
Eurographics Symposium on Geometry Processing 2021
K. Crane and J. Digne
(Guest Editors)

Volume 40 (2021), Number 5

A Robust Multi-View System for High-Fidelity Human Body Shape
Reconstruction

Qitong Zhang1 Lei Wang1 Linlin Ge1 Shan Luo1 Taihao Zhu1 Feng Jiang1 Jimmy Ding1 and Jieqing Feng†1

1State Key Laboratory of CAD&CG, Zhejiang University, China

Abstract
This paper proposes a passive multi-view system for human body shape reconstruction, namely RHF-Human, to overcome sev-
eral challenges including accurate calibration and stereo matching in self-occluded and low-texture skin regions. The recon-
struction process includes four steps: capture, multi-view camera calibration, dense reconstruction, and meshing. The capture
system, which consists of 90 digital single-lens reflex cameras, is single-shot to avoid nonrigid deformation of the human body.
Two technical contributions are made: (1) a two-step robust multi-view calibration approach that improves calibration accu-
racy and saves calibration time for each new human body acquired and (2) an accurate PatchMatch multi-view stereo method
for dense reconstruction to perform correct matching in self-occluded and low-texture skin regions and to reduce the noise
caused by body hair. Experiments on models of various genders, poses, and skin with different amounts of body hair show the
robustness of the proposed system. A high-fidelity human body shape dataset with 227 models is constructed, and the average
accuracy is within 1.5 mm. The system provides a new scheme for the accurate reconstruction of nonrigid human models based
on passive vision and has good potential in fashion design and health care.

CCS Concepts
• Computing methodologies → Computer graphics; Shape modeling; Mesh models;

1. Introduction

Human body shape acquisition and reconstruction are active re-
search topics in many fields ranging from animation to fashion
design, health care, and digitized virtual humans. There are two
types of human body shape acquisition techniques: (1) dynamic
acquisitions techniques [PRMB15,CCS∗15,BBLR15,LFB17] that
are focused on the natural movements of humans, such as motion
capture and surface deformation, and (2) static acquisitions tech-
niques [BBB∗10, RZY∗20] used for accurate human body shape
reconstruction. In recent decades, many static active-vision sys-
tems [TZL∗12, LCK∗21] and model-based techniques [GWBB09,
KBJM18] have been proposed for accurate human body shape re-
construction. It is generally believed that passive-vision systems
based on multi-view stereo (MVS) are inferior to the above main-
stream approaches, but that they have their advantages and tremen-
dous potential.

Early passive-vision methods suffered from 3D body shape cap-
turing challenges, such as calibration accuracy and stereo match-
ing in self-occluded and low-texture skin regions. Even so, a wide
range of applications exists for passive-vision techniques based
on their unique advantages. Different from active-vision systems

† Corresponding author: jqfeng@cad.zju.edu.cn

with long scanning times and model-based methods with low-
resolution templates, the passive-vision technique possesses the
following features: it uses single-shot capture and is template in-
dependent. Over the last few years, the passive-vision techniques
have developed rapidly with the release of high-resolution datasets
[SSG∗17, KPZK17] of challenging static scenes. Then, a motivat-
ing question is whether it is possible to design a passive system that
can overcome the main challenges of body shape capturing and ac-
quire high-quality human body shapes.

To this end, inspired by [BBB∗10, RZY∗20], a robust passive-
vision system (RHF-Human) is proposed to acquire and reconstruct
accurate human body shapes robustly. The flowchart of the system
is shown in Figure 1. First, a multi-view system consisting of 90
digital single-lens reflex (DSLR) cameras is built. This system can
capture a human body shape in a single shot. Second, a two-step
robust camera calibration approach is proposed. It can improve the
accuracy and robustness of the system calibration process and save
calibration time for each new human body acquired. Third, in the
dense reconstruction stage, an improved PatchMatch MVS method
is adopted to generate a high-quality point cloud. The basic model
of joint pixelwise view selection and depth-normal estimation can
alleviate the self-occlusion problem and improve the reconstruction
accuracy at the subpixel level. To overcome the increasing negative
impact of high-frequency details, such as body hair, a local smooth-
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Figure 1: Overview of the proposed human body shape acquisition and reconstruction pipeline.

ness constraint is introduced to optimize the reconstruction of skin
occluded by the body hair. In addition, the proposed hierarchical
framework can further decrease the impact of body hair and allevi-
ate matching ambiguity in low-texture skin regions. Finally, some
digital geometry processing techniques are performed to generate
a watertight mesh of the acquired human body shapes; these tech-
niques include outlier removal, hole filling, and surface reconstruc-
tion. A total of 227 watertight meshes of 57 subjects with different
genders, poses, and skin with different amounts of body hair are
tested, and an average reconstruction accuracy of 1.5 mm is ob-
tained. The reconstructed human body shape dataset demonstrates
the robustness and accuracy of the proposed system.

In conclusion, this paper provides a systematic contribution,
which is a novel passive-vision system for accurate static human
body acquisition, and two special contributions, including a ro-
bust system calibration process and an accurate and self-optimizing
dense reconstruction method. In the professional area, we develop
a high-quality passive-vision system for nonrigid human body
shape capture in a single-shot way, which overcomes the weak-
ness of mainstream active-vision systems and the main challenges
of passive-vision methods, and generates body shape models with
high accuracy. For practical purposes, we show that the proposed
system offers a universal solution for passive human body shape
reconstruction with various genders, poses, and skin with different
amounts of body hair, which has great potential applications.

2. Related Work

According to the type of vision system and whether a paramet-
ric model is used, human body shape reconstruction methods can
be roughly divided into three types: (1) model-free, active-vision
methods; (2) model-based methods; and (3) model-free, passive-
vision methods. Many dynamic acquisition systems focus on the
capture of motion and surface deformation. In this section, we re-
view the most relevant static methods that reconstruct accurate hu-
man body shapes.

