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Supplementary Material for:
Scalable Surface Reconstruction with

Delaunay-Graph Neural Networks

In this supplementary document, we first provide additional in-
formation about our our training data in Section 6 and implemen-
tation in Section 7. Finally, we provide additional qualitative and
quantitative experimental results in Section 8 for object-level re-
construction, and in Section 9 for scene-level reconstruction.

6. Generating Training Data

In an ideal setting, we would have trained our network on real-life,
large-scale, MVS acquisitions together with associated ground-
truth surfaces. However, such surfaces are difficult to produce. Two
methods can be used to circumvent this issue: using laser scans or
resorting to synthetic scans.

Laser Scans. The first option is to use a surface reconstructed
from a high-precision acquisition of a scene, e.g., with a sta-
tionary LiDAR scan. In parallel, the scene can be captured by
cameras to produce an MVS acquisition, typically of lower qual-
ity. This procedure has been used in several MVS benchmarks
[SvHG∗08, KPZK17, SSG∗17, SDSS06]. However, a difficulty re-
mains when reconstructing the ground-truth surface. We require
a closed surface to derive the ground-truth occupancy. The cho-
sen surface reconstruction method may introduce biases in the
ground-truth surface, such as over-smoothing. Additionally, even
with high-quality LiDAR acquisitions, parts of the scene can be
missing, e.g., due to occlusions. These issues ultimately lead to in-
consistencies in the training data, because the MVS acquisition lo-
cally diverges from the ground-truth surface. Thus, in practice, we
found that the incompleteness of available LiDAR scans makes this
source of data too unreliable to train our network.

Synthetic Scans. A second option for producing ground-truth data
is to use synthetic scans of closed artificial shapes. To this end,
we make use of the range scanning procedure from the Berger
et al. [BLN∗13] benchmark for surface reconstruction.

We modified the provided code to export the camera positions of
the scanning process. We then synthetically scan artificial shapes
using our modified version of the Berger et al. scanning software.
We choose at random one of the 5 scanner settings described in
Table 4 to scan each training shape. The low resolution scanner
setting produces uniform point clouds, similar to those obtained by
coarse voxelizations. High resolution settings produce point clouds
similar to those obtained by MVS. We also add outliers to the scans
in the form of randomly distributed points in the bounding box of
the objects and associate these points with a random camera posi-
tion. We use this method to produce training data from a small sub-
set of 10 shapes of each of the 13 classes of the ShapeNet subset
from [CXG∗16]. We produce watertight meshes of the ShapeNet
models using the method of Huang et al. [HSG18].

To obtain the ground-truth occupancy, we sample 100 points in

each tetrahedron and determine the percentage of these sampled
points lying inside their corresponding ground-truth models. In to-
tal, we train our network on around 10M tetrahedra. We also apply
the scanning procedure with the 5 different configurations to each
shape of the 5 ground-truth shapes from the Berger et al. [BLN∗13]
benchmark. See Figure 8 for the 5 ground-truth shapes and the first
column of Figures 9-12 for their scans. We refer the reader to the
original benchmark paper [BLN∗13] for further details about the
scanning process.

7. Implementation Details

Multi-View Stereo. Our implementation relies on the OpenMVS
[Cer15] library for many of the MVS processing steps.

We generate dense point clouds using the provided camera poses
of all scenes of the ETH3D test dataset. We use the DensifyPoint-
Cloud tool of OpenMVS with standard settings, except for the
following parameters: number-views-fuse = 2, optimize = 0 and
resolution-level = 4.

Visibility-augmented 3DT. We use CGAL to obtain the Delaunay
Triangulation and for ray tracing. For the ray tracing, we only use
one camera per point. We chose the camera minimizing the angle
between the line-of-sight and the point’s normal (obtained by local
principal component analysis). In our experiments, this allows for
a significant speed-up in the ray tracing step with a negligible dif-
ference on the predicted surface. Likewise, we disregard the third
tetrahedron encountered after a line of sight traverses an observed
point, and beyond (see Fig. 3).

Deep Learning. Finally, we use PyTorch [PGM∗19] and PyTorch
Geometric [FL19] for implementing the graph neural network
training and inference.

Binary Weights. We use the same surface quality term Bs,t(is, it) =
1(is 6= it)βs,t as Labatut et al. [LPK09] for a facet interfacing
the tetrahedra s and t. Considering the intersection of the circum-
spheres of s and t with the facet, with angles φ and ψ, then βs,t is
defined as:

βs,t = 1−min{cos(φ),cos(ψ)} . (13)

Parameterization of Competing Methods. We use the OpenMVS
implementations of Vu et al. and Jancosek et al. through the Recon-
structMesh tool with min-point-distance = 0.0. For Vu et al. we set
free-space-support = 0, and we set it to 1 for Jancosek et al. .

