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Figure 1: We present Roominoes, a new task for creating house-level 3D environments by piecing together existing 3D rooms. We devise a
spectrum of potential strategies to solve this task. In an instance of this task, one of our proposed algorithms creates a combinatorially novel
layout by iteratively retrieving and assembling rooms from different 3D floor plans, deforming each room as needed.

Abstract

Realistic 3D indoor scene datasets have enabled significant recent progress in computer vision, scene understanding, au-
tonomous navigation, and 3D reconstruction. But the scale, diversity, and customizability of existing datasets is limited, and
it is time-consuming and expensive to scan and annotate more. Fortunately, combinatorics is on our side: there are enough
individual rooms in existing 3D scene datasets, if there was but a way to recombine them into new layouts. In this paper, we
propose the task of generating novel 3D floor plans from existing 3D rooms. We identify three sub-tasks of this problem: gener-
ation of 2D layout, retrieval of compatible 3D rooms, and deformation of 3D rooms to fit the layout. We then discuss different
strategies for solving the problem, and design two representative pipelines: one uses available 2D floor plans to guide selection
and deformation of 3D rooms, the other learns to retrieve a set of compatible 3D rooms and combine them into novel layouts.
We design a set of metrics that evaluate the generated results with respect to each of the three subtasks and show that different
methods trade off performance on these subtasks. Finally, we survey downstream tasks that benefit from generated 3D scenes
and discuss strategies in selecting the methods most appropriate for the demands of these tasks.

CCS Concepts
e Computing methodologies — Computer graphics; Neural networks; Probabilistic reasoning;

1 Introduction and visual navigation [GDL*17, XZH* 18, SKM*19]. In particu-
lar, multi-room 3D interiors have enabled work on long-horizon

Realistic 3D indoor scenes are useful for many tasks. In re- embodied Al tasks involving both manipulation and navigation.

cent years, datasets of 3D scenes have stimulated advances in

computer vision [ZF18, ZSS*18], multimodal scene understand- Unfortunately, the scale and diversity of existing 3D indoor

ing [AWT™*18, CJS*20], 3D reconstruction [JSM*20, AKC*20], scene datasets is a bottleneck for this research agenda: they are not
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very large nor configurable, and it is time-consuming and expen-
sive to enlarge them. For example, existing datasets provide mostly
‘detached’ rooms (ScanNet [DCS*17]), or are limited to a small
number of high-quality multi-room residences (Gibson [XZH* 18],
Matterport3D [CDF*17] and Replica [SWM*19]).

Instead of using 3D reconstructions, one could turn to
synthetic scene datasets, such as AI2-THOR [KMG*17],
CHALET [YMB*18] and 3D-FRONT [FCG*20]. One could also
try to use generative models of furniture layouts to generate new
synthetic 3D data [LPX*19, WLW™*19, ZWK19]. Regardless of
how synthetic scenes are created, there exists a “reality gap” be-
tween synthetic scenes and real ones, both in terms of content (e.g.
synthetic scenes are not messy enough) and style (e.g. synthetic
scenes are not photorealistic enough) [ZSY*17].

In this paper, we propose a new paradigm for creating house-
level 3D environments by piecing together existing 3D rooms, a
task that we call Roominoes. This mix-and-match strategy is sim-
ilar to room-level 3D scene synthesis that selects from a database
of 3D objects and arranges them to create a furnished room. In-
stead of arranging 3D objects, the Roominoes task requires arrang-
ing entire rooms. In other words, the rooms are building blocks
to produce a coherent floor plan through a ‘retrieve and edit’ ap-
proach. This approach allows for scalability through combination
of existing high-quality 3D rooms, as well as control of the level of
complexity (from simple environments with few rooms, to complex
environments with many rooms).

To analyze the challenges presented by the Roominoes task, we
decompose it into three sub-tasks: (1) generating a 2D floor plan
that is compatible with available 3D rooms, (2) retrieving a set of
3D rooms that can fit into the 2D floor plan, and (3) deforming indi-
vidual 3D rooms so they fit the 2D floor plan. A Roominoes method
must address these three sub-tasks. There are a spectrum of strate-
gies for performing them, each with different tradeoffs. One could
use existing 2D floor plans to provide plausible layouts; however,
fitting available 3D rooms into those layouts may induce undesir-
ably large deformations to the 3D rooms and the objects they con-
tain. Alternatively, one could directly piece together existing 3D
rooms without starting with a target layout; this will result in mini-
mal distortion to the 3D rooms but may produce a less-realistic lay-
out. In this paper, we implement and evaluate these two strategies.
To measure the quality of the generated 3D environments, we intro-
duce a set of evaluation metrics for measuring both the 2D layout
quality and 3D mesh quality (e.g. amount of deformation, naviga-
bility). We also discuss the potential usefulness of these generated
environments for downstream tasks, and we demonstrate the appli-
cability of generated 3D houses on a visual navigation task.

We find that the Roominoes task is challenging, requiring non-
trivial geometry processing to properly deform room architectures
while keeping contained objects relatively undeformed. We believe
that compositional generation of realistic multi-room 3D houses
will become increasingly useful.

2 Background & Related Work

Multi-room 3D environment generation There is limited work
that attempts to generate 3D environments with multiple rooms.

Procedural content generation for studying RL is starting to lever-
age generated 3D environments. However, these are mostly re-
stricted to 3D mazes [BLT*16] or towers with rooms [JKB*19],
which do not reflect the complexity of real-world furnished
houses. A related line of work addresses procedural gener-
ation of floor plan layouts for residences and other build-
ings [MSK10, BYMW13, LYAM13]. These works, however, focus
on generating the 3D architectural structure and do not typically
produce realistically furnished 3D interiors.