Model-Free, Active-Vision Reconstruction. Active-vision

methods utilize depth sensors to obtain raw multi-view 3D data
and then fuse them via point cloud registration. In recent decades,
high-end scanning systems have been used, such as laser [ACP03,
YWK20] or structured light [BRLB14, PRMB15] systems, to ro-
bustly scan high-accuracy human body shapes. In contrast, some
cheap, consumer-level systems [LVG∗13, TZL∗12] using RGB-D
(color and depth) scanners, such as Kinect, have drawn much atten-
tion from the community but suffer from noise disturbances, which
lead to low-precision results. Due to this concern, recent learning-
based work [LCK∗21] focused on how to reconstruct implicit sur-
face representations from noisy and incomplete depth maps. How-
ever, the performance of such a method is highly dependent on the
training datasets and limited by the GPU memory size. In particu-
lar, the static active-vision acquisition systems require the scanned
person to either stand still, be rotated on a turntable to be scanned
from different views, or rotate in front of the sensor while try-
ing to roughly maintain the same pose. Thus, these methods are
not ideal for static nonrigid human body shape reconstruction. In
contrast, this paper designs a robust passive-vision system that is
one-shot and easy-to-deploy for reconstructing high-quality human
body shape models.

Model-Based Reconstruction. Model-based methods fit shape
and pose parameters to incomplete inputs (i.e., 3D point clouds,
images, and silhouettes) utilizing parametric models [ASK∗05,
LMR∗15] to obtain complete naked [WHB11,ZLNW19] or clothed
[YFHW16, ZPBP17] human body shapes. For inputs of 3D point
clouds, Weiss et al. [WHB11] and Zhao et al. [ZLNW19] captured
several point clouds from different views, estimated per-view op-
timal pose and shape parameters, and finally generated consistent
shape and pose parameters to reconstruct 3D human body shapes.
Achenbach et al. [AWLB17] computed dense point clouds through
MVS and then fitted a template model to the scanner data to gen-
erate models that are ready to be animated. Regarding 2D informa-
tion inputs, early works [BSB∗07,GWBB09] estimated the param-
eters of the SCAPE model [ASK∗05] utilizing silhouettes and 2D
joints with manual intervention. Recent works have focused on au-
tomatic methods incorporating cues (e.g. 2D joints [BKL∗16], sil-
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houettes [LRK∗17], and multi-view images [Hua17]) and learning-
based methods [KBJM18, AMB∗19] without any 2D detections.
Although model-based methods can handle abundant poses, the
low-resolution template is a limitation, which tends to eliminate
high-frequency details. In contrast, the proposed method is tem-
plate independent when reconstructing high-precision human body
shapes.

Model-Free, Passive-Vision Reconstruction. Passive-vision
methods acquire 3D information from 2D images that are usu-
ally captured from multi-view viewpoints simultaneously in a
studio environment. There are many passive multi-view systems
[LDX10, Rem04, FRS17] focused on human body shape recon-
struction. For the acquisition systems, sparse camera setups [SH07,
VPB∗09,TNM09] with extremely wide baselines or full-body cap-
ture systems [VPB∗09, LDX10, JLT∗15] with low percentages of
body pixels limit the quality of reconstructed human body shapes.
The calibration process is easily damaged by inaccurate matching
and even small camera movements caused by studio staff or cam-
era gravity. For the reconstruction methods, early attempts were
based on visual hulls [MBR∗00, VBMP08, FP09] but could not
handle concavities or generate fine-scale details. More accurate ge-
ometries can be acquired by utilizing multi-view stereo constraints
[SCD∗06,FH15]. However, the performances of these methods are
restricted by several challenges, such as stereo matching in strongly
occluded [ES04,SH07] and low-texture regions [FP10,LQ05], and
the limited estimation accuracy based on the front-parallel assump-
tion [VETC07, CVHC08]. Thus, in the past, the reliability and ac-
curacy of passive systems were generally considered to be inferior
to those of active methods.

In the last decade, some more advanced techniques have fo-
cused on calibration [LMS16,SF16], visibility estimation [SZFP16,
XT19], low-texture regions [RZY∗20, XLS∗20], and mesh re-
finement integrated with shading cues [WVT12, WWMT11,
WLDW11], to make the resulting 3D models as accurate as pos-
sible. Recently, PatchMatch MVS methods [GLS15, SZFP16],
which discard the front-parallel assumption and adopt the core
idea of the PatchMatch algorithm [BSFG09], have shown great
power in solving dense matching problems with high accuracy
and efficiency. Based on PatchMatch MVS, pixelwise view selec-
tion strategies [SZFP16, XT19] and some cues (e.g. planar pri-
ors [RM19, XT20] and multi-scale frameworks [XT19, LFYX19])
used for low-texture regions were proposed to further improve the
accuracy and completeness of reconstruction. In addition, learning-
based methods have also achieved excellent performance on single-
view [TTC∗19, NSH∗19] and multi-view [YLL∗18, LFB18] re-
construction tasks based on voxels [GVCH18, HLC∗18], depth
maps [LFB18,TTC∗19], and implicit functions [SHN∗19,SSSJ20].
These learning-based methods offer a new direction for passive-
vision approaches but are limited by the bottlenecks of the training
datasets and GPU memory size.

Supported by the great potential of passive methods, some works
on human faces [BBB∗10] and human body shapes [RZY∗20] were
developed using pairwise stereo reconstruction and obtained excel-
lent results. To further propel the development of passive meth-
ods in the field of human body shape reconstruction, we propose a
passive multi-view system utilizing a robust camera calibration ap-

Figure 2: The camera setup of the multi-view system. (a) Real
capturing system. (b) Diagram of the camera setup.

proach and an advanced PatchMatch MVS method to acquire accu-
rate results. Although our body scanning pipeline is similar to the
previous work [FRS17], they focused on the efficiency of model
generation while the proposed system focuses on the accuracy.

3. Multi-View Shape Acquisition and Reconstruction

This section describes the proposed robust passive multi-view sys-
tem, as shown in Figure 1, including capture process, multi-view
camera calibration, dense reconstruction, and meshing.