For the reconstructions of ConvONet we use the multi-plane de-
coder model pretrained on ShapeNet for object-level reconstruction
and the volume decoder model pretrained on the synthetic indoor
scene dataset [PNM∗20] for scene-level reconstruction, where we
set the voxel size to 4 cm.
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Table 4: Scanning configuration for Berger et al.’s benchmark. We show the five different scanner configurations used in our modified
version of the Berger et al.’s scanning procedure. We use the resulting scans to evaluate object-level reconstruction with varying point-cloud
defects and for training data generation. For the low resolution (LR) scans the scanning process results in 1000 to 3000 points per shape,
and for the high resolution (HR), the scanning process yields around 10000 to 30000 points.

Low res. (LR) High res. (HR) HR + noise (HRN) HR + outliers (HRO) HR + noise + outliers (HRNO)

Camera resolution x, y 50, 50 100, 100 100, 100 100, 100 100, 100
Scanner positions 5 10 10 10 10
Min/max range 70/300 70/300 70/300 70/300 70/300
Additive noise 0 0 0.5 0 0.5
Outliers (%) 0 0 0 0.1 0.1
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Figure 8: Ground-truth meshes for Berger et al.’s benchmark. We represent the 5 shapes chosen from the Berger et al.’s benchmark
[BLN∗13] for our evaluation.

Cleaning of scene reconstruction. We use default clean options
in OpenMVS for the cleaning step for all scene-level mesh recon-
structions.

8. Object-Level Reconstruction

Metrics. We evaluate object-level reconstruction with the volumet-
ric IoU, the symmetric Chamfer distance, the number of connected
components and the number of non-manifold edges in the recon-
structed mesh.

For the Chamfer distance, we sample nS = 100000 points on
the ground-truth meshesMG and reconstructed meshesMP . The
distances between the resulting ground-truth point cloud SG and the
reconstruction point cloud SP, approximating the two-sided Cham-
fer distance, is then given as:

dCD(MG ,MP ) =
1
nS

∑
x∈SG

min
y∈SP
||x− y||22

+
1
nS

∑
y∈SP

min
x∈SG
||y− x||22 (14)

The volumetric IoU is defined as:

IoU(MG ,MP ) =
|MG ∩MP |
|MG ∪MP |

, (15)

We approximate the volumetric IoU by sampling 100000 points
in the union of the bounding boxes of the ground-truth and recon-
struction meshes.

For the number of connected components, we count all com-
ponents of the reconstructed meshes. The ground-truth meshes all
have only one component. Additionally, they do not have any non-
manifold edges.

Additional Qualitative Results. The main paper provides both
quantitative results over the whole dataset (see Table 1) and qualita-
tive results for one object (see Fig. 6). Figures 9-12 show the results
for all the other objects.

9. Large-scale Scene Reconstruction

Metrics. For the large-scale benchmark ETH3D, we evaluate the
mesh reconstruction methods at a given precision τ using the the
Accuracy (precision) P(τ), the Completeness (recall) R(τ), and the
F1-Score F(τ), defined as their harmonic mean:

F(τ) =
2P(τ)R(τ)

P(τ)+R(τ)
(16)

