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Abstract
We propose a method to simultaneously compute scalar basis functions with an associated functional map for a given pair of
triangle meshes. Unlike previous techniques that put emphasis on smoothness with respect to the Laplace–Beltrami operator
and thus favor low-frequency eigenfunctions, we aim for a basis that allows for better feature matching. This change of per-
spective introduces many degrees of freedom into the problem allowing to better exploit non-smooth descriptors. To effectively
search in this high-dimensional space of solutions, we incorporate into our minimization state-of-the-art regularizers. We solve
the resulting highly non-linear and non-convex problem using an iterative scheme via the Alternating Direction Method of
Multipliers. At each step, our optimization involves simple to solve linear or Sylvester-type equations. In practice, our method
performs well in terms of convergence, and we additionally show that it is similar to a provably convergent problem. We show
the advantages of our approach by extensively testing it on multiple datasets in a few applications including shape matching,
consistent quadrangulation and scalar function transfer.

CCS Concepts
• Computing methodologies → Shape analysis;

1. Introduction

Functional maps (FM) [OBCS∗12] were introduced in geometry
processing in the context of shape matching. During the last few
years, FM were quickly adopted by many, serving as the key build-
ing block in a range of shape analysis frameworks. Applicative in-
stances include fluid simulation and mesh quadrangulation tasks,
in addition to the original shape correspondence problem. The goal
of this paper is to propose an efficient and easy-to-code framework
for computing data-driven functional map matrices.

The key idea behind FM is that instead of aligning points as in
Iterative Closest Point (ICP) approaches [BM92], it is often simpler
to align scalar functions defined on the input shapes. Thus, a typical
pipeline for computing functional maps is composed of three steps.
Given two shapes, one first collects a set of corresponding descrip-
tors, such as the Wave Kernel Signature [ASC11]. Second, one per-
forms dimensionality reduction by projecting the descriptors onto
a spanning subspace of basis functions. Finally, one solves an op-
timization problem, seeking a matrix that best aligns the projected
features, possibly while minimizing additional regularizing terms.

Numerous extensions to the original pipeline [OBCS∗12] were
proposed in the literature. These extensions can be classified into
two research avenues. On the one hand, recent works focus on
the formulation of novel regularization terms that can be incor-
porated into the functional map computation phase. For instance,

cycle-consistency is promoted in [HWG14], whereas [NO17] fa-
vor the preservation of the given descriptors. On the other hand,
other works seek improved functional subspaces. For example,
[KBB∗13] design basis elements to account for sign or ordering
ambiguities. In this context, our work contributes in that it com-
bines the tasks of functional map computation and basis design into
a single unified framework. Our formulation allows to harness the
advancements in functional map regularization as well as to benefit
from the increase in the search space of solutions when the bases
are allowed to change during the optimization.

Choosing a good basis set is crucial in FM applications. In the
original work [OBCS∗12], the authors propose to use the eigen-
functions of the Laplace–Beltrami (LB) operator as the spanning
subspace in the second step of the pipeline. More generally, over
the last few years, LB bases became the prevailing choice for
function representation in many geometry processing tasks such
as computing descriptors [Rus07], distances [SRGB14], and gen-
erating shape segments [RBG∗09], just to name a few. While this
choice can be optimal under certain conditions [ABB∗16], it may
sometimes lead to subpar results. To this end, Kovnatsky and oth-
ers [KBB∗13,KBBV15,KGB16,LRBB17] optimize for joint diag-
onalizable (JD) basis elements to improve shape matching tasks.

In this paper, we address two limitations that appear in many ex-
isting work on functional maps. The first shortcoming is related to
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Figure 1: We show above some of the modes associated with the Laplace–Beltrami (LB) operator (left) and the Proper Orthogonal Decompo-
sition (POD) as computed for the Wave Kernel Signature [ASC11] and segment information [KO18] (right). While the LB modes encode the
intrinsic geometry of the shape, they struggle with representing high frequency signals. In comparison, the POD modes faithfully represent
the descriptors’ subspace while implicitly capturing the geometry as encoded in the given features. See also Fig. 2 for a numerical result the
support improved feature matching of POD basis elements.

the common choice of the LB function space. While LB encodes
the geometry of the surface, it is completely independent of the se-
lected features, potentially introducing large representation errors.
Indeed, high frequency signals such as locally supported functions
will exhibit poor spectral representations [NMR∗18]. Thus, and
in contrast to previous work, our approach is based on designing
basis elements that are tailored to a given collection of descrip-
tors. In practice, we observe that employing LB-based represen-
tations often leads to the elimination of many degrees of freedom
that could be re-introduced into the problem. Instead of using LB,
we utilize the Proper Orthogonal Decomposition (POD) modes for
dimensionality reduction purposes. POD subspaces share many of
the advantageous properties of LB—they are orthogonal and have a
natural ordering. However, POD modes are able to capture high fre-
quency data and thus improve descriptors’ transfer between shapes.

The second limitation we alleviate deals with the split between
the tasks of basis design and functional map computation. Indeed,
most existing work focus only on one of these tasks: facilitating
a fixed basis or alternatively using a closed-form solution for the
functional map. Instead, we merge these objectives into one larger
problem. In practice, this modification increases the search space,
potentially allowing to find better solutions for a given problem. In
addition, we can independently regularize and constrain the bases
and the functional map to the specific requirements of the applica-
tion at hand, leading to a flexible yet effective framework.

This work offers an effective minimization framework for com-
puting functional basis sets on a pair of shapes and a correspond-
ing functional map. The resulting optimization is unfortunately
highly non-linear and non-convex. Nevertheless, we construct a
novel and efficient Alternating Direction of Multipliers Method
(ADMM) scheme. Specifically, we introduce auxiliary variables
that allow to incorporate various regularizers promoting e.g., cycle-
consistency or metric preservation. Moreover, our scheme con-
verges empirically and we additionally show that our method is
similar to a provably convergent procedure. We evaluate our ap-
proach on shape analysis tasks including shape matching, joint
quadrangulation and function transfer. Our comparison indicates

that our method achieves comparable or moderately better results in
shape correspondences on challenging scenarios where the shapes
do not share the connectivity, or are only approximately isometric.

2. Related Work

Functional maps [OBCS∗12] gain a lot of attention in geometry
processing and related fields. Some of the main applications of FM
include shape exploration [ROA∗13], fluid simulation [AWO∗14]
and function transfer [NMR∗18]. We refer the interested reader to
a recent course discussing the functional map framework and a few
related applications [OCB∗16].

One of the main scenarios in which functional maps are em-
ployed is for computing shape correspondences between a given
pair or collection of shapes. In this context, many works extend
the original approach [OBCS∗12] to include various regulariza-
tion terms. For instance, Nogneng and Ovsjanikov [NO17] show
that minimizing commutativity with descriptor operators leads to
better functional maps. In [HWG14], the authors promote consis-
tency with respect to the inverse mapping, and recently, [RPWO18]
formulate orientation-preserving terms into the functional maps
pipeline. In addition to improving the accuracy of functional map
matrices, the approaches for extracting point-to-point maps are also
under development. [RMC15] cast this problem as a probability
density function estimation, whereas [EBC17] propose to mini-
mize the error from projecting delta functions onto the basis and its
orthogonal complement. Finally, several deep learning techniques
were recently developed, see e.g., [MRMO20].