3.1. Capture Process

Human body shapes are captured using the proposed multi-view
camera system as shown in Figure 2. The multi-view setup con-
sists of 90 DSLR cameras arranged around a circular capture space
with a radius of 2 m. We set four layers of cameras, focusing on
the main torso from top to bottom (four cameras form a group) to
capture various human body shapes and heights (up to 2 m). These
cameras constitute 18 groups arranged approximately every 20 de-
grees. Six Canon 5D Mark IV cameras with 70 mm prime lenses
are placed on the front of the body placed at the top layer for the
human face capture, and 66 Canon 600D and 700D cameras with
50 mm prime lenses are placed for other views of the main torso.
The rest of the 18 cameras (Canon 750D) with 28 mm wide-angle
lenses are inserted among every neighboring group for wider views
of the various human body shapes to complement the information
and ensure a flexible pose space.

The cameras are synchronizable to approximately 0.5 ms using
the remote shutter, and this is sufficient for static subjects. The
highest resolution setting (> 5000 ∗ 3000) of every type of cam-
era is utilized with more than 50% of the pixels accounted for the
human body. Diffuse environmental lighting is fixed and directed to
human skin to prevent specular highlights. Significantly, the camera
setup can be modified for different requirements. Thus, the system
is easy to adapt for practical use.

3.2. Robust Multi-View Camera Calibration

Based on the theoretical foundation of camera calibration, we con-
centrate on the practical problem of designing a reliable and effi-
cient calibration system for capturing human body shapes. First,
we estimate the initial camera parameters using calibration ob-
jects to lay the foundation for high-accuracy results. A rigid
right parallelepiped (Figure 3(a)) equipped with ChAruco patterns
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[GMMM14] (Figure 3(b)) is placed at different positions and rota-
tion angles, captured 40-50 times in total, and used to acquire all in-
trinsic camera parameters K and distortion parameters via [Zha00].
The exact corners of the ChAruco patterns with distinguishable tags
provide correspondences between cameras, and they give a known
metric distance D between two corners for setting a scale factor. An
incremental structure-from-motion (SfM) method [SF16] is applied
to obtain extrinsic camera parameters {R, t} utilizing these discrim-
inable pattern corners. Furthermore, points on a calibration cylinder
with encoded patterns [RZY∗20] (Figure 3(c)-(d)), which are cap-
tured 20-30 times in total, are integrated into the SfM pipeline to
improve the camera pose accuracy. We move, rotate, and incline
the cylinder to acquire more points and cover the space missed by
the encoded points of the right parallelepiped. Second, a refinement
process is applied to avoid the slight camera motions caused by stu-
dio staff or camera gravity during capturing, and to increase the ro-
bustness of the hardware. We directly match the DSP-SIFT [DS15]
features in human images with a strict threshold, triangulate these
points, and then optimize the initial camera poses and intrinsic pa-
rameters via bundle adjustment (BA) [TMHF99]. Exact camera pa-
rameters can be acquired to guide the subsequent dense reconstruc-
tion process. The whole calibration pipeline is shown in Figure 4.

The proposed calibration approach has the following advantages.
The calibration process with 3D objects is suitable for human body
shapes. Both the parallelepiped and the cylinder are sized to match
the body of the subject, moved, and rotated many times around
the position at which the subject stands. Thus, the calibration pro-
cess is well estimated with sufficient calibration data in the subject-
occupied regions, which are the same as the workspaces of the cali-
bration objects. Unlike the required complete views of the checker-
board calibration and inexact features of LED-based calibration,
the ChAruco patterns of the parallelepiped provide unique and ac-
curate subpixel features and allow for partial views. The accurate
initial camera parameters lay a foundation of high accuracy and
restrict the possible subsequent optimization errors caused by the
incorrect matching of human features. Finally, the calibration does
not need to be repeated for each new subject due to the introduced
refinement process. Whenever slight camera movements caused by
external disturbances occur during capture, the next group of cap-
tured human images can be used to rectify the disturbed camera
parameters via strict BA. Thus, the refinement process enhances
the robustness of the calibration and further improves the quality of
the reconstructed human body shapes.

Figure 3: Calibration objects. (a) The rigid calibration right par-
allelepiped. (b) Examples of ChAruco patterns. (c) The calibration
cylinder. (d) One example of an encoding pattern.

Figure 4: Overview of the robust multi-view calibration pipeline.

3.3. Accurate Dense Reconstruction

In this section, we introduce the proposed MVS algorithm for uni-
versal human body shape reconstruction. In Section 3.3.1, the basic
graphical model is described and used in the presented algorithm
to overcome the matching problem in self-occluded regions and
the inexact depth estimation relied on the front-parallel assump-
tion, and to improve the estimated accuracy of the algorithm. In
Section 3.3.2, the detailed MVS algorithm is described to solve the
challenges encountered in reconstruction, including the increased
negative impact of body hair caused by the improved subpixel ac-
curacy, and the matching ambiguity in the low-texture skin regions.

3.3.1. Basic Model

This section describes the adopted basic model [ZDJF14, SZFP16]
for joint pixelwise view selection and depth-normal estimation to
alleviate the matching issue in self-occluded regions and the lim-
ited accuracy caused by the front-parallel assumption. Since each
row/column is processed independently and alternatively in parallel
computing, we describe this framework as being limited to a single
line.

Given a reference image X ref and a set of source images X src =
{Xm | m = 1, ...,M} with known camera parameters, this method
models the depth θl and the normal nl as a Markov process, to-
gether with the hidden state Zm

l ∈ {0,1} which defines whether
pixel l is visible in the source image m. Then, an inference is for-
mulated as a maximum-a posteriori (MAP) and optimized itera-
tively. To solve the posterior P(Z,θ,N | X), variational inference
was used in [ZDJF14] to approximate the real posterior with a
function q(Z,θ,N), which ensures that the Kullback-Leibler di-
vergence between these two posteriors is minimized. Analog to
[ZDJF14], Schönberger et al. [SZFP16] factorized the approxima-
tion q(Z,θ,N) = q(Z)q(θ,N) and constrained q(θ,N) to the fam-
ily of Kronecker delta functions q(θl ,nl) = δ(θl = θ

∗
l ,nl = n∗l ).