Modeling by Assembly Our task is related to the long line of re-
search on 3D modeling by retrieving and assembling parts. Early
work in this area focused on interactive modeling, using either
shape similarity search [FKS*04] or a learned probabilistic graph-
ical model [CKGK11] to retrieve relevant parts for a user to com-
bine. More recent approaches have automated both part retrieval
and placement [KCKK12, SSK*17]. ComplementMe [SSK*17] is
most similar to one of our approach: it trains a deep metric learning
model to retrieve 3D parts that are compatible with a partial query
shape. However, floor plans differ from part-based shapes both in
data representation and in constraints that must be respected, which
motivates us to develop a different formulation.

Indoor Scene Synthesis Our problem statement is similar to
that of indoor scene synthesis, which aims to generate room lay-
outs comprised of existing 3D objects, whereas we focus on
generating 3D layouts from existing 3D rooms. One family of
approaches to this problem attempts to place objects via op-
timization, typically a variant of Markov Chain Monte Carlo,
with respect to learned priors, hand-crafted constraints, or some
combination of the two [YYT*11, MSL*11, FRS*12, QZH*18].
Another family of approaches trains deep generative models
to output scenes, using either a latent variable model such
as Variational Autoencoder [LPX*19] or Generative Adversar-
ial Network [ZYM™20] or using an iterative object-by-object ap-
proach [WSCR18, RWL19, WLW™19]. The iterative approaches
are most similar to our setting. However, floor plan generation is a
considerably different domain than furniture layout, as inter-room
relationships require more geometric precision than most inter-
object relationships (e.g. walls must align, portals must connect).
Hence, a different approach is needed.

Floor Plan Generation There is a large body of existing work
on generating 2D floor plans. As part of a larger system for gen-
erating 3D residential house models, Merrell et al. introduced
a Bayesian network for modeling the room relationship graph
along with an optimization-based approach for realizing this graph
through precise wall geometry [MSK10]. Liu et al. also use an
optimization-based approach as part of a machine-assisted inter-
active system for designing precast concrete buildings [LYAM13].
More recently, Wu et al. developed a mixed-integer quadratic pro-
gramming (MIQP) formulation for optimizing building interior
layouts [WFLW18]. Finally, the past year has seen the introduc-
tion of deep learning methods into this problem space, resulting
in learning-based methods for generating floor plans given build-
ing outlines [WFT*19], room relationship graphs [NCC*20], or
both [HHT*20]. These methods all address generation of 2D lay-
outs with unconstrained room shapes. Very recent work takes a dif-
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ferent approach of learning to generate a constraint graph and then
solving the optimization problem posed by this graph to produce a
final layout [PGK*20]. In contrast to all these approaches, we seek
to solve the problem of generating new 3D layouts, where the room
shapes are constrained by an available set of existing 3D rooms.

3  Overview

Generating 3D floor plans using existing 3D rooms is a more con-
strained problem than typical 2D floor plan generation: one cannot
generate rooms of arbitrary shapes, but instead is limited to the
shapes available in an existing 3D room database. It would be too
restrictive, however, to allow no changes to the 3D room geometry
atall, as it is unlikely that an existing set of 3D rooms can be recom-
bined perfectly into a novel floor plan. The likelihood of creating
plausible layouts from existing rooms can be greatly increased if we
allow deformations to the original rooms. By distorting the outline
of the room and moving the positions of connecting doors or spaces
(which we call portals), we can reuse the available 3D rooms in a
more flexible manner and generate higher quality layouts. How-
ever, this approach comes at the cost of degrading 3D room quality,
which decreases as the amount of distortion increases.

There is no definitive answer on how to trade off between 2D
layout plausibility and 3D mesh quality; different applications may
warrant different tradeoffs. Thus, we explore a spectrum of strate-
gies which span this tradeoff space. We propose to break down the
Roominoes task into three parts: i) generating a 2D floor plan that
is compatible with available 3D rooms; ii) retrieving 3D rooms that
can fit into the 2D floor plan; and iii) deforming the 3D rooms
so they better fit the 2D floor plan. We note that the third step,
room deformation, can be solved separately, provided that a corre-
spondence can be found between each retrieved 3D room and its
counterpart in the 2D floor plan. Thus, our exploration of possible
strategies focuses on approaches for solving the first two steps, tak-
ing into account the interaction between them. In the remainder of
this section, we first identify strategies for each of these steps and
then propose two full pipelines, which we describe further in the
following sections.

3.1 Generating 2D Floor Plans

3D interiors follow the structure of an underlying 2D floor plan.
Taking into consideration that the rooms in a 2D floor plan must
be matched with available 3D rooms, we propose the following
strategies for obtaining a 2D layout:

Existing Dataset An obvious option for obtaining 2D floor
plans is to draw them from an existing floor plan dataset,
such as RPLAN [WFT*19] (80K annotated floor plans), or Li-
FULL [LiF16] (millions of floor plan images). These datasets
are far larger than their 3D scene counterparts: the Matter-
port3D [CDF*17] dataset, for example, contains only 184 floors.
Using an existing floor plan guarantees the quality of the layout,
but has other disadvantages. The first issue is lack of control: if
one wants to replace a bedroom with a living room, or to make a
balcony larger, it is unlikely that another floor plan in the dataset
satisfies such demands. The second issue concerns the availability

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

Table 1: Comparing different strategies for generating 2D layouts.