In all of the above works, while the functional map could be
computed in any scalar basis, the eigenfunctions of the Laplace–
Beltrami operator are typically used. This choice is natural given
the wealth of theoretical results related to the LB spectrum, but, on
the other hand, it is completely independent of the input descrip-
tors. A related line of work compute Mexican hat wavelets which
are able to encode high-frequency information [HQ12, KMP∗21].
Recently, [SBL18] proposed to design a basis via a conformal de-
formation while the other basis set is fixed. Probably closest to
our approach is the line of work of [KBB∗13, KBBV15, KGB16,
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LRBB17] where the authors look for spectral coefficients such that
the resulting basis elements are as close as possible to the LB eigen-
functions while preserving the given constraints. In contrast to their
perspective, we advocate the use of a linear domain in which the de-
scriptors are better represented, in addition to the incorporation of
different regularizers. We provide a detailed comparison between
our method and theirs in 7.3.

3. Motivation and Background

To motivate our approach, we will need the following notation. Let
M1 = (V1,F1) and M2 = (V2,F2) be a pair of manifold trian-
gle meshes, where V1,V2 are their vertex sets and F1,F2 are their
triangle sets. We represent scalar functions using real values on ver-
tices, i.e., f1 : V1 → R is a scalar function onM1, and similarly,
f2 : V2→ R is a function onM2. Thus, f1 and f2 are real-valued
vectors of sizes |V1| = m1 and |V2| = m2, respectively. We define
the inner product onM1 to be

〈 f1,g1〉M1 := f T
1 G1g1 ,

where G1 ∈ Rm1×m1 is the diagonal (lumped) mass matrix of the
nodes ofM1 (see e.g., [BKP∗10, Chap. 3]), and similarly, we have
〈 f2,g2〉M2 = f T

2 G2g2. The input to our problem is a collection of
functional constraints { f1 j}n

j=1 and { f2 j}n
j=1 such that f1 j and f2 j

encode the same information but on different meshes, for every j.
Finally, we arrange the given constraints in matrices,

F̃1 = [ f11 f12 ... f1n] ∈ Rm1×n, F̃2 = [ f21 f22 ... f2n] ∈ Rm2×n .

In its most simple form, the task of computing functional maps
consists of finding a matrix C that aligns the descriptors, i.e.,

C BT
1 G1 F̃1 ≈ BT

2 G2 F̃2 ,

where B j is a basis of scalar functions on M j for j = 1,2. Typ-
ically, C is a moderately sized k× k matrix with k < 300. If we
assume that the G j and F̃j matrices are fixed, it is natural to ask
whether optimizing for C and for the B j matrices will yield im-
proved feature matching. We show in Fig. 16 an example of a func-
tional map with its bases obtained in this way (left), leading to a
high quality map between non-isometric shapes (right). Solving for
the bases and map significantly increases the parameters from k2 to
k2× k ·m1× k ·m2, resulting in a challenging-to-solve problem as
m j are very large. To deal with this issue, we can consider a sub-
space of solutions of size k2× k · r1× k · r2, where r j represent the
spectral dimensions of some fixed bases. That is, instead of finding
spatial bases, we look for spectral coefficient matrices onto prede-
fined linear subspaces.

In practice, most existing work utilize the subspace spanned by
the LB eigenfunctions. In this work, we propose to change this
common choice and take subspaces that better fit the given descrip-
tors. There are several approaches in the machine learning com-
munity that could be investigated to achieve this objective. In this
work, we advocate the utilization of the Proper Orthogonal Decom-
position (POD) modes [BHL93], which can be classified as a linear
manifold learning method. Given a set of descriptors, the POD can
be easily computed using the Singular Value Decomposition, see
Sec. 6. One of the main reasons for preferring POD modes over
other bases is due to the Karhunen–Loéve theorem, stating that
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Figure 2: We plot the error distributions of feature matching when
LB and POD bases are used. The above results show that designing
POD modes is beneficial both in the spectral and spatial domains.

these modes best approximate the input data under many choices
of norms [Xiu10].

Therefore, incorporating POD modes instead of the LB spectrum
may be considered as a data-driven approach for representing and
manipulating signals. We show in Fig. 1 a few modes related to
the LB operator (left) and resulting from POD computation (right).
One significant difference between these bases is that POD modes
allow for higher frequencies when compared to a similar truncation
of LB. For example, the LB b5 is significantly smoother than its
related POD b5. Moreover, encoding descriptors in a POD subspace
induces less information loss in comparison to LB representations
in the context of designing bases and functional maps, as we show
below.

To quantify the difference between the LB and POD subspaces,
we measure the average matching error distributions per mode and
per vertex, namely

e1 =
1
n

n

∑
j=1

(
C BT

1 G1 f1 j−BT
2 G2 f2 j

)2
,

e2 =
1
n

n

∑
j=1

(
B2 C BT

1 G1 f1 j− f2 j

)2
,

where the squares are taken pointwise, i.e., e1 ∈ Rk and e2 ∈ Rm2 .
In Fig. 2 we compare these errors when the bases are fixed as
well as designed. Our results indicate that the fixed POD sub-
spaces are extremely accurate for matching in the spectral do-
main, but yield the most error spatially. Moreover, LB bases pro-
duce poor results when designed, e.g., using joint diagonalization
methods [KBB∗13] for both error measures. Finally, designed POD
modes give the most accurate estimation in the spatial domain and
is second best in the spectral regime. We remark that for the POD
case these errors naturally depend on the particular descriptors in
use. In our applications, we employ a mixture of features such as
the Wave Kernel Signature [ASC11] or hand-crafted landmarks.

4. Functional Map and Basis Search (FMBS)

Our main goal is to find basis matrices B1 ∈Rm1×k and B2 ∈Rm2×k

and a functional map C ∈ Rk×k such that these objects best align
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the constraints F̃1 and F̃2. To reduce clutter, we scale each F̃j by
its corresponding G j and denote Fj = G jF̃j, j = 1,2. Formally, we
consider the problem

minimize
B1,B2,C

1
2

∣∣∣C BT
1 F1−BT

2 F2

∣∣∣2
F

subject to BT
1 G1 B1 = I, BT

2 G2 B2 = I
(1)

where | · |F is the Frobenius norm, and the terms BT
j Fj can be

viewed as projecting the constraints onto the basis matrices. The
equality conditions given by BT

j G j B j = I constrain the bases to
be orthogonal with respect to the mass matrix. Unfortunately, the
minimization problem (1) is highly non-linear and non-convex,
and thus practical solvers are challenging to construct. To alleviate
these difficulties, we propose in the next section a splitting scheme
that is based on the Alternating Direction Method of Multipliers
(ADMM) [GM75a, GM75b].

5. An ADMM Approach to FMBS

The basic idea of ADMM depends on splitting the original com-
plex optimization task into simpler subproblems that can be solved
efficiently. Under certain conditions on the objective function and
constraints, it can be shown that ADMM converges. Therefore,
ADMM is often the optimization framework of choice, arguably
due to its computational complexity and theoretical guarantees. To
allow splitting in our problem (1) above, we introduce the auxiliary
variables B′1 and B′2 and arrive at the following optimization

minimize Efid(B1,B2,C)

subject to BT
1 G1 B′1 = I, BT

2 G2 B′2 = I, B1 = B′1, B2 = B′2
(2)

where Efid(B1,B2,C) = 1
2

∣∣∣C BT
1 F1−BT

2 F2

∣∣∣2
F

is the data fidelity

term. We stress that while ADMM can be viewed as a standard
optimization technique, the choice of auxiliary variables is highly
dependent on the problem and there is no general rule for how
to “correctly” set these variables. In particular, our unique choice
leads to an empirically converging scheme for a large range of pa-
rameters, and it further allows for a natural incorporation of novel
regularizers (11). Finally, we mention that the auxiliary variables
linearize the difficult orthogonality constraints which may lead to
non-orthogonal bases in practice. However, this issue can be solved
in a post-processing step.

