figure 9.

to tessellations for which we observe convergence. The Diamond
Laplacian generally yields the lowest errors for triangle and quad
meshes, and is only bested on hexagon meshes, where it comes
second. Note that in contrast to the polygon Laplacians by [AW11,
BHKB20,dGBD20], the Diamond Laplacian does not reduce to the
cotan Laplacian in case of triangle meshes, but instead provides a
more accurate discretization.

Geodesic in Heat The heat method of Crane et al. [CWW13] ap-
proximates geodesic distances from a vertex i to every other vertex.
Since the gradient and divergence operators are directly involved
in several computation steps, the gradient defined on the diamonds
makes the application of this method natural.

An important parameter in the heat method is the time step used
for heat diffusion. While Crane et al. [CWW13] suggest the mean
edge length squared, a more conservative choice is the square of the
maximum edge length [dGDMD16], which we used in our experi-
ments. A qualitative comparison of the distances on different tessel-
lations is shown in Figure 6. The quantitative evaluation displayed
in Figure 7 shows the results for different tessellations of the unit
sphere (higher-resolution versions of the sphere meshes depicted in
Figure 9). The errors are based on the analytical values of the great-
circle distance. With few exceptions, the Diamond Laplacian yields
the lowest errors. This is a good indicator for the quality of the gra-

Figure 6: Geodesic distances obtained with the Diamond Lapla-
cian, being visually identical despite different tessellations.
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Figure 7: Root-mean-square error of geodesic distances for differ-
ent tessellations of the unit sphere.

dient and divergence operators defined on diamonds compared to
other constructions.

We also evaluated the accuracy of the Diamond operator con-
structed by placing dual vertices x f at face centroids instead of the
minimizer of the squared triangle areas. While the centroid is typ-
ically employed in the DDFV literature, its performance on non-
convex tessellations (similar to the L-plane and Tetris meshes used
in [BHKB20]) yields worse results than the area minimizer, since
flipped triangles lead to unfavorable diamond cells, which in turn
reduce the overall performance of the operator.

Poisson Problems We also analyze the performance of the Dia-
mond Laplacian for Poisson equations Lu = Mb on different tes-
sellations of the unit square, and compare it to existing approaches.
We employ two different Dirichlet boundary conditions b:

1. The Laplacian of Franke’s test function [Fra79]

F2D (x,y) =
3
4

e−
(9x−2)2+(9y−2)2

4 +
3
4

e−
(9x+1)2

49 −
9y+1

10

+
1
2

e−
(9x−7)2+(9y−3)2

4 − 1
5

e−(9x−4)2−(9y−7)2
.

We then measure the deviation of the reconstruction from the
true function values.
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Figure 8: L2 error in log-log scale of the Poisson system solved for Franke’s test function on planar grids with triangles (left), quads (center
left), Voronoi cells (center right), and concave faces (right). On triangle meshes, the operators [AW11, BHKB20, dGBD20] reduce to the
cotangent Laplacian and hence yield the same results.
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Figure 9: L2 error in log-log scale of the Poisson system solved for the scaled real-valued spherical harmonic function Y−1
3 (x,y,z) on

differently tessellated unit spheres: Triangles (left), quads (center left), Hexagons (center right), and concave faces (right). On triangle
meshes, the operators [AW11, BHKB20, dGBD20] reduce to the cotangent Laplacian and hence yield the same results.

2. The values of the scaled spherical harmonic function

Y−1
3 (x,y,z) = y(4z2− x2− y2).

We then measure the deviation of the reconstruction from the
input Y−1

3 divided by the corresponding eigenvalue λ = 12.

As can be seen in Figures 8 and 9, the Diamond Laplacian has
the expected convergence rate and provides lower errors than other
discretizations for the majority of test cases. For triangle meshes,
the Diamond Laplacian performs favorably for both problems and
is more accurate than the cotangent operator, to which the polygon
Laplacians of [AW11, BHKB20, dGBD20] reduce.