We use the ETH3D Evaluation Program [SSG∗17] to compute
these values from the ground-truth LiDAR scans and samplings of
the meshed surfaces. In the original benchmark, the authors evalu-
ate MVS reconstructions with threshold τ as low as 1 cm. Generat-
ing such mesh samplings implies sampling over 300 million points
for some scenes. To accelerate this procedure, we only sample 900
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Figure 9: Reconstruction of the Anchor object in the surface reconstruction benchmark of Berger et al. [BLN∗13]. We show the input
point clouds in column 1. ConvONet [PNM∗20] (column 2) does not generalize well to the unseen new shape. IGR [GYH∗20] (column 3)
works well at high resolution but fails in the other cases. The Screened Poisson [KH13] algorithm (column 4) does not reconstruct the sharp
features well, but is robust against outliers, even close to the surface. The reconstructions of Labatut et al. [LPK09] (column 5) and ours
(column 6) are visually similar for the easier high resolution case. Our method performs slightly better on the low resolution, and noise
cases.
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Figure 10: Reconstruction of the Gargoyle object in the surface reconstruction benchmark of Berger et al. [BLN∗13]. We show the input
point clouds in column 1. ConvONet [PNM∗20] (column 2) does not generalize well to the unseen new shape. IGR [GYH∗20] (column 3)
generates many surface components from outliers. The Screened Poisson [KH13] algorithm (column 4) does not reconstruct the sharp
features well, but is robust against outliers, even close to the surface. The reconstructions of Labatut et al. [LPK09] (column 5) and ours
(column 6) are visually similar for the easier high resolution case. While both methods are very robust against outliers, our method performs
slightly better on the low resolution, outlier and noise cases.
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Figure 11: Reconstruction of the Daratech object in the surface reconstruction benchmark of Berger et al. [BLN∗13]. We show the
input point clouds in column 1. ConvONet [PNM∗20] (column 2) does not generalize well to the unseen new shape. As with other shapes,
IGR [GYH∗20] (column 3) works well at high resolution but generates artefacts or fails in other settings. The Screened Poisson [KH13]
algorithm (column 4) does not reconstruct the sharp features well, but is robust against outliers, even close to the surface. In the low resolution
setting, our algorithm is incomplete where Labatut creates unwanted surface parts.
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Figure 12: Reconstruction of the Quasimoto object in the surface reconstruction benchmark of Berger et al. [BLN∗13]. We show the input
point clouds in column 1. ConvONet [PNM∗20] (column 2) does not generalize well to the unseen new shape. IGR [GYH∗20] (column 3)
is not able to filter outliers in the scan. The Screened Poisson [KH13] algorithm (column 4) does not reconstruct the sharp features well.
The reconstructions of Labatut et al. [LPK09] (column 5) and ours (column 6) are visually similar for the defect-free cases. Both methods
produce small artifacts in the high resolution case: between the book and nose for Labatut et al. [LPK09] and between the book and left foot
for ours. Both methods are very robust against outliers.
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F1-score - uncleaned mesh F1-score - cleaned mesh

scene Poisson Vu et al. Jan. et al. Ours Poisson Vu et al. Jan. et al. Ours

kicker 0.75 0.79 0.75 0.76 0.75 0.81 0.78 0.78
pipes 0.77 0.79 0.77 0.76 0.77 0.78 0.77 0.75
delivery_area 0.69 0.70 0.66 0.71 0.69 0.70 0.68 0.71
meadow 0.45 0.52 0.51 0.58 0.40 0.50 0.50 0.60
office 0.60 0.65 0.59 0.59 0.60 0.64 0.62 0.58
playground 0.61 0.70 0.63 0.70 0.60 0.69 0.66 0.73
terrains 0.73 0.78 0.76 0.75 0.74 0.78 0.77 0.76
terrace 0.79 0.76 0.74 0.83 0.79 0.79 0.78 0.85
relief 0.72 0.67 0.64 0.80 0.73 0.69 0.67 0.80
relief_2 0.70 0.68 0.67 0.79 0.71 0.70 0.70 0.78
electro 0.65 0.64 0.60 0.68 0.65 0.65 0.64 0.69
courtyard 0.76 0.75 0.72 0.77 0.75 0.75 0.74 0.77
facade 0.50 0.52 0.50 0.53 0.51 0.55 0.54 0.50

mean 0.67 0.69 0.66 0.71 0.67 0.69 0.68 0.71

Table 5: Detailed quantitative results on ETH3D. F1-score of all scenes of the train dataset of ETH3D [SSG∗17] for uncleaned and cleaned
mesh reconstructions at distance τ = 5 cm. The best (highest) values per scene are in bold. We perform better than all competing methods on
8 scenes out of 13. On average, our method performs between 2 and 5% better than the competing methods, and improve the F1-score for 8
out of 13 scenes. The mesh cleaning only improves the F1-score of the reconstruction of Jancosek et al. [JP14].

points per m2 on the reconstructed meshes. This allows us to com-
pute accuracy and completeness with a threshold of 5 cm and up.

Detailed quantitative Results In Table 5, we show the F1-Score at
τ = 5 cm of all 13 scenes of the ETH3D dataset for both uncleaned
and cleaned mesh reconstructions. Our method produces the best
reconstruction scores for 9 out of 13 scenes. Mesh cleaning did not
significantly alter the scores as it resulted in less complete but more
accurate reconstructions.

Qualitative Results. We show an example of a locally more accu-
rate reconstruction of our method compared to our competitors in
Figure 13 and Figure 14. We show in Figure 15 the effect of the
cleaning step on a hard problem due to a large amount of noise and
outliers. Finally, we also show an example of our method producing
a less complete reconstruction in Figure 16.
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(a) Dense MVS input. (b) ConvONet. (c) Ours.