To minimize (2) we facilitate an iterative scheme k = 0,1, ...
where at each step, the unknowns are updated in an alternating
style. Namely, all the variables are kept fixed except for the one
which is being updated. In our case, the update order for the pri-
mal variables is (B1,B2,B

′
1,B
′
2,C), followed by the update of the

dual variables (P1,P2,Q
′
1,Q
′
2). We note that each of the subprob-

lems is at most quadratic in the unknown, and thus can be solved
efficiently. In what follows, we discuss in detail each of the up-
date tasks including their formulation and solution. To shorten the
mathematical formulations below, we omit the step k with the un-
derstanding that the variables are updated in a sequential fashion as
shown in Alg. 1. In addition, we denote by L j(B j,B′j,Pj,Q′j) the
scaled Lagrangian terms, i.e.,

L j(B j,B
′
j,Pj,Q

′
j) =

ρ

2

∣∣∣BT
j G jB

′
j− I +Pj

∣∣∣2
F
+

ρ

2

∣∣B j−B′j +Q′j
∣∣2
M j

where j = 1,2, |A|M j = trace(AT G j A) is an operator norm on the
surface M j, and ρ ∈ R+ is a penalty parameter provided by the
user and it may be updated during the optimization.

5.1. Updating the bases, B1 and B2

The variable B1 is being updated first, using the estimations of the
other variables from the previous step. Specifically, we have

Bk+1
1 = argmin

B1

Efid(B1,B2,C)+L1(B1,B
′
1,P1,Q

′
1) . (3)

Computing the first order optimality conditions of (3) lead to a
Sylvester Equation of the form

F1FT
1 B1 CTC+

(
ρG1B′1B′T1 G1 +ρG1

)
B1 =

F1FT
2 B2C+ρG1B′1(I−P1)

T +ρG1(B
′
1−Q′1) ,

(4)

which can be efficiently solved with numerical algorithms such
as [GNVL79] implemented via e.g., dlyap in MATLAB. We em-
phasize that the dimensionality of Eq. (4) introduces a practical
challenge, as it involves dense matrices of size m1×m1. These con-
cerns, along with other implementation aspects, are considered in
Section 6.

The update for B2 is carried after the update of B1, but before the
other variables. Therefore, we use the estimate of B1 at step k+ 1,
whereas the rest of the variables are taken from the kth step. The
minimization takes the following form

Bk+1
2 = argmin

B2

Efid(B1,B2,C)+L2(B2,B
′
2,P2,Q

′
2) . (5)

Problem (5) is quadratic in B2, and its solution can be computed
through the following linear system(

F2FT
2 +ρG2 +ρG2B′2B′T2 G2

)
B2 =

F2FT
1 B1CT +ρG2B′2(I−P2)

T +ρG2(B
′
2−Q′2) .

(6)

5.2. Updating the auxiliary variables, B′1 and B′2

The minimization problems associated with the unknowns B′1 and
B′2 are similar. These optimization problems take the form

B′k+1
j = argmin

B′
j

ρ

2

∣∣∣BT
j G jB

′
j− I +Pj

∣∣∣2
M j

+
ρ

2

∣∣B j−B′j +Q′j
∣∣2
M j

,

(7)

for j = 1,2. The solution is given via the linear system(
ρG j +ρG jB jB

T
j G j

)
B′j = ρG jB j(I−Pj)+ρG j(B j +Q′j) . (8)

5.3. Updating the functional map, C

Given the basis matrices B1 and B2, finding the best functional map
that aligns the constraints in a least squares sense has a closed-form
solution. Namely, we want to minimize the term Efid(B1,B2,C)
with respect to C, and the solution is given by

Ck+1 =
(

BT
2 F2

)(
BT

1 F1

)+
, (9)

where A+ is the pseudo-inverse of the matrix A.
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Figure 3: Our fmbs algorithm shows good empirical behavior
for a large range of parameters. We compute the normalized en-
ergy and primal/dual residuals per normalized minimization step,
across all our FAUST tests. The graphs above show the averaged
and standard deviation of the energy (left), primal residual (middle)
and dual residual (right), where all exhibit decay.

5.4. Updating the dual variables, Pj and Q′j

The last step of our scheme is trivial and for j = 1,2, it is given by

Pj = Pj +BT
j G j B′j− I ,

Q′j = Q′j +B j−B′j .
(10)

We summarize the above steps in pseudocode in Alg. 1. We note
that generating O−1

1 is computationally prohibitive as O is a large
and dense matrix. However, we significantly reduce the computa-
tion costs by representing B j in a spectral subspace, as we discuss
in Sec. 6.

Algorithm 1 Functional Map and Basis Search (fmbs)

1: Input matrices F1 ∈ Rm1×n,F2 ∈ Rm2×n and a scalar ρ ∈ R+

2: Initialize B1 = B′1 = SVD(F̃1, k), B2 = B′2 = SVD(F̃2, k)
P1 = 0, P2 = 0, Q′1 = 0, Q′2 = 0

3: for k = 0,1,2, ... do
4: Solve B1 = dlyap(−O−1

1 A1,B1,O−1
1 C1) , s.t. . Eq. (4)

A1 = F1FT
1

B1 =CTC
C1 = F1FT

2 B2C+ρG1B′1(I−P1)
T +ρG1(B

′
1−Q′1)

O1 = ρG1B′1B′T1 G1 +ρG1

5: Solve A2B2 = B2 , s.t. . Eq.(6)
A2 = F2FT

2 +ρG2 +ρG2B′2B′T2 G2
B2 = F2FT

1 B1CT +ρG2B′2(I−P2)
T +ρG2(B

′
2−Q′2)

6: Update B′1 by solving Eq. (8) with j = 1

7: Update B′2 by solving Eq. (8) with j = 2

8: Set C =
(

BT
2 F2

)(
BT

1 F1

)+
. Eq. (9)

9: Update the dual variables using Eq. (10)

10: Update ρ following Section 3.4 in [BPC∗11]
11: end for

5.5. Provably convergent FMBS

Most convergence results related to ADMM handle problems
with convex objective functions and linear constraints. Recently,
[WYZ18] and [GGC18] extended the convergence analysis of
ADMM to a significantly larger class of problems including non-
convex objective terms and non-linear constraints. In particular,
in the latter work, the authors investigate the case where biaffine
constraints are given, namely, constraints involving two variables
which become linear when one variable is kept fixed. For instance,
our orthogonality conditions BT

j G jB′j = I are exactly of this form.
Moreover, [GGC18] relax the convexity requirements on the objec-
tive function and allow to include differentiable terms instead.

In practice, Alg. 1 behaves well and it exhibits energy decrease
for many choices of parameters as we show in Fig. 3 and in Sec. 7,
however, it does not satisfy the conditions given in [GGC18]. To
show convergence, we consider in App. A a different minimiza-
tion (14) for which we can show the following result.

Proposition 1 Under some mild conditions, problem (14) satisfies
all the requirements in [GGC18] and thus its ADMM converges
to a constrained stationary point. That is, the sequence of variable

updates
{
X k,Zk

}∞
k=0

is bounded and every limit point (X ∗,Z∗)
is a constrained stationary point.