A variant of the generalized expectation-maximization (GEM) al-
gorithm [NH98] is utilized to estimate this approximation. In the
E step of the GEM algorithm, the forward-backward algorithm is
applied to infer Z in the hidden markov chain while keeping (θ,N)
fixed. In the M step of the GEM algorithm, the hidden variable Z
is fixed and (θ,N) is calculated through PatchMatch sampling and
sequential propagation. The optimal pair (θ̂opt

l , n̂opt
l ) is estimated as

follows: (
θ̂

opt
l , n̂opt

l

)
= argmin

θ∗l ,n∗l

1
|S| ∑

m∈S
ξ

m
l (θ∗l ,n

∗
l ) , (1)

ξ
m
l (θ∗l ,n

∗
l ) = 1−ρ

m
l (θl ,nl)+ηmin (ψm

l ,ψmax) . (2)
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where S is a subset of the source images selected from a distribution
Pl(m), which encourages the sampling images to have sufficient
baselines, similar resolutions, and nonoblique viewing directions.
The cost ξ

m
l (θ∗l ,n

∗
l ) includes the photometric cost ρ

m
l using a bi-

laterally weighted NCC and the geometric consistency cost as the
forward-backward reprojection error ψ

m
l = ‖xl−Hm

l Hlxl‖, where
Hm

l and Hl denote the homography matrix transformation of the
patch from the source to the reference image and from the reference
to the source image, respectively. This function uses η = 0.5 as a
constant regularizer and ψmax = 3px as the maximum reprojection
error. In addition, the inference stage is decomposed into two stages
due to the memory constraints incurred when computing the geo-
metric consistency. In the first stage, the initial depths and normals
for each image are estimated by the photometric consistency using
only the photometric cost in Equation (2). In the second stage, the
final estimations are acquired by combining the photometric and
geometric consistency as in Equation (2).

According to the PatchMatch scheme in [SZFP16], the pair
(θ∗l ,n

∗
l ) is selected from the hypotheses set during each sweep:{

(θl ,nl) ,
(

θ
prp
l−1,nl−1

)
,
(
θrnd

l ,nl
)
,
(
θl ,nrnd

l

)
,(

θrnd
l ,nrnd

l

)
,
(

θ
prt
l ,nl

)
,
(

θl ,n
prt
l

)}
,

(3)

where θ
prp
l−1 and nl−1 are the propagated depth and normal estima-

tions of the previous pixel, respectively, θ
prt
l and nprt

l denote the
perturbed parameters of the current estimation θl and nl , respec-
tively, and θ

rnd
l and nrnd

l are the randomly generated samples, re-
spectively.

In this way, the basic PatchMatch MVS algorithm estimates the
visibility values of neighboring views and the plane parameters,
including the depth and normal for each pixel. The pixel-wise view
selection strategy can acquire accurate visibility information for the
self-occluded regions and improve the matching accuracy of the
algorithm. The introduced normal estimation for each pixel avoids
the incorrect estimation caused by the front-parallel assumption.
With accurate camera parameters, the basic model can improve the
accuracy at the subpixel level.

3.3.2. Detailed MVS Algorithms

Despite the improved subpixel accuracy of the algorithm, the neg-
ative impact of body hair is also increased and incomplete recon-
struction in low-texture skin regions is not addressed. This section
describes the proposed algorithms in detail for addressing chal-
lenges of increased body hair disturbance and matching uncertainty
in low-texture regions. Although the negative impact of body hair
can be addressed in a post-processing step by applying standard ge-
ometry processing techniques, some operations, such as smoothing
and hole filling, may lead to shrinkage of the model and accuracy
loss. To preserve the original depth information inferred from the
human body surface, we decide to address these artifacts during
the step of estimating the point clouds of human body shapes, and
meanwhile, the matching ambiguity in low-texture regions can be
decreased. First, image preprocessing is applied to detect and blur
the body hair regions in the captured images for the subsequent
estimation process. Second, a local smoothness constraint is intro-
duced to the basic model to smooth the marked regions affected
by body hair. Finally, a hierarchical framework is constructed, and

Figure 5: (a) Captured image. (b) Image after local blurring. The
results of point clouds and meshes using the original image (c, e)
and the blurred image (d, f), respectively.

the estimation of an image with a coarser scale is leveraged to fur-
ther decrease the negative impact of body hair and to alleviate the
matching ambiguity in low-texture skin regions.

(a) Image Preprocessing

Instead of directly utilizing the captured images as inputs, im-
age preprocessing, including body hair detection and blurring, is
applied to decrease the disturbing induced by body hair in the sub-
sequent reconstructed shape. First, we detect the skin regions of the
captured human images by a human parsing network [WSC∗20]
that is retrained using augmented data with four labels (back-
ground, head, skin, and clothes). After the human parsing stage,
the skin regions of the body are labeled and segmented for sub-
sequent hair detection. Second, we detect body hair with a se-
ries of image filters that are similar to those in previous work
[BBN∗12]. We transfer the captured RGB images to HSV space.
To estimate the orientation of each hair pixel, the real part of a
Gabor filter kernel Kα is used for convolution with the S and V
channels of the images to produce a score for body hair oriented
along the α direction. The orientation map O(x,y) = α̃ is calcu-
lated by finding the best orientation α̃ that yields the highest score
F(x,y) = |Kα̃ ∗V |(x,y) + |Kα̃ ∗S|(x,y) at pixel (x,y) among 18 dif-
ferent directions (one every 10 degrees). Aiming at obtaining a
distinguishable hair mask, we apply a non-maximum suppression
strategy [Can86] to suppress the artifacts in which the scores are
not the local maxima in the direction orthogonal to the orientation.
Hysteresis thresholding in [Can86] and morphology operations (an
opening operation followed by a closed operation) are used to judge
and enhance the edges of the hair mask. Finally, we invert the hair
mask and employ a median filter to eliminate the detected pores for
the purpose of obtaining an accurate hair mask M0.

Figure 6: Overview of the image preprocessing approach.