Sparsity and Timings The operator matrix for polygon Lapla-
cians has more non-zero elements than the corresponding adja-
cency matrix. This reflects that at least the vertices belonging to the
same face are connected, since they all influence the (integrated)
differential properties of the face. The choice of diamonds as re-
gions for estimating the differentials allows a more accurate es-
timation of the gradient across (primal) edges. This comes at the
expense of introducing additional non-zero entries in the opera-
tor matrix that reflect this connection. The reduced sparsity results
in higher computational complexity for solving the involved linear
systems. Table 1 lists the timings of sparse Cholesky factorization
and back-substitution, computed using the supernodal LLT solver
of CHOLMOD [CDHR08]. All timings were measured on a stan-
dard workstation with a six-core Intel Xeon 3.6 GHz CPU and were
taken in single-threaded mode.

8.2. Volume Meshes

Discretizations of the Laplacian for general volume meshes are
less common, leading to fewer possibilities for comparison than
in the surface case. For tetrahedral meshes, we compare the Di-
amond Laplacian to the well known volume cotangent Laplacian,
from now on called Primal Laplacian, as well as to the Dual Lapla-
cian that was introduced in [AHKSH20].

For comparisons on general polyhedra, we generalize the poly-
gon Laplacian of Bunge et al. [BHKB20] to volumetric meshes. To
this end, we insert virtual vertices into faces and cells (minimizing
squared areas/volumes as described in Section 6.3), construct gra-
dient, divergence, and Laplacian on the virtually refined tetrahedral
mesh using the primal/cotan discretization [Cra19], and employ the
sandwiching of Equation (30).

Moreover, we compare to the two major DDFV methods CeVe
[Her09] and CeVeFE [CH11]. Both DDFV approaches introduce
a significant amount of additional degrees of freedom, with CeVe
working on values per vertices and per cells, and CeVeFE with val-
ues at vertices, cells, faces, and edges. To compare to our approach,
mapping values on vertices to values on vertices, we restrict their
results to the per-vertex values and ignore the additional values.
This restricts the comparison to the Poisson tests – how to compare
eigenmodes remains unclear.

The different types of polyhedral tessellations used in the fol-
lowing evaluation are depicted in Figure 10.
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# Vertices Diamond [AW11] [BHKB20] [dGBD20]

Triangles 92k 1198k 2630 59 645k 1491 40 645k 1592 41 645k 1967 41

Quads 99k 2064k 3273 68 884k 1659 42 884k 1574 41 884k 2014 42

Hexagons 82k 3030k 3357 87 1064k 1796 40 1064k 2617 42 1064k 2162 41

Concave 130k 4149k 5049 112 1558k 2391 54 1558k 2450 55 1558k 2296 54

Table 1: Timings for solving Poisson system on polygonal meshes using sparse Cholesky factorization, listing the number of mesh vertices
and, for each method, the number of non-zero matrix entries and the time for factorization and back-substitution (in ms).

Figure 10: The types of non-simplicial polyhedral meshes used for
evaluation in the volumetric case. They will be referred to as Hex-
ahedra (left), Pyramids (center), and Truncated (right).

Poisson Problems As in the surface case, we analyze the conver-
gence behavior for Poisson systems Lu = Mb, with b being the
Laplacian of the Franke test function

F3D(x,y,z) =
3
4

e−
(9x−2)2+(9y−2)2+(9z−2)2

4 +
3
4

e−
(9x+1)2

49 −
9y+1

10 −
9z+1

10

+
1
2

e−
(9x−7)2+(9y−3)2+(9z−5)2

4 − 1
5

e−(9x−4)2−(9y−7)2−(9z−5)2

We solve the Poisson system on different tessellations of the 3D
unit cube, fixing boundary vertices to the values of F3D. As shown
in Figure 11, the Diamond Laplacian has the expected convergence
behavior and yields lower errors than other methods.

Laplacian Eigenmodes When solving the eigenvalue problem of
the Laplacian, better known as Helmholtz equation, on a 3-ball B3

−∆u = λu in B3 with u = 0 on ∂B3,

its discrete solution can analytically be expressed in terms of the
spherical Bessel functions. Therefore, given a stiffness matrix L
and mass matrix M for a polyhedral tessellation of B3, the discrete
analogue of the Helmholtz equation can be formulated as the gen-
eralized eigenvalue problem Lu = λMu. The plots in Figures 12
and 13 show that the Diamond Laplacian successfully in recovers
the desired eigenvalues, rather independent of the tessellation. In
particular on non-uniform adaptive tetrahedral meshes (Figure 13)
our operator is considerably more accurate than the primal and dual
tetrahedral Laplacians.