5.6. Regularized FMBS

One of the key aspects of our minimization (2) is that it introduces
many degrees of freedom via the unknowns B1,B2 and C. While
in general it is a positive feature of our approach, the associated
optimization requires a significant amount of descriptors n. To re-
lax this dependency, we propose to incorporate regularization terms
into our problem. In particular, we add a consistency regularizer
that takes into account the inverse functional map D. Moreover,
we add an isometry promoting term which is given by commu-
tativity with the LB operator [OBCS∗12] and Dirichlet energies
that favor smooth basis elements. We note that other regularizers
such as descriptor commutativity [NO17] or orientation preserva-
tion [RPWO18] may be also considered. Formally, we propose the
following objective function

E = Efid+µcfidEcfid+µisoEiso+µdirEdir ,

Ecfid =
1
2
|BT

1 F1−DBT
2 F2|2F ,

Eiso =
1
2
|C BT

1 W1 B′1−BT
2 W2 B′2 C|2F ,

Edir =
1
2

Tr
(

BT
1 W1B′1

)
+

1
2

Tr
(

BT
2 W2B′2

)
,

(11)

where µcfid,µiso,µdir ∈ R+ are penalty scalars, Tr yields the
trace of a matrix, and W j is the cotangent weights matrix [PP93]
of shape M j for j = 1,2. One of the key aspects of our frame-
work resulting from our ADMM formulation (2) is that it allows
to combine challenging regularizers (11) in a straightforward way.
Thus, the formulation with E and its associated ADMM is some-
what technical, and we defer the derivation to the appendix.
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Figure 4: We compute the geodesic error between the ground-truth mapped vertices to those mapped with the above methods, and we
accumulate the amount of points that reached a certain error [KLF11] and visualize it in the above graphs. Noticeably, our method yields
the best averaged error over other methods for both ICP and BCICP map extraction. We note that basis design methods such as ours and
AJD [KBB∗13] gain the most from advanced mapping methods such as BCICP [RPWO18].

GT FMAPS AJD CFM DPC Ours

Figure 5: We visualize the quality of the computed correspondences using texture transfer. We note that the alternative methods struggle with
elongated or small areas as the head and legs, whereas our method achieves improved results as can be compared to the ground-truth (GT).

6. Implementation Details

In what follows we describe a few technical aspects related to our
method including dimensionality reduction of problem (2), variable
initialization, stopping condition and the development platform.

Dimensionality reduction. Solving (2) directly is computationally
prohibitive when the shapes consist of many vertices. To overcome
this difficulty, we propose to reduce the spatial dimension and use a
spectral domain instead, allowing for fast computation times while
retaining a significant amount of degrees of freedom. Specifically,
we take the left singular vectors obtained by computing the Singu-

lar Value Decomposition (SVD) of the given constraints. Namely,

Ũ jS̃ jṼ
T
j = SVD

(
F̃j
)
, j = 1,2 ,

where we denote U j = Ũ j(: ,1 : r) the r most significant modes. In
our experiments we choose r such that U j covers at least 90% of the
spectrum. We note that other spectral bases could be considered,
e.g., the LB basis itself [KBB∗13]. However, each choice leads to
a different optimization with its own assumptions and challenges.
In Sec. 7, we compare our approach to other methods.

To incorporate U j into our optimization, we denote the changes
in boldface and perform the following modifications,

BBB j =UT
j B j , FFF j =UT

j Fj , GGG j =UT
j G j U j , j = 1,2 , (12)
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yielding matrices of sizes r j × k, r j × n and r j × r j, respectively.
Substituting the above components with their high dimensional
counterparts is the only change needed to obtain a spectral version
of Alg. 1. Finally, given BBB j, we reconstruct B j via B j =U j BBB j. We
note that while our approach strongly depends on the input features
for deriving the low-dimensional subspaces, in our experiments we
observed that it works quite well with a variety of descriptors such
as WKS and segmentation information.

Variable initialization and stopping rule. In our tests we noticed
that our method is robust to the choice of initial values. Neverthe-
less, we describe the particular values we used in our experiments.
To initialize the primal variables B j and B′j, we take the first k sin-
gular vectors of the respective descriptors, F̃j. This computation is
denoted by SVD(F̃j,k) in Alg. 1. Using these bases, we can solve
Eq. (9) to obtain an initial C. The dual variables Pj and Q′j are
set to zero matrices of an appropriate size. The stopping condi-
tion we used is based on the primal and dual residuals and is de-
tailed in [BPC∗11, Sec. 3.3], where the maximum number of steps
is 10,000.

Development platform and parameters. We implemented our
method in MATLAB, using its built-in optimization tools such as
dlyap and mldivide. Our approach was tested on an Intel Core
i7 2.6GHz processor with 16GB RAM. We show in Fig. 6 a runtime
comparison to AJD [KBB∗13] and OPC [RPWO18] on meshes of
sizes 1k− 500k vertices. The parameters of our method include
the penalty scalars µcfid,µiso and µdir for the different energy
terms (11). We list our choices in Tab. 1, which also shows how
much of the spectrum we employ, given by the r parameter. Fi-
nally, the size of the functional map and the associated bases was
k = 20 unless noted otherwise.

7. Evaluation and Results

To evaluate our method, we consider several applications in which
functional maps are useful such as extraction of point-to-point
maps [OBCS∗12], function transfer [NMR∗18], and consistent
quadrangulation [ACBCO17]. We test our approach on a vari-
ety of datasets including SCAPE [ASP∗05], TOSCA [BBK08]
FAUST [BRLB14], and SHREC07 [GBP07]. In our compari-
son, we consider several baseline methods such as functional
maps (FMAPS) [OBCS∗12], approximate joint diagonalization
(AJD) [KBB∗13], coupled functional maps (CFM) [ERGB16], de-
scriptor preservation via commutativity (DPC) [NO17] and orien-
tation preserving correspondences (OPC) [RPWO18]. In our com-

Dataset r µcfid µiso µdir
FAUST intra 0.9 1e−4 1e−6 1e−2
FAUST inter 0.9 1e−4 1e−5 1e−4

SCAPE 0.9 1e−3 1e−6 1e−4
Remeshed FAUST intra 0.99 1e−2 1e−5 1e−6
Remeshed FAUST inter 0.99 1e−2 1e−5 1e−6

Remeshed SCAPE 0.99 1e−1 1e−5 1e−6

Table 1: The parameter values used in our tests for each dataset.

parison, we only use the functional map matrices as computed us-
ing the above techniques, and we discard any other improvements
related to a specific application. In all cases, we used the authors’
recommended parameters or we searched for the best ones.

7.1. Extracting point-to-point maps

One of the main applications of functional maps is the computation
of point-to-point correspondences between pairs of shapes. In our
comparison, we consider two different scenarios. The first includes
the original FAUST and SCAPE shapes using 20 landmarks and
100 Wave Kernel Signature (WKS) [ASC11] features. In the sec-
ond case, we remesh the shapes and use consistent segmentation
data [KO18] with WKS descriptors. We emphasize that the latter
scenario is extremely challenging as it is completely automatic,
it involves approximate features, and the meshes have different
connectivities. The pairs we use appeared previously in [KLF11,
CK15]. For map extraction we employ the ICP method proposed
in [OBCS∗12] and the recent BCICP approach [RPWO18], al-
though other methods [RMC15, EBC17] could be used. Our eval-
uation metrics include the computation of cumulative geodesic er-
rors [KLF11] and visualization of transferred scalar functions or
textures.

In Fig. 4 we show the average cumulative geodesic errors of
the first scenario. We note that our approach achieves a significant
improvement over all the other competing methods. In particular,
when ICP extraction is facilitated, our method yields very good re-
sults on FAUST intra which involves pairs of different poses of the
same people. Interestingly, our method benefits the most from re-
cent advances in map extraction techniques [RPWO18] as can be
seen in the second row. Specifically, using BCICP increases the gap
between our results vs. others on FAUST inter (different people,
different pose) and SCAPE. This hints that our functional map and
associated bases introduce more degrees of freedom which could be
exploited in elaborated methods such as [RPWO18]. This behavior
can be additionally seen in AJD [KBB∗13] BCICP results which
surpass most methods even though their ICP measures were lower

103 104 105100

101

102

103

104

Figure 6: We compare the total pre-processing and computation
times of the above methods on a pair of shapes for a large range of
vertex counts, m. Our method is significantly faster than AJD and
OPC for high vertex counts, where for low number of vertices OPC
is more efficient than our approach.
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Efid +Eiso +Edir

Figure 7: To compare the advantages of regularization, we solve
our problem with various combinations of energy terms. Using the
obtained maps, we transport the coordinate functions from the tar-
get to the source and show the results above. We achieve a signif-
icant improvement when we regularize as can be seen around the
chest and head (middle-right and right) vs. the non-regularized re-
sult (middle-left).

than others in general. We do not compare to OPC [RPWO18] in
this setup as we use non-symmetric landmarks and thus there is no
advantage in using their orientation preserving regularization over,
e.g., DPC [NO17].