Owing to the wide baseline between two views in a multi-view
stereo system, large amounts of surrounding skin pixels are affected
by hair occlusion. Removing these influenced regions via the guid-
ance of the reconstruction mask may lead to abundant missing data
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and incomplete results. Thus, it is not ideal to merely mask out
these influenced regions to acquire satisfactory results. Similar to
previous work [BBN∗12], we first choose a gentle strategy that
blurs the detected hair regions via an anisotropic Gaussian filter to
improve the reconstruction quality to some extent. The orientation
of the Gaussian filter is given by the orientation map O. The masked
pixels in M0 are blurred to a high spatial extent, and the skin regions
not occluded by body hair are not changed. The improved results
after blurring are given in Figure 5. Then, we employ an erosion
operation with a 15 ∗ 15 kernel, which is sufficient, to M0 to indi-
cate the surrounding regions affected by body hair. The acquired
binary mask M1 is introduced for guiding the subsequent depth es-
timation to process to give a smoothness constraint in the masked
regions. A review of image preprocessing is shown in Figure 6.

(b) Optimization with A Local Smoothness Constraint

To further decrease the impact of body hair on the surrounding
skin regions, a local smoothness constraint guided by the binary
mask M1 is introduced to the optimization of the basic model. Body
hair pixels interfere with the correct local matching of surround-
ing skin regions due to their high discrimination in a fixed patch
window. Conversely, under a global view, hair pixels, for which
the ratio in the captured images is lower, become less distinguish-
able during the matching process. The negative impact of hair pix-
els can be decreased with a global method, but such a method is
time-consuming and may smooth out other high-frequency details.
Based on this observation, we only focus on the masked regions
in M1 that are affected by hair pixels, crop a local image patch χ

h
l

for each pixel lh in these regions, and introduce a smoothness con-
straint to decrease the local negative impact of body hair.

Dense matching is performed by minimizing the following en-
ergy functions consisting of a data term ϕ and a smoothness term φ

for the image pixels affected by hair pixels:

E = ∑
ls

ϕ (ls,vls )+∑
lh

ϕ

(
lh,vlh

)
+∑

lh
∑

r∈Nlh

φ

(
lh, r,vlh ,vr

)
, (4)

where ls denotes an unmasked pixel in M1, and Nlh is the neigh-
borhood set of the masked pixel lh. The data term ϕ computes the
local similarity between the reference patch and the corresponding
source patch for the label vl = (θl ,nl) of each pixel l = {ls, lh}. The
smoothness term φ forces the planes around lh to change smoothly
and suppresses the tilt of hair planes. These two terms are defined
as follows:

ϕ (l,vl) =
1
|S| ∑

m∈S
ξ

m
l (θ∗l ,n

∗
l ) , (5)

φ

(
lh, r,vlh ,vr

)
= λ

(
1−ζlhr

)
, (6)

where the data term ϕ is obtained from Equation (1), and λ is a con-

stant regularizer. We define ζlhr = exp(− d(plh , fr)+d(pr , flh )
2σ

) where
d(plh , fr) is the distance between the reconstructed point plh at lh

and the tangent plane fr at r, and d(pr, flh) has a similar definition,
respectively. The constant σ is preset to 0.1, which provides a strict
constraint for making the two planes closer considering the actual
human body size. Note that we only calculate the smoothness term
for lh in the local image patch χ

h
l , thus other regions maintain high

accuracy and retain high-frequency details.

Although the introduced smoothness term for lh constrains the
skin surfaces around the hair to be smooth, the additional computa-
tion cost for optimization over a continuous space is huge. Similar
to [BRFK14], we transfer the calculation of the smoothness term
over the continuous vr to a computation over a finite set. We define

the optimal hypothesis set Hl =
{(

θ̂
opt(i)
l , n̂opt(i)

l

)}K

i=1
, which is

first randomly initialized, correspondingly to each pixel l. To main-
tain the parallel computation of the basic model, we consider inte-
grating an optimizer for solving Equation (4) into the PatchMatch
sequential propagation procedure. We observe that a 1D optimizer,
dynamic programming (DP), has a sweep and update scheme that
is similar to that of sequential propagation along the scanline, but
that suffers from stripe artifacts. Thus, an improved DP algorithm
integrated with the winner-take-all (WTA) results is proposed to
acquire the optimal hypothesis set for the marked regions in M1.
Equation (4) can be minimized in parallel along each row/column
as follows:

{(
θ̂

opt(i)
l , n̂opt(i)

l

)}K

i=1
=


argmin

θ∗l ,n∗l

1
|S| ∑m∈S ξm

l

(
θ∗l ,n

∗
l

)
, i f l = ls

argmin
θ∗l ,n∗l

M
(
l,θ∗l ,n

∗
l

)
, i f l = lh,

(7)

M
(
l,θ∗l ,n

∗
l

)
= 1
|S| ∑

m∈S
ξm

l

(
θ∗l ,n

∗
l

)
+ min
(θ̂l−1,n̂l−1)∈H′l−1[

M
(
l−1, θ̂l−1, n̂l−1

)
+λ

(
1−ζl(l−1)

)]
,

(8)

where H
′

l = {Hl ,(θ̂
opt(0)
l , n̂opt(0)

l )} is the modified hypothesis label

set, and the optimal pair (θ̂
opt(0)
l , n̂opt(0)

l ) estimated by the WTA

method is introduced to H
′

l and the candidate set for alleviating
stripe artifacts. The candidate set of the pair (θ∗l ,n

∗
l ) in Equation

(3) is modified as follows:{{(
θ
(i)
l , n(i)

l

)
,
(

θ
prp(i)
l−1 ,n(i)

l−1

)
,
(

θ
rnd(i)
l ,n(i)

l

)
,
(

θ
(i)
l ,nrnd(i)

l

)
,(

θ
rnd(i)
l ,nrnd(i)

l

)
,
(

θ
prt(i)
l ,n(i)

l

)
,
(

θ
(i)
l ,nprt(i)

l

)}K

i=1
,
(

θ̂
opt(0)
l , n̂opt(0)

l

)}
.

