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In the supplementary materials, we focus on the analysis of the
Effective Functional Map Refinement (EFMR) method that we pro-
posed in Sec. 5.3. in the main paper.

Overview We first give the full details of the EFMR algorithm in
Sec. 1. To analyze the new energy and the EFMR method, we per-
form tests on some synthetic data in Sec. 2. Specifically, we would
like to study three problems: (1) how well different energies char-
acterize the desirable maps? E.g., how many local minima there are
and are these local minima all corresponding to desirable maps? (2)
For a map refinement method, where does it converge to starting
from different initializations? E.g., what are the termination points
of different refinement methods. (3) Does the termination point of
a refinement method happen to be a local minima of the optimized
energy? We investigated ICP [OBCS∗12], ZoomOut [MRR∗19],
and our EFMR regarding these three problems. In Sec. 3 we fur-
ther discuss the relationship between EFMR and other methods.
We also perform an ablation study in Sec. 4 to verify that each
component of the new energy matters.

1. Effective Functional Map Refinement

In this section, we discuss how to apply our discrete solver to the
new energy that combines the orthogonality, Laplacian commuta-
tivity, and bijectivity on functional maps from both directions of a
shape pair, which is defined as:
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Our goal is to find a pair of proper functional maps from both di-
rections that minimize the above energy:

min
C12∈P12,C21∈P21
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ALGORITHM 1: Effective Functional Map Refinement (EFMR)

Goal : min
C12∈P12 ,C21∈P21

Enew
(
C12,C21

)
Output: Proper functional maps C12,C21; Pointwise maps T12,T21
Parameters: weights Wi and α, N, some stopping criterion
while Stopping Criterion Not Met do
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for iter = 1:N do
Construct X1,X2,Y1,Y2:
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Compute pointwise maps:
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)
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)
Compute proper functional maps:
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end
k← k+1

end

We can construct the relaxed version of our new energy in the fol-
lowing (as discussed in Sec. 4 and Sec. 5):
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where we plugged the hard constraints into the original en-
ergy and add two soft regularizers with weight α. We then
have the updating rules for our discrete solver: (1) update the
pointwise maps by Π12 = argminΠ12
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functional maps by C12 = Φ
†
S2

Π21ΦS1 and C21 = Φ
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See Algorithm 1 for full details of applying the discrete solver to
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Figure 1: Dense correspondences on SHREC’19 using our method
from random initialization.

optimize the new energy we proposed with the progressive upsam-
pling technique. In Sec. 6.3 of the main paper, we quantitatively
show that our EFMR method achieves the state-of-the-art accuracy
on SHREC’19 benchmark. Fig. 1 and Fig. 2 show two qualitative
examples of the strong convergence of our EFMR method that can
handle trivial and even random initializations.

In the following, we demonstrate the advantages of our new en-
ergy and our EFMR algorithm on a synthetic dataset, where we
can explore the complete proper functional map search space to
find the local minima of different energies, and to find the con-
verged/terminating points of different refinement methods, includ-
ing ICP, ZoomOut and ours.

2. Quantitative Justification on Synthetic Data

To illustrate the advantages of our new energy Eq. (1) and our algo-
rithm EFMR, we consider shapes with a small number of vertices
n = 3,4,5, for which it is possible to explore the full search space
of pointwise maps by enumerating all possible pointwise maps in
both directions. We then study the effectiveness of different ener-
gies in distinguishing good maps within this space and study the
convergence power of different refinement methods.

Specifically, Fig. 3 shows an example of a pair of triangle shapes.
In this case we know that there are 33 = 27 possible pointwise maps
across the two shapes in each direction, and the product space of
two directions contains 27×27 = 792 total elements.

To evaluate how well different energies characterize the search
space, we define the topology on the map space as illustrated in
Fig. 3. Namely two maps are connected if they differ by one entry.
We then extend this to the product space by connecting two map
pairs if either of the maps in the pair are connected. This allows us
to define the notion of a local minimum in the map search space
w.r.t. a given energy: i.e., a map pair is a local minimum if and only
if its energy value is smaller than that of its neighbors. In this test,
we compare our new energy to the ICP energy and the ZOOMOUT

energy on the complete map product space. The number of local
minima of different energies is reported in Table. 1. Note that our
new energy has significantly fewer local minima than the other two
energies.