We demonstrate the error measures of Scenario 2 in Fig. 15. We
stress that this setup is particularly challenging as the shapes do not
share the connectivity and we use automatically computed features.
Nevertheless, our method exhibits the best results on FAUST both
for the isometric and non-isometric cases when ICP map extrac-
tion is applied. Moreover, when we utilize BCICP on FAUST our
method and OPC yield the best scores compared to the alternative
methods. Finally, the remeshed SCAPE was an extremely difficult
test case, leading to mappings of poor quality in general for most
methods (notice the y-axis gets to 0.6 instead of 1). For this dataset,
CFM and DPC produced good measures for ICP, and our method
and OPC were the highest with BCICP refinement.

The point-to-point correspondence allows to map information
from the target to the source. In Fig. 5, we compare the mappings
generated in Scenario 1 on a single pair of FAUST intra using tex-
ture transfer. The meshes in this dataset are in 1− 1 correspon-
dence and thus we can use the ground-truth (GT) map for compar-
ison. Overall, the performance of the tested methods was generally
good. However, small parts of the body such as hands and legs were
less accurate for FMAPS, AJD and DPC. Moreover, other methods
exhibit large errors in the head, whereas ours correctly finds the
symmetry line (see the zoom below).

7.2. Effect of regularization

To evaluate the benefits of utilizing regularizing terms, we visu-
alize the map quality via coordinate function transfer in Fig. 7. In-
deed, there is a clear improvement when Eiso is introduced (middle
right) vs. using Efid alone (middle left) as can be seen on the chest
and head. Adding Edir (right) is not beneficial in this case as it is
visually indistinguishable from the Eiso (middle right) case.
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Figure 8: We plot the cumulative geodesic error for maps computed
using various regularization settings. Our results indicate that the
regularized problems yield better correspondences. See the text for
additional details.

AJD

Ours

Figure 9: We show above the first three basis functions designed us-
ing AJD (top row) and our approach (bottom row). Different from
AJD, our energy does not favor matching basis elements which al-
lows for a more flexible design process. See also Fig. 16.

In addition to this visualization, we also run our algorithm on
FAUST and SCAPE in scenario 1, using different regularization
configurations. We show in Fig. 8 the cumulative geodesic error
of these tests. For each dataset the solid line represents using only
Efid, the dashed is the result when we incorporate Eiso, the dot-
ted line is produced by adding Edir, and we get the dash-dot line
by minimizing the full E . On average, regularization consistently
improves the results. Specifically, we identify a 2.6% and 1.5%
improvement on FAUST and SCAPE, respectively. See also the
zoomed plots in Fig. 8. Further, the consistency term (dash-dot line)
helps both with respect to the accuracy of the results and the em-
pirical convergence of the problem. We note that the Dirichlet pe-
nalization (dotted line) improves the results of FAUST, whereas for
SCAPE its contribution is less apparent.

7.3. Comparison with AJD [KBB∗13]

Perhaps closest to our approach is the method that finds approx-
imate joint diagonalized bases of Kovnatsky et al. [KBB∗13]. In
this work, the authors explore an optimization problem which is
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conceptually similar to ours. However, there are several key differ-
ences between our technique and theirs as we detail below.

In terms of the energy functional, our technique is fundamentally
different from theirs. Their approach favors basis elements which
diagonalize the LB operator, leading to smooth functions. How-
ever, the disadvantage in this point of view is that one implicitly
assumes that smooth basis functions span the descriptors subspace.
Unfortunately, many practical descriptors that are currently used in
functional map pipelines do not fit into this assumption. Indeed, any
high frequency signal such as segment information will undergo a
low pass filter which may lead to data loss in practice, as we show
in Fig. 2. In contrast, our method does not favor smooth basis el-
ements and may output high frequency functions, see e.g., Fig. 1.
Finally, even when we include Dirichlet terms in our minimization,
they are weighted weakly.

Another significant difference is in the data fidelity term. The
formulation in [KBB∗13] and others [LRBB17] fixes the associ-
ated functional map C to attain a particular structure. Namely, they
include a term that takes the following form

Ẽfid =
1
2
|BT

1 F1−BT
2 F2|2F , (13)

which can be interpreted as setting C to be C≈BT
2 B1. There are two

disadvantages to formulation (13) which our approach overcomes.
First, regularizing the functional map C is not straightforward as in
our formulation (11), and may lead to quartic expressions in the un-
knowns B j. Indeed, our formulation allows to independently con-
strain the bases or the functional map and its inverse, manifesting
greater flexibility alongside the natural utilization of state-of-the-
art regularizers. Second, our method allows for general functional
map matrices and thus it increases the search space of solutions
when compared with AJD frameworks.

To summarize, our approach generalizes AJD methods in that it
combines work on joint diagonalization and functional map opti-
mization in a unified framework. There are three key differences in
our technique. First, we consider a much larger search space of so-
lutions as we utilize the Proper Orthogonal Decomposition (POD)
modes which are better suited to the given features, and we further
allow for general functional map matrices. Second, since we jointly
optimize for the functional map and the bases, we can naturally
incorporate regularization terms. Finally, on the algorithmic side,
AJD approaches facilitate a constrained minimization tool which is
inefficient in practice as can be seen in Fig. 6 and its convergence
is not guaranteed. In contrast, we analyze our approach and show
that it is similar to a provably convergent problem.

In addition to this qualitative comparison, we show in Figs. 9 and
16 the differences between the designed basis elements. Indeed,
AJD (top row) produces highly consistent basis functions compared
to ours (bottom row). However, we believe that this behavior lim-
its the design process significantly, which may lead to less accu-
rate matching results as can be seen in Figs. 4 and 15. Specifically,
we select a pair of shapes from TOSCA and visualize the corre-
spondence differences via texture transfer in Fig. 5. Overall, AJD
produces reasonable results as compared to the ground-truth (GT).
However, various parts of the shape such as head, legs and tail, dis-

GT AJD Ours

Figure 10: We compute functional maps and bases using AJD and
our method, and we compare the results to the ground-truth (GT)
via texture transfer.

play large errors. In contrast, our technique was able to accurately
match most areas of the shapes including the challenging parts.

To conclude our qualitative comparison, we modify AJD to use
POD modes in their design process instead of the LB eigenfunc-
tions and we plot the cumulative geodesic error that was obtained
for FAUST in Fig. 11. Indeed, switching to POD modes (blue
dashed line) yields a large improvement compared to LB-based
AJD (blue line). However, our method (red line) is still significantly
more accurate, which can be attributed in part to the state-of-the-art
regularization terms we include in our optimization.