(9)
During the optimization stage, as shown in Equation (7), we apply
a divide-and-conquer strategy for the different pixels classified by
the binary mask M1. For the skin pixels not affected by hair, we
follow the WTA strategy by utilizing the bilateral NCC described
in Section 3.3.1 to acquire the optimal hypothesis. For the pixels af-
fected by hair, the smoothness constraint is introduced in the local
patch χ

h
l and optimized by the efficient DP approach, which does

Figure 7: Optimization with the local smoothness constraint. The
yellow circle indicates the current processing pixel which is af-
fected by body hair. A local image patch is first cropped. During
each sweep (purple arrows) of the sequential propagation proce-
dure, the DP algorithm is applied to estimate the depth and normal
of the current pixel.
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not break the framework of parallel computation. This is shown in
Figure 7. Thus, this strategy seldom changes the integral surface ac-
curacy, recovers the natural smoothness of skin around body hair,
and improves the precision of the algorithm for the target skin sur-
face with body hair. Finally, these obtained K best pairs of each l
are sorted by energy cost and the rank 1st pair is set to (θ̂

opt
l , n̂opt

l ).

In the end, the proposed local smoothness constraint decreases
the negative impact of body hair and improves the quality of recon-
struction in skin regions with body hair while maintaining high-
accuracy results in other regions.

(c) Hierarchical Framework

Although the introduced local smoothness constraint can largely
smooth out the rough skin surfaces caused by the impact of body
hair, it is still difficult in cases where the subjects have thick body
hair. In addition, the challenge of matching ambiguity in low-
texture skin regions still cannot be handled due to the local match-
ing in the PatchMatch MVS method. We observe that, when an
image is downsampled, the image patch of skin under the same
patch window becomes more discriminative, while the body hair
within the patch is less distinguishable. This is because the rich-
ness of the skin texture is increased at a coarser scale with a more
global view. Thus, both the matching ambiguity in low-texture skin
regions and the negative impact of body hair can be alleviated
by performing estimation at a coarser scale. Similar to previous
works [XT19,LFYX19], we construct a hierarchical framework for
utilizing coarser estimations to ease the matching problem in low-
texture regions and the interference of skin caused by body hair.

As shown in Figure 1, a five-layer image pyramid is established
with a downscaling factor of ε = 0.5 for all images to fully uti-
lize the coarser estimations. Random sampling with PatchMatch is
used to initialize the hypothesis for the layer at the highest level.
For other layers, the initialized hypothesis is set as the optimal
hypothesis of each pixel upsampled via a joint bilateral upsam-
pler [KCLU07] at the upper level. Thus, reliable estimations of the
low-texture regions and the skin around body hair at the coarsest
scale are propagated to the finest scale. We notice that as the propa-
gation proceeds from the coarser scale, the optimization at the finer
scale is accelerated and quickly converges. Based on this observa-
tion, in the first stage which involves photometric estimation, we
set the number of iterations tS5 at the coarsest scale to 5 and tSi at
each scale Si is decreased scale by scale until tS1 = 1 at the finest
scale. To obtain more accurate results, the second stage with geo-
metric consistency is applied twice at each layer scale to refine the
depth maps and normal maps. Finally, a median filter with a kernel
with the same size as the window size is adopted.

The local smoothness constraint is exploited by the last three lay-
ers to suppress hair pixels that are discriminative in high-resolution
images while retaining the basic accuracy of the first two layers
using the basic model. Instead of recomputing the WTA optimal
pairs for each pixel of a coarser scale image at the current scale,
the coarser estimation (θ̂

opt(0)
l , n̂opt(0)

l ) of each pixel at the second
layer is upsampled and introduced to the DP optimization approach
described in Section 3.3.2(b). For a smooth transition between the
masked and unmasked pixels in M1, a median filter is utilized after

the optimization process with a local smoothness constraint at each
layer.

In this way, both the negative impact of thick body hair and
the matching uncertainty in low-texture skin regions are allevi-
ated by the proposed hierarchical framework. In the end, the mod-
ified PatchMatch MVS method overcomes the problems regarding
matching issues in the self-occluded and low-texture regions, im-
proves the accuracy of the reconstruction results, and solves the
challenge of the negative impact of body hair. Finally, the depth
map fusion method implemented in [SZFP16] is adopted in our
method for obtaining a whole human body shape point cloud.

3.4. Meshing

To further improve accuracy of the acquired point cloud, an out-
lier removal strategy [KKSZ09] is utilized to filter outliers while
keeping the other points fixed. Although the basic model alleviates
the self-occlusion problem in most regions, some nearly invisible
regions in the images, such as the crotch, the axilla, and the bot-
tom of the foot, are hard to reconstruct. To acquire a watertight
mesh, we introduced a hole filling step to fill these missing data.
Template-based deformation [ACP03] is applied to these nearly in-
visible regions that do not affect the personalities of human body
shapes. Finally, we generate a high-fidelity human body mesh via
screened Poisson surface reconstruction [KH13].

4. Experiments and Discussion

In this section, we first validate the effectiveness of the three indi-
vidual parts of the proposed system, including the multi-view cam-
era setup, the calibration process, and the dense reconstruction ap-
proach. Then, overall quantitative and qualitative evaluations are
subsequently performed via a comparison with the state-of-the-art
passive methods. Finally, we discuss a parameter analysis, as well
as the superiority, and limitations of the proposed system.

Following previous work [RZY∗20], the accuracy of the ac-
quired mesh is evaluated by leveraging ground-truth anthropometry
measurements obtained using thin sticky measuring tapes attached
to the skin. The commonly used anthropometry measurements are

Figure 8: Illustration of anthropometry measurements.
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Table 1: Comparisons of point cloud errors of different anthropometry measurements before and after using the refinement in the calibration.

Method
Measurements

Avr
A B C D E F G H I J K L M N O

Male
w/o CR 2.49 1.51 0.95 2.74 2.46 1.19 1.25 1.32 0.78 0.93 1.10 0.55 1.95 0.62 0.63 1.36

Ours 1.11 0.46 0.81 1.16 1.57 0.84 0.89 0.77 0.17 0.47 0.33 0.41 0.41 0.17 0.40 0.66

Female
w/o CR 1.73 1.82 2.67 2.95 2.72 1.35 1.27 1.31 1.71 0.65 0.70 0.59 1.61 1.01 0.66 1.52

Ours 1.02 0.93 1.43 1.70 1.89 0.93 0.98 0.98 0.94 0.45 0.26 0.04 0.93 0.31 0.40 0.88

Figure 9: Results of point clouds using different camera setups. (a) 15 cameras. (b) 30 cameras. (c) 45 cameras. (d) 60 cameras. (e) 75
cameras. (f) 90 cameras.

shown in Figure 8. Different from taking manual distance measure-
ments [RZY∗20] of the skin surface along the tape contours, we
apply a B-spline curve fitting [CC78] on the mesh and compute the
arc length to acquire the reconstructed distance. The absolute dif-
ferences between the ground truths and the actual measurements
reflect the accuracy of the human mesh.