We also study the convergence of different methods starting from
different initial maps. Specifically, for a shape pair with n(n≤ 10)
vertices, we run ICP at dimension n (i.e., the maximum dimension),
and run ZOOMOUT and our method from dimension 2 to n on the
tested initializations in the product space. When n > 10, we run
the algorithms at (or up to) 30 dimensions. We then measure the
convergence of different methods as the number of unique maps

Source Ini ICP20 ZOOMOUT2···20 Ours2···20

Figure 2: Refining a trivial map with all vertices from the source
mapped to a single vertex on the target. We compare our approach
to ICP at a fixed dimension and to Zoomout [MRR∗19], showing
the initial and the refined functional and pointwise maps (via color
transfer).

after refinement (see Table 1). We can see that our method has a
strong convergence power so that out of more than 500 random
initialization we obtain 2-4 unique maps, while as a comparison,
ZOOMOUT converged to 25 - 2K unique maps.

For the shapes with more than five vertices, the size of the map
product space quickly become intractable. Therefore, we only test
on a relatively small set of initial maps and check the convergence
of different methods. For example, Fig. 4 shows an example of two
heart-shape meshes with 6 vertices. Our method successfully con-
verged to the two global optima of the geodesic distortion, while
ZOOMOUT fails to return a good map. Table 1 also includes the
results of human shape pairs with 10, 100, 1000, 5000 vertices,
where we tested different refinement on 500 randomly generated
initial maps. Again, our method converged to significantly fewer
maps with better quality than the other two methods, ICP and
ZOOMOUT.

3. Relation to previous approaches

Our EFMR method is related to several previous approaches. Most
importantly the Iterative Closest Point (ICP) refinement, commonly
used in functional maps literature, e.g., [OBCS∗12, PBB∗13]. This
approach is equivalent to the orthogonality-based map update
scheme in fixed dimension, with an additional singular value pro-
jection step. Our EFMR method can also be regarded as an ex-
tension to the recent ZoomOut [MRR∗19] and the bidirectional
ZoomOut [RMOW20] method, that combines the orthogonality,
bijectivity, and Laplacian commutativity using the progressive up-
sampling technique. We also note that our use of variable split-
ting is related to the work of [PBB∗13], where the authors pro-
posed to estimate a permutation of input descriptors, while pro-
moting functional map diagonality. In contrast, we directly recover
dense pointwise correspondences without any input descriptors. Fi-
nally, our proper functional map optimization is related to promot-
ing pointwise maps, as in [NO17]. However, rather than promot-
ing this property in the functional domain, we link pointwise and
functional map estimation and, again, avoid the use of descriptor
functions. In summary our method can be thought of as a strong
generalization of both ICP and ZoomOut. Our generalization plays
a crucial role in practice, where, as we demonstrate below, it is able
to recover good maps without any initialization, which is not pos-
sible for either ICP and ZoomOut.

At a high level, our method is also related to other recent re-
finement techniques, such as PMF [VLR∗17, VLB∗17], BCICP
[RPWO18], and Reversible Harmonic Maps [ESBC19]. Unlike
these methods, however, we show how well-established functional
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Table 1: Synthetic evaluation. For the shapes with small number of vertices (n = 3,4,5), we can enumerate all possible pointwise maps to
study how well different energies can characterize the complete search space and how well different methods can refine the pointwise maps
from arbitrary initialization. We report the number of local minima of different energies and the number of converged points/maps in the
search space of different methods. For the case (n > 5) where the complete search space is intractable, we test different methods on 500
randomly selected initializations. As a result, our new energy has much less number of local minima than the ICP and ZOOMOUT energy.
At the same time, our new method can converge to much less number of maps. Specifically, for n ≤ 6, the converged maps obtained my our
method are indeed the global optima of the geodesic distortion measure, i.e., the direct map and the symmetric map.

# vertex
n

search space
size nn

# tested Ini in the
product space

# local minima of the enerngy # converged maps of the method # converged maps are local minima
ICP ZOOMOUT Ours ICP ZOOMOUT Ours ICP ZOOMOUT Ours

3 27 272 = 729 117 118 29 520 25 2 96 12 2
4 256 2562 ≈ 65K 9156 7537 853 12240 70 2 2153 7 2
5 3125 31252 ≈ 9.7M 810K 1235K 29K 425K 2160 3 62K 1005 3
6 46656 46656 - - - 7251 25 2 - - -
10 1010 500 - - - 500 77 2 - - -

100 100100 500 - - - 500 404 2 - - -
1000 10001000 500 - - - 500 497 4 - - -
5000 50005000 500 - - - 500 498 4 - - -

Table 2: Ablation Study. We tested 50 FAUST shape pairs. For each shape pair, we randomly generate 100 initial pointwise maps, we then
apply our method with different parameter choices (w1,w2,w3,N), and measure how many unique maps are obtained after refinement. We
also measure the accuracy and bijectivity of the converged maps and report the average over all tested shape pairs.