7.4. Consistent quadrangulation and function transfer

The increasing interest in the functional map approach over the last
few years lead to the development of techniques which can uti-
lize a given functional map directly, without the need to convert
it to a point-to-point map. For instance, [ACBCO17] proposed an
optimization framework for designing consistent cross fields on a
pair of shapes for the purpose of generating approximately consis-
tent quadrangular remeshings of the input shapes. Our computed
functional map and bases can be directly used within their method
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Figure 11: Switching to POD-based design with AJD (blue dash
line) yields an improvement over the LB subspaces (blue line). Still,
our framework generates correspondences that are more accurate.
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Figure 12: Our technique fits methods whose input is a functional
map with its associated bases such as [ACBCO17]. We demonstrate
the consistent quadrangulations obtained by using their method
with input generated by our approach.

to produce quad meshes. In Fig. 12, we show an example of the
remeshing results of two pairs of shapes having different connec-
tivities (left and right) and genus (right). Still, we obtain highly
consistent results as can be seen in the matching singularity points
(red spheres). We provide an additional instance of this pipeline
in Fig. 13 comparing the quadrangulation achieved with fixed LB
bases (left) vs. our technique with designed POD modes (right).
Indeed, we observe a much better alignment of isolines and singu-
larity points with our approach compared to Fixed LB.

The last application we consider involves the transfer of scalar
valued information between shapes. Recently, [NMR∗18] showed
that by extending the usual functional basis to include basis prod-
ucts, an improved function transfer can be performed which we
call Product transfer. In Fig. 14, we utilize this pipeline using our
functional map and bases to transfer an extremely challenging data
given by a localized Gaussian function. Indeed the transfer is im-
proved using the extended basis as the noise is less severe and the
maximum is more localized.

8. Limitations

One limitation of our framework is related to the dependencies be-
tween the given constraints and our choice of dimensionality re-
ducing subspaces U j. Indeed, one can always add the standard LB
spectrum to these subspaces. However, we observe that in general,
the results may change depending on the particular subspace in use
and its size. For instance, while increasing r allows for greater flex-
ibility for representing scalar functions, it also requires more reg-
ularization, otherwise unwanted solutions may potentially become
local minimizers. Another shortcoming of our approach is that it
tends to produce maps that are less smooth compared to those gen-
erated with LB bases. This behavior is somewhat expected, as our
bases are designed to potentially transfer high frequency informa-
tion which in turn leads to less uniform correspondences. We leave
further investigation of these aspects to future work.

Fixed LB Designed POD

Figure 13: We compare the quadrangulations produced by using
fixed LB bases (left) and designed POD modes (right). Overall,
there is a significant improvement in the designed case in terms of
isolines alignment, singularity matches and adherence to curvature
(see e.g., the index finger, left).

9. Conclusions and Future Work

In this paper, we proposed a method for designing basis elements
on a pair of triangle meshes along with an associated functional
map. Unlike most existing work which utilize the spectrum of the
Laplace–Beltrami operator, our technique adopts the Proper Or-
thogonal Decomposition (POD) modes to reduce the dimension-
ality of the problem. This choice introduces many degrees of free-
dom and it significantly extends the space of potential solutions. To
effectively solve the problem, we incorporate state-of-the-art regu-
larization terms which promote consistency, isometry and smooth-
ness. Our optimization scheme is based on the Alternating Direc-
tion Method of Multipliers (ADMM) and it consists of easy-to-
solve linear or Sylvester-type equations. We show that in practice
our method behaves well in terms of convergence, and we addition-
ally prove that a similar problem to ours is guaranteed to converge.
We evaluate our machinery in the context of shape matching, func-
tion transfer and consistent quadrangulation, and we demonstrate
that our results yield a significant improvement over state-of-the-
art approaches for computing functional maps.

In the future, we would like to characterize the dependencies be-
tween the subspaces spanned by the bases to the given constraints
and the relation to the functional map. Moreover, we believe that

Standard transfer Product transfer

Figure 14: Mapping Gaussian function between shapes with dif-
ferent connectivities is a challenging task, whose results may be
exploited in context of shape matching to construct an accurate
correspondence or to improve a given one.
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Figure 15: We evaluate our approach in the challenging scenario of shapes with different connectivities and automatically generated de-
scriptors. Our method exhibits very good error measures as compared to state-of-the-art approaches for computing functional maps.

many applications may benefit from the proposed pipeline on a
single shape. Namely, generate a self functional map with a set
of basis elements defined on the shape. Examples include symme-
try detection, fluid simulation and data interpolation, among many
other possibilities. On the other hand, extending our framework to
handle multiple shapes is an interesting direction as well. Finally,
we believe that many of the questions that we consider in our work
could benefit from the recent advancements in machine learning
with deep neural networks. We plan to investigate how the task of
designing a basis and a functional map can be solved using deep
learning approaches.

References

[ABB∗16] AFLALO Y., BREZIS H., BRUCKSTEIN A., KIMMEL R.,
SOCHEN N.: Best bases for signal spaces. Comptes Rendus Mathe-
matique 354, 12 (2016), 1155–1167. 1

[ACBCO17] AZENCOT O., CORMAN E., BEN-CHEN M., OVSJANIKOV
M.: Consistent functional cross field design for mesh quadrangulation.
ACM Transactions on Graphics (TOG) 36, 4 (2017), 92. 7, 9, 10

[ASC11] AUBRY M., SCHLICKEWEI U., CREMERS D.: The wave kernel
signature: A quantum mechanical approach to shape analysis. In Com-
puter Vision Workshops (ICCV Workshops), 2011 IEEE International
Conference on (2011), IEEE, pp. 1626–1633. 1, 2, 3, 7

[ASP∗05] ANGUELOV D., SRINIVASAN P., PANG H.-C., KOLLER D.,
THRUN S., DAVIS J.: The correlated correspondence algorithm for un-
supervised registration of nonrigid surfaces. In Advances in neural in-
formation processing systems (2005), pp. 33–40. 7

[AWO∗14] AZENCOT O., WEISSMANN S., OVSJANIKOV M.,
WARDETZKY M., BEN-CHEN M.: Functional fluids on surfaces.
In Computer Graphics Forum (2014), vol. 33, Wiley Online Library,
pp. 237–246. 2

[BBK08] BRONSTEIN A. M., BRONSTEIN M. M., KIMMEL R.: Numer-
ical geometry of non-rigid shapes. Springer Science & Business Media,
2008. 7

[BHL93] BERKOOZ G., HOLMES P., LUMLEY J. L.: The proper orthog-
onal decomposition in the analysis of turbulent flows. Annual review of
fluid mechanics 25, 1 (1993), 539–575. 3

[BKP∗10] BOTSCH M., KOBBELT L., PAULY M., ALLIEZ P., LÉVY B.:
Polygon mesh processing. AK Peters/CRC Press, 2010. 3

[BM92] BESL P. J., MCKAY N. D.: Method for registration of 3-
d shapes. In Sensor Fusion IV: Control Paradigms and Data Struc-
tures (1992), vol. 1611, International Society for Optics and Photonics,
pp. 586–607. 1

[BPC∗11] BOYD S., PARIKH N., CHU E., PELEATO B., ECKSTEIN J.,
ET AL.: Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers. Foundations and Trends® in Ma-
chine learning 3, 1 (2011), 1–122. 5, 7

[BRLB14] BOGO F., ROMERO J., LOPER M., BLACK M. J.: Faust:
Dataset and evaluation for 3d mesh registration. In Proceedings of the
IEEE Conference on Computer Vision and Pattern Recognition (2014),
pp. 3794–3801. 7

[CK15] CHEN Q., KOLTUN V.: Robust nonrigid registration by convex
optimization. In Proceedings of the IEEE International Conference on
Computer Vision (2015), pp. 2039–2047. 7

[EBC17] EZUZ D., BEN-CHEN M.: Deblurring and denoising of maps
between shapes. In Computer Graphics Forum (2017), vol. 36, Wiley
Online Library, pp. 165–174. 2, 7