The proposed method is implemented in C++ with CUDA. All
experiments are carried out on a PC with an Intel Core i7-6700K
CPU at 4GHz, 64 GB of RAM, and two GeForce GTX 1080Ti
GPUs.

4.1. Validation of the Three Parts

Multi-View Camera Setup. The multi-view camera setup consist-
ing of 90 high-resolution cameras offers adequate views for avoid-
ing incomplete human body shapes caused by self-occlusion issues.
To test the effectiveness of the proposed setup, the completeness of
the captured point clouds is compared using 6 different camera se-
tups. We first set 3 groups of cameras (4 cameras form a group)
that are focused on the main torso and 3 cameras with wide-angle
lenses for a wider view as the basic setup. Then, sets of 15 cameras
are added incrementally in other setups. These setups and the cor-
responding obtained point clouds are illustrated in Figure 9. The
reconstruction results show that the completeness increases with
the increase in the number of cameras and that the proposed multi-
view setup performs best.

Calibration. The proposed calibration pipeline using the en-
coded corners of calibration objects and human features improves
the efficiency of calibration and the robustness of the system in
terms of accuracy. For efficiency, we test the times of conducting
calibration in our system and [RZY∗20] which applied checker-
board calibration. To calibrate all cameras, [RZY∗20] takes about

120 minutes while our method only about 15 minutes which im-
proves by 8 times. Instead of repeated calibration used in [RZY∗20]
for each new model, the refinement strategy using human features
further saves time and improves calibration efficiency. For accu-
racy, we reconstruct different point clouds using different cam-
era parameters estimated with or without refinement (w/o CR). As
shown in Figure 10(c), the acquired normal maps are finer after
the addition of the refinement mechanism that exploits human fea-
tures. The quantitative results are presented in Table 1. We apply a
B-spline curve fitting to the acquired point clouds and compute the
mean accuracy by comparing the measurements with the ground
truth. It can be observed that the proposed calibration method de-
creases the anthropometry measurement errors and improves the
overall accuracy.

Dense Reconstruction. The presented dense reconstruction
method offers a universal and passive solution for high-quality hu-
man body point cloud acquisition. To validate the effectiveness

Figure 10: (a) Reference image. The results of normal maps before
(b) and after (c) using the refinement operation in the calibration
pipeline.
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Figure 11: Qualitative point cloud comparison using different MVS methods.

Table 2: Quantitative point cloud comparisons using different MVS
methods. The two parts of the point clouds that are seriously and
weakly impacted by body hair are denoted as SIR and WIR, respec-
tively.

OpenMVS COLMAP w/o SC w/o HF Our Method
M Std M Std M Std M Std M Std

SIR 2.24 1.36 1.67 0.73 3.49 0.91 2.70 0.84 4.73 0.67
WIR 1.93 1.32 2.58 1.19 3.21 1.21 3.08 0.99 4.40 1.00
ALL 2.10 1.35 2.10 1.07 3.36 1.07 2.88 0.93 4.57 0.85

of the dense reconstruction method, we choose 30 point clouds,
which are divided into 16 and 14 point clouds that are seriously
and weakly impacted by body hair, respectively, from 5 subjects
and 6 fixed body parts, including the back, breast, abdomen, arm,
thigh, and calf, to evaluate the quality of the point clouds. We com-
pare our method with a hierarchical method (OpenMVS) [cdc], the
baseline method (COLMAP) [SZFP16], our method without the
local smoothness constraint (w/o SC), and our method without the
hierarchical framework (w/o HF). The qualitative results are shown
in Figure 11. The negative impact of body hair on the skin is elimi-
nated by our method. Without the hierarchical framework, the com-
pleteness in low-texture skin regions is decreased. Moreover, we
design a user study, that recruits 24 volunteers with professional
experience to score the point clouds according to quality (decreas-
ing from 5 to 1). The mean scores (M) and standard deviations (Std)
are given in Table 2. The detailed instructions for the participants
and the statistics (both mean and standard deviations) of each body
part can be found in the supplementary material. Whether the ef-
fect of body hair is serious or slight, our method performs best and
reconstructs the most realistic skin surface.

4.2. Overall Evaluation

We evaluate our system by comparing it with other state-of-the-
art passive systems including two commercial software programs
(RealityCapture [RC] and MetaShape [agi]), COLMAP [SF16,
SZFP16], and a pipeline consisting of OpenMVG [ope] and Open-
MVS [cdc]. Screened Poisson surface reconstruction [KH13] with
the same octree depth is applied to all systems. There are several
accuracy levels from the lowest to the highest in the steps of the
workflow of RealityCapture and Metashape. The highest accuracy
level is set for each step in the evaluation. The comparison results

Figure 12: Qualitative mesh comparison of one male and one fe-
male using different passive systems.

of one male with more body hair and one female with less body
hair are illustrated in Figure 12. We observe that our system de-
creases the negative impact of body hair on skin reconstruction and
performs best. For subjects with less body hair, the performance of
the proposed system is comparable to those of other state-of-the-art
systems. The quantitative comparison between the accuracy lever-
aging anthropometry measurements obtained by the methods on
meshes is shown in Table 3. The human body shapes acquired from
our system are one-to-one in terms of proportion to the real human
body with a measurement error of less than 1.5 mm on average, so
the proposed method performs best with respect to accuracy. For
timings comparisons, our system takes about 4.17 hours for gen-
erating a single model while RealityCapture takes about 2.2 hours,
Metashape about 8.15 hours, COLMAP about 4.5 hours, and the
pipeline with OpenMVG and OpenMVS about 2.75 hours. All the
methods are executed on the same PC. The run time of our system
ranks 3rd and is acceptable for high-accuracy human body shape
reconstruction with 90 cameras.