Strategy Layout Quality Control Deformation
Dataset High Low Large
Generative Model High Medium Large
Naive Portal Stitching Low High None

Smart Portal Stitching Medium High Medium

of 3D rooms which match the shape of the rooms in the 2D layouts.
In general, 3D rooms with exact shape matches are not available.
To fit the 3D rooms into the layout, large deformation is often nec-
essary, which can impact the resulting 3D mesh quality.

Generative Model Instead of using floor plans drawn directly
from a dataset, one could also use one of the many available
data-driven generative models of 2D floor plans to generate novel
2D layouts [WFT* 19, HHT*20, NCC*20]. This approach will im-
prove the control over the resulting layout, since these methods
usually accept some user input specification (e.g. a room relation-
ship graph) and are capable of generating multiple possible layouts
given the same input specification. However, this approach does not
address the issue with 3D deformation artifacts.

Naive Portal Stitching One can avoid these deformation artifacts
entirely by ignoring 2D layout altogether: instead of combining 3D
rooms according to a layout, we can instead stitch rooms together
by connecting pairs of portals. This approach removes the need to
deform 3D rooms, but may produce an incoherent layout and is
incompatible with downstream tasks that involve reasoning about
the global scene layout.

Smart Portal Stitching Finally, one can attempt to find a “middle
ground” trade-off between 2D layout plausibility and amount of
3D deformation by modifying the portal stitching method above:
identifying 3D rooms that can likely fit together into a plausible
layout without causing too much deformation.

Table 1 summarizes the strengths and weaknesses of these dif-
ferent strategies for obtaining a 2D layout.

3.2 Retrieving Compatible 3D Rooms

Depending on the strategy used to generate the 2D layout, the task
of retrieving 3D rooms can be quite different. If the entire 2D layout
is known in advance, then the task becomes finding the 3D rooms
that best match the rooms in the layout (in terms of shape and/or
portal placements). On the other hand, if the layout is determined
on-the-fly (as in the two “Portal Stitching” approaches above), then
the task becomes more ill-posed. As there is no ‘ground truth’ target
room shape to match, one must instead retrieve rooms that are both
geometrically compatible with the rooms already in the layout and
and lead to a globally plausible layout.

3.3 Deforming 3D Rooms

The final task involves taking the retrieved 3D rooms and deform-
ing them according to the 2D floor plan. The problem can be solved
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in two steps: first computing a correspondence between the original
room and the target room, and then applying a standard mesh defor-
mation algorithm according to the defined correspondence. When
the available 3D rooms come equipped with semantic object anno-
tations, one can also leverage this information to avoid introduc-
ing visually objectionable artifacts such as non-rigid bending of
semantically-meaningful rigid objects.

3.4 Task Paradigms

While the final task of deforming 3D rooms can be performed in-
dependently of the methods used for the first two tasks, these first
two tasks are more correlated. We identify two major paradigms for
solving them together:

e 2D before 3D: Generate the 2D floor plan first and use its room
shapes as ground truth shape targets for 3D room retrieval (i.e.
the “Dataset” strategy in Table 1).

e 2D by 3D: Build up a layout iteratively by retrieving and con-
necting 3D rooms (i.e. “Guided Portal Stitching” in Table 1).

In this paper, we propose one representative algorithm for each of
the two paradigms. In Section 4, we describe a method that takes
an existing 2D floor plan in the dataset, and retrieves 3D rooms
similar according to the floor plan. In Section 5, we implement a
method that uses deep metric learning to iteratively retrieve com-
patible 3D rooms and then apply a mixed integer quadratic pro-
gramming (MIQP) optimization to assemble them into the final lay-
out. Finally, in Section 6, we describes a strategy for deforming the
3D rooms, by first optimizing for a set of dense correspondences
between the room outlines, and them applying cage deformation to
deform the 3D rooms to the target outline.

4 Generating 2D Layout Before Retrieving 3D Rooms

In this section, we describe an algorithm that utilizes a large collec-
tion of available 2D floor plans to guide the retrieval of 3D rooms.
Since the 2D layout is given by a floor plan from the dataset, the
focus of this algorithm is on minimizing deformation of the re-
trieved 3D rooms needed to fit into the 2D floor plan. Since it is
computationally expensive to perform deformation for all available
3D rooms, we instead develop approximate metrics to assess how
much deformation would be required.

4.1 Data Preparation

As our source of 2D floor plans, we use the RPLAN
dataset [WFT*19], a collection of 80,000 floor plan images anno-
tated at pixel level. As in prior work, we apply additional filtering
to the data: we make all walls the same thickness, retain only the
largest portal between each pair of connecting rooms, and remove
floor plans containing multi-purpose rooms.

As our source of 3D room data, we use the Matterport3D
dataset [CDF*17], a collection of 184 floor plans containing 2056
rooms. For each 3D room, we build a 2D representation equivalent
to those in the 2D floor plan dataset by extracting its outline (given
by human annotations) and using raycasting to identify open re-
gions on its walls, which we consider as portals. Since all of our

2D rooms are rectilinear, we also convert the non-rectilinear archi-
tecture of 3D rooms by computing their rectilinear bounding cages
(i.e. the union of axis-aligned bounding boxes of all wall segments).
We discard rooms that are not closed as well as rooms where a por-
tal falls on a non-rectilinear part of the wall. We also discard room
types not present in RPLAN. This leaves us with a final retrieval
database of 1036 rooms. Finally, we apply a four way rotational
augmentation of this dataset.

4.2 Retrieving Compatible 3D Rooms

Given a room from the 2D floor plan, we first filter out a subset of
the 3D rooms that are compatible: those that have the same type
label and contain same number of portals. For each 3D room in the
filtered subset, we compute the following matching score between
the source 3D room Ry and the target 2D room R7, each containing
k portals Pg . .P§71 and Pg . .P§71:

Aacarea + AoCoutline + }Vpcportal

where
min(A(Rs),A(Rr))

Carea =

penalizes large difference in room areas A(Rs),A(Rr), which will
lead to large uniform scaling in the deformation process.