Timings and Sparsity The additional cell and face vertices that
we (virtually) insert to construct the minimal diamonds lead to a
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Figure 11: L2 error in log-log scale of the Poisson system solved
for Franke’s test function on different tessellations of the unit cube.
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Figure 12: The 34 smallest eigenvalues of the Laplacian, computed on different polyhedral tessellations of the unit ball. The top row shows
the obtained eigenvalues, the bottom row the deviation from the true values. In all cases, our operator is more accurate than [BHKB20].
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Figure 13: The 34 smallest eigenvalues of the Laplacian, computed on uniform and adaptive tetrahedral tessellations of the unit ball. For
tetrahedral meshes the generalization of Bunge et al. [BHKB20] reduces to the Primal cotan operator, therefore yielding the same results.
The Diamond Laplacian is not affected by adaptive tessellations and achieves a higher accuracy.

higher density in the Diamond stiffness matrix compared to both
tetrahedral operators presented in [AHKSH20] and the polyhedral
generalization of [BHKB20]. Table 2 compares the matrix density
for the different Laplace discretizations and the time for solving the
resulting Poisson system, again using the supernodal LLT solver of
CHOLMOD [CDHR08]. As expected, the Diamond Laplacian is
more expensive than the Primal and Dual tetrahedral Laplacians
and the polyhedral version of [BHKB20]. Compared to the volu-
metric DDFV methods, timings are comparable to CeVe [Her09],
which however suffers from spurious modes, and it is significantly
faster than CeVeFE DDFV [CH11], while at the same time being
more accurate than all other methods.

9. Conclusion

We improve on DDFV methods by generalizing the 2D DDFV for-
mulation to surface meshes immersed in 3D (intrinsic gradients)
and by providing a formulation for polyhedral meshes (ring of min-
imal diamonds) that avoids the spurious modes of CeVe [Her09]
and is considerably simpler than CeVeFE [CH11]. We combine this
with a generalization of the approach of Bunge et al. [BHKB20]
from polygon meshes to polyhedral meshes and use the resulting
double prolongation to remove the additional degrees of freedom of
dual cell and face vertices from the improved DDFV operators. The

Diamond Laplacian provides, to the best of our knowledge, the first
simple Laplacian for general polyhedral meshes that maps values
at vertices to values at vertices while having the appropriate kernel,
linear precision, and the desired semi-definiteness. The source code
for the polygonal and polyhedral Diamond Laplace is available at
https://github.com/mbotsch/polyLaplace.

In extensive numerical evaluations on prototypical geometry
processing applications we compare the Diamond Laplacian to
seven existing methods from the graphics and DDFV communi-
ties as well as to the unpublished generalization of [BHKB20] to
polyhedral meshes. In almost all experiments the Diamond Lapla-
cian is superior to all its competitors, otherwise it is placed second.
In contrast to existing polygon Laplacians, it does not reduce to the
cotan formulation on triangle meshes. It is a viable alternative also
for pure simplicial meshes, as it provides more accurate results in
particular if the gradient operator is involved.

The price for generality and accuracy is a higher number of non-
zero elements, leading to a slight increase in computation time.
We believe that this is a useful trade-off in graphics and geomet-
ric modeling, where meshes are mostly processed without altering
them. We cannot resist to make the obvious remark: Diamonds
are attractive but somewhat expensive.
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# Vert. Diamond [BHKB20] CeVeFE CeVe

Tetrahedra 4.4k 127k 378 5 63k 122 4 1664k 4382 95 380k 1017 23

Hexahedra 36k 2587k 4487 110 912k 1670 43 1497k 20813 487 736k 4727 133

Pyramids 23k 1037k 1255 45 398k 880 24 5021k 22380 479 1231k 4890 129

Truncated 19k 1988k 1652 44 476k 989 22 2461k 5051 104 580k 1714 41

Table 2: Timings for solving Poisson system on polyhedral meshes using sparse Cholesky factorization, listing the number of mesh vertices
and, for each method, the number of non-zero matrix entries and the time for factorization and back-substitution (in ms).
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