We capture 57 subjects with different genders, poses, and skin
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Figure 13: Mesh results obtained using the proposed system for various skin with different amounts of body hair, genders, and poses.

Table 3: Comparisons between the reconstruction errors of differ-
ent anthropometry measurements. RC, MS, COL, OMV, RHF de-
note RealityCapture, MetaShape, COLMAP, and a pipeline consist-
ing of OpenMVG and OpenMVS, the proposed system, respectively.

M
Male Female

RC MS COL OMV RHF RC MS COL OMV RHF
A 8.96 8.92 7.38 6.89 2.24 6.31 7.10 5.93 8.34 1.83
B 5.42 2.35 7.51 6.06 1.23 3.52 7.06 3.71 6.04 0.32
C 8.27 10.05 14.17 18.56 1.43 10.66 10.29 14.41 26.16 1.22
D 10.97 8.20 15.48 17.87 1.69 5.78 8.42 6.62 8.15 1.79
E 9.53 8.69 19.74 22.76 2.36 8.51 7.28 20.89 14.60 2.5
F 2.73 3.49 5.67 8.06 0.91 3.93 2.51 5.09 6.41 1.02
G 3.27 2.94 5.31 5.03 1.06 1.54 2.31 5.68 4.87 0.23
H 3.03 3.22 5.32 10.06 1.33 2.16 4.01 7.82 8.33 1.14
I 2.43 4.17 9.11 8.26 0.78 3.98 4.37 5.58 13.85 1.01
J 4.75 2.59 4.79 5.74 0.75 1.89 2.30 7.46 5.10 0.99
K 1.72 5.00 10.59 8.01 1.16 3.56 1.46 3.73 5.11 2.17
L 4.19 4.31 9.89 9.43 0.43 2.30 4.21 6.60 5.51 0.63
M 8.46 8.53 7.47 8.74 0.61 5.25 3.80 8.93 8.16 0.54
N 3.73 3.74 9.36 9.16 0.7 4.62 5.01 8.73 5.61 0.15
O 1.84 4.82 7.64 10.48 0.86 3.92 4.03 10.92 9.15 1.24

Avr 5.29 5.40 9.30 10.34 1.17 4.53 4.95 8.14 9.02 1.12

with different amounts of body hair and construct a human body
shape dataset with 227 watertight meshes. The results of the whole
dataset can be found in the supplementary material. Partially recon-
structed human body shapes are shown in Figure 13. The number of
vertices in the acquired human body shapes is approximately 700
thousand, which is finer than most human body shapes obtained
from the model-based methods and passive learning-based meth-
ods. It can be validated that the proposed system provides a gen-
eral solution for handling different subjects with different genders,
poses, and skin with different amounts of body hair.

4.3. Discussion

Parameter Analysis. To decrease the impact of the introduced
smoothness constraint on the unmasked regions in M1, the size
of the local image patch χ

h
l for each masked pixel lh is set to a

small radius of 5, which is the same as the matching window ra-

Table 4: The execution time of each step in the pipeline.

Calibration Dense Reconstruction Meshing All

Time (min.) 15 220 15 250

dius. We observe that a higher λ coefficient in the smoothness con-
straint yields a greater strength for smoothing the rough surface af-
fected by body hair. Thus, we utilize a strong smoothness constraint
with λ = 15. Similar to [BRFK14], using more hypotheses yields
a converged solution with slightly lower energy but increases the
computational complexity. In practice, we find that choosing K = 3
provides satisfactory results. As such, we use this value for all the
experiments. All other parameters are the same as the default values
adopted in [SF16, SZFP16].

Superiority. The experimental results demonstrate that the pro-
posed system overcomes the weakness of previously developed
passive methods and achieves a comparable level of accuracy
(within 1.5 mm on average) to that of the mainstream methods.
In each component, this system offers a practical and universal so-
lution for reconstructing human body shapes. First, the single-shot
capture process alleviates the capture issue with regard to the non-
rigid human body. The multi-view setup is easy to adapt for com-
mercial use. Second, the refinement mechanism using human fea-
tures during calibration can be used in all studio environments to
avoid harming the accuracy with slight camera movements and to
save time by not repeating the calibration process for each new sub-
ject. Finally, the proposed dense reconstruction method achieves
excellent performance for different subjects and acquires high-
fidelity skin surfaces while excluding the negative impacts of hair,
which is beneficial for applications in anthropometry and health
care.

Limitations. As for versatility, the human body capture and re-
construction are limited to young East Asians, various skin tones
for different ethnicities are lacking. Some methods in our system,
i.e., body hair detection, may fail based on the input of other skin
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tones. Regarding accuracy, some high-frequency details around
body hair (i.e., nipples and the belly button) may be smoothed out
because the mask M1 covers the affected regions, which are not
limited by body hair. In terms of efficiency, we count and analyze
the total computational time of our system from the moment of ac-
quiring body images to obtaining the reconstructed model finally
and find that the most time-consuming step is the dense reconstruc-
tion. As Table 4 shown, our system takes about 250 minutes overall
but the time of dense reconstruction takes over 80%. Although the
hierarchical framework accelerates the optimization process, the
introduction of a local smoothness constraint increases the com-
putational complexity of the algorithm. We will consider a more
elaborate optimization strategy to further improve the performance
of our approach.

5. Conclusions

The proposed multi-view passive system for human body shape
reconstruction overcomes the main challenges encountered by
passive-vision methods, including calibration accuracy and stereo
matching in self-occluded and low-texture skin regions. An inte-
grated and self-correcting model is provided as a universal solu-
tion for high-precision human body shape acquisition, as well as to
lay a foundation for practical applications and a new generation of
passive-vision systems.

In the future, we will conduct in-depth research in the follow-
ing aspects: For versatility, we will capture a wider scope of human
body shapes with various skin tones and will find a universal so-
lution to reconstruct these models; For efficiency, we will explore
a more efficient optimizer to further improve the performance and
extend the method to broader applications, such as dynamic hu-
man body shape reconstruction. Meanwhile, we will also explore
the powerful 3D geometry processing techniques, which can effec-
tively improve the quality of output generated by a simplified multi-
view system; For textured models, subsequent research on texture
mapping technique in our system will be conducted to recover the
texture of human body shapes.
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