Coutline = chamfer(O(RS)7 O(RT))

computes the two-way chamfer distance between a 250 point sam-
ple of the room outlines O(Rs), O(Rr), with the rooms normalized
to have unit area and centered. This penalizes room outline differ-
ences which lead to nonrigid deformations.

k—1k=1 S
: +j)modk
Cportal = 1}11011 Z Cmatch (Pé'»Pj("l fmeo )
= i=0
tries all possible k ways of pairing the k portals. There are only
k ways because the order of the portals along the outline cannot
be changed, and pairing any two portals uniquely determines the
pairing of the rest. The portal matching cost cpaqch is:

Cmatcn(P1, Py) = (M(Py) — M(P2))*+
NP = P2+
Ml (a(p)y2a(p)y

where M(P) denotes the position of the midpoint of the portal in
the 1D parametrized, unit length, outline of the room, |P| denotes
the length of the portal in the same 1D parametrization, and 1 is the
indicator function that takes the value of 1 if the front-facing direc-
tions of the portals d(P; ), d(P,) are different. This penalizes match-
ing portals that might lead to large deformation: we don’t want to
slide the portal along the wall by too much, scale it too much, or put
it in the wrong orientation. We use A, = 1,A, = 0.5, = 10,A; =
0.5,A4 = 0.05 for all experiments.

Figure 2 shows examples of rooms retrieved using this score. The
score allows retrieval of rooms that are similar regarding size, shape
and portal locations. However, due to the limited availability of 3D
rooms, it becomes increasingly unlikely to get an exact match as the
number of portals and the complexity of the room shape increase.
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Figure 2: Given a 2D room in a floor plan, we find similar 3D rooms that can be deformed into the 2D room with minimal changes with regard
to room size, shape, and portal locations. In the top row, the top retrievals are compatible with respect to all criteria, whereas subsequent
retrievals start to different in terms of shape, portal location, and finally size. The bottom row shows that the difficulty of finding a compatible
3D room increases substantially when the room shape becomes more non-rectangular, and when the number of portals is greater than 1.
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Figure 3: The architecture of our neural network-based room retrieval module. The embedding network maps top down views of rooms into
an embedding vector space (Right). Then, given an input floor plan relationship graph (with the node corresponding to the room to be inserted
marked) and a top-down view of the current partial floor plan, the retrieval network predicts a Gaussian mixture probability distribution over
this embedding space. The two networks are trained jointly such that positive example rooms (obtained by removing random rooms from

ground-truth floor plans) have higher probability than negative example rooms (random distractors).

5 Generating 2D Layout By Retrieving 3D Rooms

While guiding 3D retrieval with existing 2D floor plans ensures the
quality of the resulting scene’s 2D layouts, it can lead to large de-
formations of 3D rooms. To reduce the amount of deformation, it
is possible to instead build the layout ‘on the fly’: retrieving 3D
rooms one by one and iteratively assembling them into a plausible
2D layout, changing the rooms slightly as needed. In this section,
we describe one pipeline that follows this paradigm. We extract a
graph abstraction of an existing 2D floor plan, where each node en-
codes the type of the room and and each unlabeled edge represents
a portal connection. Conditioned on the graph, we iteratively re-
trieve compatible 3D rooms and use an optimization procedure to
assemble them into a partial floor plan, repeat these steps until the
layout is complete.

5.1 Room Retrieval

Each iteration of the algorithm must retrieve a 3D room corre-
sponding to a node in the input layout graph. The retrieved room
needs to be compatible not only with the shapes of the other rooms
retrieved so far, but also with the rooms retrieved later on, in order
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to form a coherent floor plan. Instead of trying to manually select
features that lead to such compatibility, we formulate the retrieval
problem as a deep metric learning problem: we learn an embed-
ding space of possible room shapes, where rooms which are com-
patible with the same layouts should be grouped together. This is
similar in spirit to the approach taken by Sung et al. for learning
to assemble part-based shapes [SSK*17]. Our neural architecture
has two sub-networks: an embedding network and a retrieval net-
work. The embedding network maps individual 3D rooms into a
high-dimensional vector space; the retrieval network maps an in-
put partial floor plan, as well as a relation graph of the entire floor
plan, into a probability distribution over this space. The two net-
works are trained jointly using a contrastive learning framework,
i.e. rooms that are known to fit well with a layout in the training set
should map to higher-probability points than other rooms. Figure 3
shows the architecture of these networks and their interaction; the
rest of this section describes them in more detail.

Embedding Network The embedding network maps a 2D room
r into an embedding vector e,. For this, we pass an image-based
representation of the room through a convolutional neural network
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(CNN). The image representation uses separate channels to repre-
sent the rooms, walls, portals, as well as the specific portal to which
we want to connect the next room.

Retrieval Network The retrieval network takes the current partial
floor plan S, the target floor plan relation graph G, and the node
g corresponding to the room to be inserted, and predicts a condi-
tional probability distribution P (e, | ¢, G,S) over room embeddings
er. Similarly to the work of Sung et al. [SSK*17], we model this
distribution as a mixture of Gaussians over a room shape embed-
ding space. We use a mixture density network [Bis94] to predict
this distribution.