Ours
N 1 1 1 1 1 1 1 1 1 1 1 10 10 10 10 10 10 10 10 10 10 10

w1 0 0 0 0 0 1 1 1 1 1 1 0 0 0 0 0 1 1 1 1 1 1

Metrics

\ Methods

Rand

Ini
ICP ZM

w3 1 10 50 100 1000 0 1 10 50 100 1000 1 10 50 100 1000 0 1 10 50 100 1000

# Converged Maps 100 100 100 - 76 66 66 66 67 12 12 32 25 26 28 9 7 6 7 7 2 2 3 3 3 3

Accuracy (×10−3) 771 789 648 - 637 275 225 238 236 647 638 195 121 118 133 445 113 115 112 105 552 505 58.7 50.3 50.7 50.6

Bijectivity (×10−3) 890 884 863 - 863 670 629 628 616 46.1 45.6 36.0 34.2 34.4 34.6 716 475 502 517 500 43.0 42.4 34.3 32.5 33.0 33.0

map energies can be used to optimize dense pointwise correspon-
dences directly. As a result, our method is significantly more robust,
is more scalable (as it does not require maintaining large dense ma-
trices).

4. Ablation Study

Here we verify by an ablation study that every component of our
new energy in Eq. (1) is effective. We have four main parameters in
the energy and the algorithm, the number of inner loops N, and the
weights w1,w2,w3 for different terms, namely the bijectivity, or-
thogonality, and Laplacian Commutativity. To avoid arbitrary selec-
tions of these four parameters, we conduct our ablation study in a
more principled way. First of all, we always include the orthogonal-
ity term and set w2 = 1, given that [MRR∗19] has already demon-
strated the effectiveness of the orthogonality term. Second, we only
consider w1 = 0 or w1 = 1. The reason is that the orthogonality and
the bijectivity terms both impose some sort of orthonormal con-
straint on the functional maps. Without any prior knowledge, it is
difficult to set different weights for these two terms. Finally, for a
fixed choice of w1,w2, we test different choices of w3, the weight
of the Laplacian Commutativity term. Moreover, for a fixed choice
of the weights, we also test N = 1 or N = 10 to verify if the inner
loop can help improve the robustness of our algorithm. Note that,

ZOOMOUT can be regarded as a special case of our EFMR with the
parameter setting of N = 1,w1 = w3 = 0,w2 = 0.

We then test our algorithm with different parameter choices on
50 pairs of FAUST human shapes [BRLB14]. We randomly gen-
erated 100 different initializations for each shape pair. We report
the number of converged maps and the quality including the map
accuracy and the bijectivity of the converged maps averaged across
all the tested pairs in Table 2. We can see that we need to combine
all the three terms in our energy to achieve the best performance.
For any selection of parameters, our method outperforms the com-
petitors highlighting that the novel discrete optimization injected
in the iterative process improves the quality of the maps indepen-
dently from the parameters. We stress that the discrete optimiza-
tion was not considered at all in the previous method and has to be
considered as the main theoretical and practical contribution of the
proposed method.
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(a) Example Map (b) Connectivity in Map Space
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(c) Connectivity in Map Product Space
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Figure 3: Illustration of the Map Product Space. (a) Shows a pair
of triangles and an example map T12, where the first and the third
vertex on S1 are both mapped to the first vertex on S2, and the sec-
ond vertex on S1 is mapped to the second vertex on S2. The color
coding on the vertices visualizes the corresponding map. (b) We
define the connectivity between the pointwise maps in the follow-
ing way: T i is connected to T j if and only if T i can become T j

if we only change one entry of T j. The connectivity of the maps
between these two triangles can be visualized as a shape in (b),
where each node represents a single map and is connected to 6
other nodes/maps.(c) When we are dealing with the map product
space

(
T12,T21

)
, we can similarly define the connectivity between

two pairs of bidirectional maps in this map product space: the map
pair

(
T i

12,T
j

21
)

is connected to the map pair
(
T p

12,T
q

21
)

if and only if
T i

12 is connected to T p
12 or T j

21 is connected to T q
21. The connectivity

of the map produce space on this pair of triangle can be visualized
as matrix, where each entry of the matrix represents a map pair.
Each entry is connected to the other red entries in the same row or
column.
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Source Fixed T21

S1 S2

(a) Refined by our method

(b) Refined by ZOOMOUT
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23% 22% 14% 13% 13% 4%
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Figure 4: Test on two heart-shape meshes with 6 vertices. For the
point-wise map T12 from shape S1 to S2, there are 66 different maps.
Therefore, we enumerate all of them and apply ZOOMOUT to refine
these maps, where the refined maps are converged to 25 different
maps. Here we show the first 12 maps with the highest occurrence
in (b). At the same time, we also use our method to refine those
T12s as well while keeping the the map from the other direction T21
as a trivial map, as shown above. As a comparison, our method
converged to two maps, including the correct direct map and the
symmetric map as shown in (a). Also notice that, the ZoomOut-
refined maps never converged to the correct maps shown in (a).
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