[ERGB16] EYNARD D., RODOLA E., GLASHOFF K., BRONSTEIN
M. M.: Coupled functional maps. In 3D Vision (3DV), 2016 Fourth
International Conference on (2016), IEEE, pp. 399–407. 7

[GBP07] GIORGI D., BIASOTTI S., PARABOSCHI L.: Shape retrieval
contest 2007: Watertight models track. SHREC competition 8, 7 (2007).
7

[GGC18] GAO W., GOLDFARB D., CURTIS F. E.: Admm for multiaffine
constrained optimization. arXiv preprint arXiv:1802.09592 (2018). 5, 13

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

107



O. Azencot & R. Lai / Functional Maps and Bases Pursuit

[GM75a] GABAY D., MERCIER B.: A dual algorithm for the solution of
non linear variational problems via finite element approximation. Institut
de recherche d’informatique et d’automatique, 1975. 4

[GM75b] GLOWINSKI R., MARROCO A.: Sur l’approximation,
par éléments finis d’ordre un, et la résolution, par pénalisation-
dualité d’une classe de problèmes de dirichlet non linéaires. Revue
française d’automatique, informatique, recherche opérationnelle. Anal-
yse numérique 9, R2 (1975), 41–76. 4

[GNVL79] GOLUB G., NASH S., VAN LOAN C.: A hessenberg-schur
method for the problem ax+ xb= c. IEEE Transactions on Automatic
Control 24, 6 (1979), 909–913. 4

[HQ12] HOU T., QIN H.: Continuous and discrete mexican hat wavelet
transforms on manifolds. Graphical Models 74, 4 (2012), 221–232. 2

[HWG14] HUANG Q., WANG F., GUIBAS L.: Functional map networks
for analyzing and exploring large shape collections. ACM Transactions
on Graphics (TOG) 33, 4 (2014), 36. 1, 2

[KBB∗13] KOVNATSKY A., BRONSTEIN M. M., BRONSTEIN A. M.,
GLASHOFF K., KIMMEL R.: Coupled quasi-harmonic bases. In Com-
puter Graphics Forum (2013), vol. 32, Wiley Online Library, pp. 439–
448. 1, 2, 3, 6, 7, 8, 9

[KBBV15] KOVNATSKY A., BRONSTEIN M. M., BRESSON X., VAN-
DERGHEYNST P.: Functional correspondence by matrix completion.
In Proceedings of the IEEE conference on computer vision and pattern
recognition (2015), pp. 905–914. 1, 2

[KGB16] KOVNATSKY A., GLASHOFF K., BRONSTEIN M. M.:
Madmm: a generic algorithm for non-smooth optimization on manifolds.
In European Conference on Computer Vision (2016), Springer, pp. 680–
696. 1, 2

[KLF11] KIM V. G., LIPMAN Y., FUNKHOUSER T.: Blended intrinsic
maps. In ACM Transactions on Graphics (TOG) (2011), vol. 30, ACM,
p. 79. 6, 7

[KMP∗21] KIRGO M., MELZI S., PATANÈ G., RODOLÀ E., OVS-
JANIKOV M.: Wavelet-based heat kernel derivatives: Towards infor-
mative localized shape analysis. In Computer Graphics Forum (2021),
vol. 40, Wiley Online Library, pp. 165–179. 2

[KO18] KLEIMAN Y., OVSJANIKOV M.: Robust structure-based shape
correspondence. In Computer Graphics Forum (2018), Wiley Online
Library. 2, 7

[LRBB17] LITANY O., RODOLÀ E., BRONSTEIN A. M., BRONSTEIN
M. M.: Fully spectral partial shape matching. In Computer Graphics
Forum (2017), vol. 36, Wiley Online Library, pp. 247–258. 1, 2, 9

[MRMO20] MARIN R., RAKOTOSAONA M.-J., MELZI S., OVS-
JANIKOV M.: Correspondence learning via linearly-invariant embed-
ding. Advances in Neural Information Processing Systems 33 (2020).
2

[NMR∗18] NOGNENG D., MELZI S., RODOLÀ E., CASTELLANI U.,
BRONSTEIN M., OVSJANIKOV M.: Improved functional mappings via
product preservation. In Computer Graphics Forum (2018), vol. 37, Wi-
ley Online Library, pp. 179–190. 2, 7, 10

[NO17] NOGNENG D., OVSJANIKOV M.: Informative descriptor preser-
vation via commutativity for shape matching. In Computer Graphics
Forum (2017), vol. 36, Wiley Online Library, pp. 259–267. 1, 2, 5, 7, 8

[OBCS∗12] OVSJANIKOV M., BEN-CHEN M., SOLOMON J.,
BUTSCHER A., GUIBAS L.: Functional maps: a flexible repre-
sentation of maps between shapes. ACM Transactions on Graphics
(TOG) 31, 4 (2012), 30. 1, 2, 5, 7

[OCB∗16] OVSJANIKOV M., CORMAN E., BRONSTEIN M., RODOLÀ
E., BEN-CHEN M., GUIBAS L., CHAZAL F., BRONSTEIN A.: Com-
puting and processing correspondences with functional maps. In SIG-
GRAPH ASIA 2016 Courses (2016), ACM, p. 9. 2

[PP93] PINKALL U., POLTHIER K.: Computing discrete minimal sur-
faces and their conjugates. Experimental mathematics 2, 1 (1993), 15–
36. 5

[RBG∗09] REUTER M., BIASOTTI S., GIORGI D., PATANÈ G., SPAG-
NUOLO M.: Discrete laplace–beltrami operators for shape analysis and
segmentation. Computers & Graphics 33, 3 (2009), 381–390. 1

[RMC15] RODOLÀ E., MOELLER M., CREMERS D.: Point-wise map
recovery and refinement from functional correspondence. arXiv preprint
arXiv:1506.05603 (2015). 2, 7

[ROA∗13] RUSTAMOV R. M., OVSJANIKOV M., AZENCOT O., BEN-
CHEN M., CHAZAL F., GUIBAS L.: Map-based exploration of intrinsic
shape differences and variability. ACM Transactions on Graphics (TOG)
32, 4 (2013), 72. 2

[RPWO18] REN J., POULENARD A., WONKA P., OVSJANIKOV M.:
Continuous and orientation-preserving correspondences via functional
maps. arXiv preprint arXiv:1806.04455 (2018). 2, 5, 6, 7, 8

[Rus07] RUSTAMOV R. M.: Laplace-beltrami eigenfunctions for defor-
mation invariant shape representation. In Proceedings of the fifth Euro-
graphics symposium on Geometry processing (2007), Eurographics As-
sociation, pp. 225–233. 1

[SBL18] SCHONSHECK S. C., BRONSTEIN M. M., LAI R.: Noniso-
metric surface registration via conformal laplace-beltrami basis pursuit.
arXiv preprint arXiv:1809.07399 (2018). 2

[SRGB14] SOLOMON J., RUSTAMOV R., GUIBAS L., BUTSCHER A.:
Earth mover’s distances on discrete surfaces. ACM Transactions on
Graphics (TOG) 33, 4 (2014), 67. 1

[WYZ18] WANG Y., YIN W., ZENG J.: Global convergence of ADMM
in nonconvex nonsmooth optimization. Journal of Scientific Computing,
2018. 5

[Xiu10] XIU D.: Numerical methods for stochastic computations: a spec-
tral method approach. Princeton university press, 2010. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

108



O. Azencot & R. Lai / Functional Maps and Bases Pursuit

Figure 16: Given a pair of shapes and a collection of corresponding descriptors, our method produces a set of basis elements along with an
associated functional map. These bases are not necessarily LB smooth and thus their aligning matrix is typically dense (left). Our machinery
can be utilized in various geometry processing tasks such as non-isometric shape matching (right).