Since the features of G and S are highly correlated, we use a sin-
gle neural network to learn from both simultaneously. We first use
a message passing neural network [GSR*17] to extract information
from the relationship graph G. After T rounds of message propa-
gation, we predict a per-node descriptor hy, as well as a descriptor
of the entire graph hg. To extract information from the partial floor
plan, we use a CNN conditioned on an image-based representation
of the floor plan to predict an image feature hs. The image-based
representation is the same as that used by the embedding network,
with an additional set of |h| channels. These channels encode the
corresponding node embedding h,, for each room in the layout. Fi-
nally, we concatenate the image feature hg, the graph descriptor
hg, as well as the descriptor for the room to be retrieved hy, and
feed it to a mixture density network, which predicts the parameters
of the Gaussian mixture, where the k-th Gaussian is parameterized
by a weight ¢, a mean y and a standard deviation Gy.

Joint Training We train the embedding and retrieval networks
jointly using a triplet loss. Given a room embedding e,, we define
the log likelihood that the embedding is sampled from the mixture
distribution predicted by the retrieval network:

N
0195 (e,) =log ¥ 0(4,G,S) - N (er | i (4,G. S),04(4,G,5)%)
k=1

Using this embedding loss, we define a contrastive loss [CSSB10]
between an embedding of a positive example room e and embed-
ding of a negative example room e_:

£99%(er,e) = max{m+ 495 (e_) — 995 (ey),0}

where m = 10 is a constant margin. In other words, this loss encour-
ages positive example rooms to have a higher predicted likelihood
than negative example rooms. Positive example rooms are created
by removing a room from one of the training layouts. Negative ex-
amples are created by sampling rooms from other floor plans. For
rooms with more than one portal, we randomly select a subset of
portals to show in the query portal mask.

We use T = 5 rounds of propagation for the graph neural net-
work. We choose |h, | = 64 as the dimension of the per node embed-
ding and hg = 128 as the dimension of the graph embedding. The
CNN contains seven layers, without batch normalization, which we
find to be detrimental to the training process. We use |hg| =512 as
the dimension of predicted image feature. For the retrieval network,
we predict a mixture of 20 Gaussians over an 128 dimensional em-
bedding space. We use a margin of 10 for the triplet contrastive

loss. We train the neural networks using the Adam [KB15] opti-
mizer, and with a batch size of 16. At each batch, negative exam-
ples are sampled from 16 randomly selected floor plans. We start
with uniformly selecting from these examples, gradually favoring
harder examples as the training proceeds.

Figure 4 shows examples of rooms predicted by the retrieval net-
work. The network learns to retrieve rooms of the correct shape,
correct type, and the correct number of portals. Note that the net-
works are not trained to recognize the possibility of using a room
after rotations. To allow for this, we apply a four way rotational
augmentation to all the candidate 3D rooms instead.

5.2 Placing Retrieved Rooms into the Floor Plan

We use the trained embedding and retrieval networks to iteratively
retrieve and insert rooms into the layout. We determine the loca-
tion of the new room by matching the position of the portal to the
connecting rooms. When multiple such portals exist, we randomly
select one for initialization.

However, it is unlikely that the retrieved room will fit perfectly
into the current partial floor plan. We use beam search to increase
the chance that we find better fits. To resolve remaining inconsis-
tencies, we apply an optimization procedure after each step of room
retrieval. Inspired by prior work [WFLW 18, PGK*20], we adopt
a mixed integer quadratic programming (MIQP) based procedure
for layout optimization. The optimization procedure has two goals.
The first is to ensure that the partial floor plan is valid, i.e. each
room has a positive area, no overlaps exist between different rooms,
and all paired portals align with each other. Figure 5 shows exam-
ples of this process. The second goal is to avoid obvious semantic
issues in the floor plan. We tackle one such issue, interior voids
in the floor plan, by encouraging the rooms to be adjacent to each
other, though additional heuristics could be employed to improve
the quality of the 2D floor plans further. Figure 6 shows the ef-
fect of encouraging room adjacency. These goals must be achieved
while minimizing deformation of the room outlines and the por-
tal locations. The precise formulation of the objective function and
constraints can be found in the supplemental material.

6 Deforming Retrieved 3D Rooms

Having generated a 2D layout and retrieved 3D rooms, the final
task involves deforming the individual room geometries to fit the
layout. This is a nontrivial problem: the 3D room must be warped
to fit the new 2D outline, but we must take care to avoid introducing
visually-objectionable artifacts, most prominently non-rigid distor-
tion to semantically-meaningful objects within the room.

Deforming a 3D room to fit an optimized floor plan layout
amounts to solving an analogy problem: given the source 3D room
mesh M and its 2D outline polygon Pg, as well as the target 2D
outline polygon Pr produced by the optimizer, what is the corre-
sponding target 3D room mesh M17?

In this section, we describe a two-step solution. First, we warp
the source outline Pg onto the target outline Pr by optimizing for
a dense correspondence between them. Then, we use the warped
outline as a control cage for cage-based deformation of the source
mesh M to produce the target mesh M.
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Graph Context  Floor Plan

Best 3 Retrievals

10% 50% Worst

Figure 4: Our learned retrieval network retrieves rooms to add to an in-progress layout. The three highest-probability retrievals are good
matches and permit the rest of the graph to be completed later. In the top row, the top 3 retrievals are all medium-sized rooms that can be
easily inserted into the available corner given their portal placements. In the bottom row, the query node in the graph specifies that the new
room should have two portals, and all the top 3 retrieval results do. The quality of retrieval falls off further down the probability-ordered list
of rooms in our validation set, exhibiting errors such as incorrect room types, incorrect shapes, and incorrect numbers of portals.

Retrieval Optimization Retrieval

dHep B

Figure S: Examples of a 2D floor plan before and after our
optimization-based snapping. From left to right: fixing a room
slightly too large to fit in a small corner; sliding a pair of portals
to make the new room match better.