Figure 13: Indoor ETH3D reconstruction. Reconstruction of the pipes scene of the ETH3D benchmark [SSG∗17]. We show the dense MVS
point cloud in (a), the mesh reconstructions obtained by ConvONet [PNM∗20] in (b) and our proposed reconstruction in (c). Similar to
object-level reconstruction, ConvONet does not generalize well to the unseen new shapes in this scene. Our learning algorithm, operating
purely locally, is able to reconstruct the pipes and fill all holes in the point cloud acquistion.

(a) Ground truth. (b) Image of kicker. (c) Dense MVS input. (d) Ours textured.

(e) Poisson. (f) Vu et al. (g) Jancosek et al. (h) Ours.

(i) Poisson. (j) Vu et al. (k) Jancosek et al. (l) Ours.

Figure 14: Indoor ETH3D reconstruction. Reconstruction of the kicker scene of the ETH3D benchmark [SSG∗17]. We show the ground
truth that is used for evaluation in (a). A set of images, such as the one represented in (b), is transformed into a dense MVS point cloud
(c), from which a mesh can be reconstructed and textured [WMG14], as shown in (d) with our proposed mesh reconstruction. We show the
untextured mesh reconstructions obtained by the screened Poisson algorithm in (e,i), the algorithms of Vu et al. [VLPK12] in (f,j) and of
Jancosek et al. [JP14] in (g,k), and finally our proposed reconstruction in (h,l). All methods struggle to reconstruct the table and the chairs,
that have little data support.
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(a) Ground truth. (b) Image of meadow. (c) Dense MVS input. (d) Ours textured.

(e) Poisson. (f) Vu et al. (g) Jancosek et al. (h) Ours.

(i) Poisson uncleaned. (j) Vu et al uncleaned. (k) Jancosek et al uncleaned. (l) Ours uncleaned.

Figure 15: Outdoor ETH3D reconstruction. Reconstruction of the meadow scene of the ETH3D benchmark [SSG∗17]. We show the ground
truth that is used for evaluation in (a). A set of images, such as the one represented in (b), is transformed into a dense MVS point cloud
(c), from which a mesh can be reconstructed and textured [WMG14], as shown in (d) with our proposed mesh reconstruction. We show the
untextured mesh reconstructions obtained by the screened Poisson algorithm in (e,i), the algorithms of Vu et al. [VLPK12] in (f,j) and of
Jancosek et al. [JP14] in (g,k), and finally our proposed reconstruction in (h,l). Trees and outliers in the sky lead to a large number of isolated
components in all mesh reconstructions. Most of these small components can be removed with the heurestic mesh cleaning step that we apply
as post-processing.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

https://orcid.org/0000-0003-1707-7621
https://orcid.org/0000-0002-7738-8141
https://orcid.org/0000-0003-1612-1758
https://orcid.org/0000-0002-9492-5180


R. Sulzer1,2 L. Landrieu1 R. Marlet2,3 B. Vallet1
1 LASTIG, Univ Gustave Eiffel, ENSG IGN, F-94160 Saint-Mande, France

2 LIGM, Ecole des Ponts, Univ Gustave Eiffel, ESIEE Paris, CNRS, Marne-la-Vallée, France
3 valeo.ai, Paris, France

/ Scalable Surface Reconstructionwith Delaunay-Graph Neural Networks

(a) Ground truth. (b) Image of delivery. (c) Dense MVS input. (d) Ours textured.

(e) Poisson. (f) Vu et al. (g) Jancosek et al. (h) Ours.

(i) Poisson. (j) Vu et al. (k) Jancosek et al. (l) Ours.

Figure 16: Failure case on ETH3D. Reconstruction of the delivery area scene of the ETH3D benchmark [SSG∗17]. We show the ground
truth that is used for evaluation in (a). A set of images, such as the one represented in (b), is transformed into a dense MVS point cloud
(c), from which a mesh can be reconstructed and textured [WMG14], as shown in (d) with our proposed mesh reconstruction. We show the
untextured mesh reconstructions obtained by the screened Poisson algorithm in (e,i), the algorithms of Vu et al. [VLPK12] in (f,j) and of
Jancosek et al. [JP14] in (g,k), and finally our proposed reconstruction in (h,l). Our method does not close the wall on the right, but performs
slightly better on reconstructing the no-parking sign. Yet, considering the whole scene, the holes we create do not cover a larger area than
other methods.
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