Appendix A: Proof of Proposition 1

We consider a modified version of our problem (2) given by

minimize F(X ,Z)
subject to P(X )+Q(Z) = 0

(14)

where X = (B1,B
′
1, B̃
′
1,B2,B

′
2, B̃
′
2,C) and Z = (Z,B′′1 , B̃

′′
1 ,B
′′
2 , B̃
′′
2 )

are blocks of variables. Further, the objective function is given by

F(X ,Z) = G(X )+H(Z) ,

G(X ) = 1
2
|CB̃′T1 F1− B̃′T2 F2|2F ,

H(Z) = ν

2
|Z− I|2F

+
µ
2
|B′′1 |2M1 +

µ
2
|B̃′′1 |2M1

+
µ
2
|B′′2 |2M2 +

µ
2
|B̃′′2 |2M2 .

Finally, the constraints are formed via

P(X ) =


BT

1 G1 B′1
BT

2 G2 B′2
B1−B′1
B2−B′2
B1− B̃′1
B2− B̃′2

 , Q(Z) =


−Z
−Z
−B′′1
−B′′2
−B̃′′1
−B̃′′2

 .

Proposition 1 Under some mild conditions, problem (14) satisfies
all the requirements in [GGC18] and thus its ADMM converges.

Proof. We need to show that the requirements in Assumption 1
and Assumption 2 in [GGC18] hold. Our variables are updated se-
quentially in the order B1,B

′
1, B̃
′
1,B2,B

′
2, B̃
′
2,C and a single block

of (Z,B′′1 , B̃
′′
1 ,B
′′
2 , B̃
′′
2 ). We have that Im(Q)⊇ Im(P) since the im-

age of Q is spanned by the identity matrix in each of the compo-
nents. The objective function F(X ,Z) is coercive on the feasible
set {(X ,Z)|P(X )+Q(Z) = 0} since for every variable in Z the
function behaves as |x|2. This also holds for the variables in X be-
cause of the constraints. Moreover, the functionH(Z) is a strongly
convex function because its Hessian is positive definite. Also, every

subproblem in the ADMM of (14) is a trivial, linear or Sylvester-
type equation and thus it attains its optimal value when ρ is suffi-
ciently large. Finally, our objective term G(X ) is differentiable and,
in particular, it is lower semi-continuous.

Appendix B: Regularized FMBS

In what follows we formulate the regularized version of our func-
tional map and basis problem including the consistency regularizer
Ecfid, the isometry promoting term Eiso and the Dirichlet ener-
gies Edir. Our minimization takes the following form

minimize Efid+µcfidEcfid+µisoEiso+µdirEdir
subject to BT

1 G1 B′1 = I, B1 = B′1 ,

BT
2 G2 B′2 = I, B2 = B′2 ,

CD = I ,DC = I ,

(15)

where

Efid =
1
2

∣∣∣C BT
1 F1−BT

2 F2

∣∣∣2
F
, (16)

Ecfid =
1
2

∣∣∣BT
1 F1−DBT

2 F2

∣∣∣2
F
, (17)

Eiso =
1
2

∣∣∣C BT
1 W1B′1−BT

2 W2B′2
∣∣∣2
F
, (18)

Edir =
1
2

Tr
(

BT
1 W1 B′1

)
+

1
2

Tr
(

BT
2 W2 B′2

)
. (19)

We have µcfid,µiso,µdir ∈ R+ penalty parameters, Fj are the
area weighted functional descriptors, and W j are the cotangent
weights matrices. Finally, the variables B j and B′j represent the ba-
sis elements, C is the forward functional map and D is the backward
functional map. To solve problem (15) via ADMM, we introduce
auxiliary variables Pj,Q′j and R j for the orthogonality, duality and
invertability constraints, respectively. We choose the update order
to be (B1,B2,B

′
1,B
′
2,C,D), followed by (P1,P2,Q

′
1,Q
′
2,R1,R2). We

proceed by specifying the update rules for each of the associated
steps.
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Updating the bases, B1 and B2

The necessary first-order optimality conditions of the augmented
Lagrangian of B1, yield the following equation.

C1 =A1 B1B1 +O1B1 ,

A1 = F1 FT
1 +µisoW1 B′1 B′T1 W T

1 ,

B1 =CTC ,

C1 = F1 FT
2 B2 C+µisoW1 B′1CT B′T2 W2 B2 C−µdirW1 B′1

+µcfidF1 FT
2 B2 DT +ρG1 B′1(I−P1)

T +ρG1(B
′
1−Q′1) ,

O1 = µcfidF1 FT
1 +ρG1 B′1B′T1 G1 +ρG1 .

(20)
Similar to the non-regularized case, this is a Sylvester-type equa-
tion which can be solved using, e.g., MATLAB’s dlyap with the
call B1 = dlyap(−O−1

1 A1,B1,O−1
1 C1). The update of B2 con-

sists of another Sylvester-type equation given by

C2 =A2 B2B2 +O2B2 ,

A2 = µcfidF2 FT
2 ,

B2 = DT D ,

C2 = F2 FT
1 B1 CT +µisoW2 B′2 C B′T1 W T

1 B1 CT −µdirW2 B′2

+µcfidF2 FT
1 B1 D+ρG2 B′2(I−P2)

T +ρG2(B
′
2−Q′2) ,

O2 = F2 FT
2 +µisoW2B′2 CCT B′T2 W T

2 +ρG2 B′2 B′T2 GT
2 +ρG2 .

(21)

Updating the auxiliary variables, B′1 and B′2

The update for B′1 is very similar to the non-regularized case.
Namely, we obtain the following linear system.

B3 =A3 B′1

A3 = µisoW1 B1 CTC BT
1 W1 +ρG1 B1 BT

1 G1 +ρG1 ,

B3 = µisoW1 B1 CT BT
2 W2 B′2 C−µdirW1 B1

+ρG1 B1(I−P1)+ρG1(B1 +Q′1) .

(22)

Unlike the non-regularized version, the update of B′2 involves a
Sylvester-type equation of the form.

C4 =A4 B′2B4 +O4B′2 ,

A4 = µisoW2 B2 BT
2 W2 ,

B4 =CCT ,

C4 = µisoW2 B2CBT
1 W1 B′1 CT −µdirW2 B2

+ρG2 B2(I−P2)+ρG2(B2 +Q′2) ,

O4 = ρG2 B2BT
2 G2 +ρG2 .

(23)

Updating the functional maps, C and D

Updating the functional map can be done by vectorizing the lin-
ear system we obtain by taking the gradient of the augmented La-
grangian with respect to C. This leads to the following vectorized

equation

vec(B5) =A5 vec(C) ,

A= (BT
1 F1 FT

1 B1 +µisoWB,1W T
B,1 +ρDDT )⊗ I

+ I⊗ (µisoW T
B,2WB,2 +ρDT D)

−µisoW T
B,1⊗W T

B,2−µisoWB,1⊗WB,2 ,

B5 = BT
2 F2 FT

1 B1 +ρ(I−R1)D
T +ρDT (I−R2) ,

(24)

where WB, j = BT
j W j B′j. For the matrix D, we obtain the following

C6 =A6 D+DB6 ,

A6 = ρCTC ,

B6 = µcfidBT
2 F2 FT

2 B2 +ρCCT ,

C6 = µcfidBT
1 F1 FT

2 B2 +ρCT (I−R1)+ρ(I−R2)C
T .

(25)

Updating the dual variables, Pj and Q′j

Finally, the last step of our scheme is equivalent to the non-
regularized case and for j = 1,2, it is given by

Pj = Pj +BT
j G j B′j− I ,

Q′j = Q′j +B j−B′j ,

R1 = R1 +C D− I ,

R2 = R2 +DC− I .

(26)
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