Optimization

Without With Without With

Figure 6: Two examples illustrating the effect of rewarding the lay-
out optimizer for maximizing adjacencies between different rooms.

Finding a correspondence between outlines Our first step in de-
forming the 3D room mesh to fit the new target room outline Pr
is to first deform its 2D outline Pg to the target outline. As both
outlines are closed, one-dimensional, piecewise linear curves, this
problem reduces to finding a correspondence between Pg and Pr.
We solve this problem by sampling a finite set of N 1D points
ug .. ulsv -1 along the source outline Ps (including all of its corner
points) and then optimizing for a corresponding set of 1D points

u(% .. ul}] ~LonPr, by minimizing the following objective:

N—1 }\ae 7\/"

E(,) Ncelasticily(i) + Ncnormal(i) — reorer (1)

where

2
: i+1)modN i Pr
Celasticity (1) = ((u¥ JmodN ur) — %)
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is the elasticity regularization term that encourages the output
points u7 to be spread out evenly on the target outline,

2 2
. i+1 dN ] i+1 dN 1
Cnormal(l) =0; (xglf+ Jymo _-’CZT) + (l - ei) (y(7€+ Jmo _le)

is the normal matching term that encourages originally vertical
segments to stay vertical (8; = 1) and originally horizontal seg-
ments to stay horizontal (8; = 0), where (xir,y%) is the 2D posi-
tion of uy along Pr, and reomer(i) = G5G} is the term that en-
courages source corner points to correspond to target corner points
(¢’ e {0,1} is a constant indicating whether the point i is a corner
in the source/target).

In addition, we impose the constraint that uiT < uiTJrl for all points
i, which enforces that the sequence of points remains monotonic. To
make sure that the portals fall on the right segment of the outline
after deformation, we impose the additional constraint that for each
pairs of portals pg and piT, the endpoints of the original portal /Jg“
and ,ugb falls within the corner points ¢ and ui? that contain the
target portal. For both the source and target outlines, we define u =
0 to occur at the upper-left-most corner of the outline.

Outline-driven deformation Given the warped outline produced
by the correspondence step, we drive a cage-based deformation of

the room mesh. That is, Ps(ug...ugv_l) is treated as the initial

polygonal control cage for the mesh, and Pr (u(% .. ul}/ _1) provides
the new positions of the cage vertices. We then interpolate the po-
sitions of all interior mesh vertices using mean value coordinates
(MVC) [Flo03]. Finally, we deform each wall where a portal falls
on to make sure the portals fall on the right position. Figure 7 shows
an example of these procedures applied to a 3D room.

Handling rigid objects The deformation scheme described above
non-rigidly distorts the room geometry. Since room retrieval and
layout optimization try to retrieve and place rooms that fit into
a layout together without changing their shape much, this distor-
tion is typically small and unobjectionable. However, when ob-
jects within a room undergo such deformations, it can result in
semantically-implausible bending artifacts. To prevent such arti-
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Input Room  Input Outline Target Outline Deformed Room

Figure 7: Example of a 3D room deformed to fit an optimized 2D
outline. From left to right: the initial 3D room mesh; the 2D outline
for the input mesh (with a subset of sample points ug . .L/SV_I col-
ored); the target 2D outline for the deformation (with correspond-

ing points u(% e ul}] ~1 colored ); the final deformed room geometry.

Input Room w/out Rigid Objects ~ w/ Rigid Objects

Figure 8: Examining the effect of treating objects as rigid in our 3D
room deformation procedure. From left to right: a view of the ini-
tial 3D room mesh; the room deformed without treating objects as
rigid; the room deformed while treating objects as rigid. Enforcing
object rigidity prevents semantically implausible bending artifacts.

facts, we cut all labeled objects other than those with labels floor,
ceiling, wall or curtain out of the mesh, deform the rest of the mesh
using the scheme above, and then insert the objects back into the
deformed room mesh. To determine object insertion positions, we
move their original centroid position according to the MVC defor-
mation. In some cases, this results in placing the object in a posi-
tion that intersects with other objects or the room geometry. If this
occurs, we push the object away from the collision until the inter-
section is resolved. If doing so results in another intersection before
the first is resolved, we uniformly scale the object down until the
collision is resolved. Figure 8 shows deformation results with and
without this special logic for handling rigid objects.

7 Evaluation Strategies for 3D Layout Generation

In this section, we propose a set of metrics for evaluating the ef-
fectiveness of methods that solve the Roominoes task. First, we
identify the properties of the output that are of interest to down-
stream tasks. We then define metrics that estimate the quality of the
results, without having to spend many machine hours to actually
test the generated data on downstream tasks. Finally, we demon-
strate that 3D scenes generated by Roominoes can be useful for
downstream tasks.

Table 2: Comparing different methods for 2D floor plan genera-

tion.
Method FID | FDI[R]| % fool 1}
Rectangles 63.49 450.74 1.34
Dataset 6.84 1.29 53.54
Generative Model 9.36 2.72 46.86
Smart Portal Stitching 18.61  86.05 28.72

Smart Portal Stitching (no net) 22.40  90.20 25.00

7.1 Evaluating 2D Layout Quality

The quality of a generated floor plan’s 2D layout is important for
tasks that require reasoning about the global structure of a scene,
e.g. indoor navigation. We propose the following metrics to evalu-
ate 2D layout quality:

e Fréchet Distance (FD): a measure of distributional similarity
between the generated floor plans and those in a held-out test
set [HRU™17]. We evaluate this distance in two different feature
spaces: a pre-trained Inception image classifier, i.e. the standard
Fréchet Inception Distance (FID), and the CNN component of
the retrieval network described in Section 5 (FD[R]). The first is
more general, whereas the second is domain-specific.

o C(lassifier Fool Percentage: the percentage of held-out test lay-
outs classified as “generated” by a classifier trained to distin-
guish between generated 2D layouts and layouts from the train-
ing dataset. A value of 50% would suggest that the two sets of
layouts are indistinguishable from each other.

We compare the following sources of 2D floor plans:

e Rectangles: Randomly place N rectangles, where N equals the
number of nodes in the graph. This simple baseline establishes a
lower bound on performance.

e Dataset: Floor plans drawn from a dataset (RPLAN [WFT*19])
that are not used for training the following models.

o Generative Model: Generate floor plan given the polygonal out-
line of the building, using a recent method [WFT*19].

e Smart Portal Stitching: Build a 2D layout while retrieving 3D
rooms using the algorithm described in Section 5.

e Smart Portal Stitching (no net): Use the algorithm from Sec-
tion 5, but do not use the learned retrieval network; instead, re-
trieve random rooms with correct type and portal number.

Table 2 shows the results of this experiment. As expected,
sourcing 2D layouts from a floor plan dataset or a data-diven 2D
floor plan generative model produces the highest quality layouts.
The smart portal stitching methods sacrifice layout plausibility, al-
though the version with the learned retrieval network performs bet-
ter. Figure 9 shows examples of dataset layouts vs. those produced
by smart portal stitching. The layouts generated by the smart portal
stitching method have less consistent outlines and sometimes con-
tain implausible features, such as interior holes. In extreme cases,
the layout quality can be too low to be useful, as visualized in Fig-
ure 10a and 10b.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.



K. Wang et al. / Roominoes: Generating Novel 3D Floor Plans From Existing 3D Rooms 65

Match 2D Layout Shape (2D: Dataset)
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Figure 9: Novel 3D house meshes generated by the two representative strategies, visualized along with the 2D floor plan, and an overlay of
the original room shapes and portal location. The Match 2D Layout Shape strategy obtains better layouts by directly using existing 2D floor
plans. However, the 3D rooms do not match the floor plan well, leading to large deformations and visual artifacts. In contrast, the Smart
Portal Stitching strategy requires minimal deformation to the retrieved 3D room outlines and portals, but at the cost of lower layout quality.
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Table 3: Comparing different methods for retrieving 3D rooms in
terms of their effect on final mesh quality. Lower is better.

Method Area Outline Portal Mesh A Mesh E
Match 2D Layout Shape 1631 7.776 2758 447 3.19
Smart Portal Stitching 1045 0.026 0.008 2.42 1.83

Smart Portal Stitching (no net) 19.32  0.460 0.752 3.47 2.30

Table 4: Evaluating how well a pretrained DDPPO [WKM*20]
agent navigates scenes generated from different sources. Higher is
better.

Scene Source Success Rate  SPL

Match 2D Layout Shape 0.783 0.608
Smart Portal Stitching 0.759 0.618
MP3D Scenes 0.876 0.785

Table 5: Navigation agent performance for agents trained on
scenes generated using our approach and original Matterport3D
dataset scenes. Higher values are better. Evaluation is done on the
Gibson [XZH* 18] dataset, in scenes unseen at training time.

Scene Source Success Rate  SPL

Smart Portal Stitching 0.753 0.484
MP3D Scenes 0.818 0.628

7.2 Evaluating 3D Mesh Quality

Large deformations of 3D room meshes will degrade perceived vi-
sual quality of the output scenes, which is important to most down-
stream tasks. We propose the following metrics to evaluate mesh
quality in the presence of deformations:

e Area Change (Area): Percent change in the area of the room’s
2D outline after deformation.

e Outline Change (Outline): Average distance between corre-
sponding points on the outlines

e Portal Change (Portal): Average distance between the mid-
point of the portal after the deformation and the final portal lo-
cation (obtained through deforming the wall segment)

e Mesh Statistics: For each mesh, we discretize the area of each
triangle and the length of each edge into 64 bins, and compute
the Wasserstein distance of the triangle area distribution (Mesh
A) and edge length distribution (Mesh E).

We use these metrics to compare the following 3D room retrieval
methods:

e Match 2D Layout Shape: Retrieve rooms whose shape best
matches the shape of their corresponding room in a given input
2D floor plan (i.e. the algorithm from Section 4).

o Smart Portal Stitching: Same as above.

e Smart Portal Stitching (no net): Same as above.

Table 3 shows the results of this experiment. The smart portal
stitching strategy requires significantly fewer changes to the re-
trieval 3D rooms, with respect to the size, outline shape, portal

(@ (b) (0 (d)

Figure 10: Failure cases of different algorithms. (a, b): the Smart
Portal Stitching strategy generates a low quality 2D layout that
contains large holes or non-smooth outlines; (c, d): the Match and
Deform strategy fails to find reasonably similar living rooms, lead-
ing to large deformations in the final mesh.

locations, and mesh properties. Using a neural network further am-
plifies this effect. On the other hand, due to the limited availabil-
ity of 3D rooms, the match and deform strategy struggles to find
3D rooms that match exactly, and thus has to modify each room
much more. Figure 9 illustrates the differences in terms of amount
of change required and impact on the 3D mesh quality. In extreme
cases, the retrieved rooms are so incompatible that leads to unac-
ceptable mesh quality post deformation. Figure 10c and 10d shows
two such examples.

7.3 Evaluating on Downstream Tasks

To demonstrate that the 3D house scenes we generate through
Roominoes can be useful for downstream tasks, we use them
for two small-scale indoor visual navigation experiments. For the
first experiment, we use a DDPPO agent [WKM*20] trained on
the Gibson [XZH™*18] dataset in the Habitat simulation environ-
ment [SKM*19]. We task the agent with performing a series of
point goal navigation tasks in scenes generated by our method, as
well as in original Matterport3D scenes. To evaluate how well the
agent navigates these scenes, we use two standard metrics from the
visual navigation literature: Success Rate and Success Weighted
by Path Length (SPL) [ACC*18]. The pre-trained agent can nav-
igate reasonably well in the scenes generated by both methods.
Additional qualitative examples of agents navigating in the gen-
erated scenes are in the supplementary material. For the second
experiment, we train two agents with proximal policy optimiza-
tion [SWD™*17] with the settings used in [SKM*19], one on 104
floor plans generated by the Smart Portal Stitching strategy, and
the other on 184 floor plans from Matterport3D. Both agents are
trained with 30 million steps. We then evaluate the performance
of the agents on the Gibson [XZH™*18] validation set as used in
the Habitat challenge [SKM™19]. Table 5 summarizes the results.
Agents trained on our data achieve comparable success rate to the
agent trained on the original Matterport3D data, though with rela-
tively lower SPL. These experiments suggest that data generated
by our method is of comparable quality to original Matterport3D
data with respect to indoor visual navigation. A full-scale evalua-
tion of the impact of data augmentation with our data is compu-
tationally challenging, as it has been shown that navigation agents
continue to learn from data after billions of steps [WKM*20]. The
supplemental material reports on an experiment intended to ap-
proximate this setting; we leave rigorous, full-scale evaluation to
future work. Regardless, it has been shown that additional training
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data is beneficial to the performance of agents, even if the addi-
tional data is of poor quality [WKM™*20]. Thus, we believe that the
scenes we generate, which we have shown to be of reasonable qual-
ity, can be used to improve the performance of navigation agents
further.

7.4 Timing

It takes on average about 30 seconds for the Match 2D Layout
Shape strategy to complete a 2D layout. The Smart Portal Stitch-
ing strategy, in contrast, requires about 10 minutes per floor plan.
Virtually all of the time is spent on 2D layout optimization, where
per-room-insertion optimization time varies considerably depend-
ing upon layout complexity (from 0.1 to 60 seconds, which is our
hard time limit). We note that the time spent on optimization can be
reduced from 10 minutes down to 1 minute without beam search.
Computing outline correspondence takes about 1 minute per floor
plan with 250 point samples. This can be reduced drastically if done
with fewer point samples. Finally, deforming the 3D mesh takes 3
minutes per floor plan, primarily due to the large number of vertices
we have to handle.

8 Conclusion

In this paper, we presented Roominoes, a new task for creating
house-level 3D environments by mixing-and-matching existing 3D
rooms. We examined the possible solutions to three sub-tasks, and
implemented two representative algorithms for solving the task. As
discussed in Section 7, we found Roominoes to be challenging, pri-
marily due to the need to trade-off between 2D layout quality and
3D mesh quality. There are several potential directions one can take
to address such challenges. First, the 2D floor plan quality for the
“2D by 3D” class of methods can be improved by designing ad-
ditional semantic features capturing what constitutes a good floor
plan. For example, one could attempt to reduce the number of cor-
ners of the generated 2D floor plans to make them more regular, or
fine-tune the shape of individual rooms to make the floor plan more
similar to real ones. The 3D room deformation procedure can also
be improved. Our current method does not fare well in the case of
large deformations, particularly when portals need to slide signif-
icantly along walls. Future work might instead perform additional
mesh surgery e.g. cutting and pasting the portal regions to a differ-
ent part of the wall, instead of deforming the entire wall, or copy-
ing and pasting some existing regions, instead of applying large
deformations to those regions. Doing so leads to the need to syn-
thesize new textures, which is a challenging problem on its own.
Currently, there is no guarantee that the layout of the 3D room
post-deformation is still realistic. Thus, it would be beneficial to
augment the control points with semantic layout rules learned from
available 2D layout data. This can be extended further to take into
account relations between individual rooms. It is possible to exper-
iment with additional 3D room datasets such as ScanNet [DCS*17]
or Gibson [XZH* 18], in order to increase the chance of retrieving
rooms that fit the target floor plan well. Finally, a more thorough
evaluation in downstream tasks such as visual navigation, as well
as other tasks that benefit from 3D scene datasets can reveal what
properties of the generated scenes are most beneficial in such tasks.

Beyond addressing these limitations, there are several broader
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avenues for future work. For instance, one can extend Roominoes
to support on-demand data generation, creating scenes tailored to
address scenarios where methods for downstream tasks are under-
performing. It is also worth doing more investigation on strategies
that bridge the gap between different datasets: in this work, we sim-
ply combined one dataset of 2D floor plans with another dataset of
3D rooms. While the performance is acceptable, a more careful in-
vestigation addressing differences between datasets can potentially
improve the generalization performance of the algorithms.

Finally, we would be excited to see Roominoes applied at scale
to more of the applications that originally motivated its creation:
computer vision, scene understanding, 3D reconstruction, and em-
bodied Al There are a number of interesting questions for future
work. How do we find the right trade-off between 2D and 3D qual-
ity depending on the type of downstream tasks? Does training mod-
els for these applications on massive sets of Roominoes-generated
3D floor plans improve their generalization performance? And is
it possible to reduce the number of training scenes needed if those
scenes are tailored to the task(s) the method must address? These
are some exciting questions that would be fruitful to explore with
Roominoes.
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