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Lighting only

Final image

Indirect lighting using our method

Figure 1: A production scene lit using our technique from a recent 60Hz AAA-title shipped on Playstation 4, Playstation 5, Windows PC,
Xbox One, and Xbox Series X/S platforms. We present a method for efficient representation of precomputed light transport data, that enables
compressed rendering and seamless reconstruction in large-scale, real-world applications under hard real-time constraints.

Abstract
We study the problem of efficient representation of potentially high-dimensional, spatially coherent signals in the context of
precomputed light transport. We present a basis decomposition framework, Moving Basis Decomposition (MBD), that gener-
alizes many existing basis expansion methods and enables high-performance, seamless reconstruction of compressed data. We
develop an algorithm for solving large-scale MBD problems. We evaluate MBD against state-of-the-art in a series of controlled
experiments and describe a real-world application, where MBD serves as the backbone of a scalable global illumination system
powering multiple, current and upcoming 60Hz AAA-titles running on a wide range of hardware platforms.

CCS Concepts
• Computing methodologies → Rendering; Image compression;

1. Introduction

Physically based rendering — one of the key goals in the field of
computer graphics — is based on a realistic, global lighting model.
Despite recent advances in GPU hardware, real-time global illumi-
nation is not feasible for large scenes under the performance con-
straints of modern video games [SSS*20]. As a result, precomputed
lighting techniques are still the most commonly used lighting solu-
tion in many applications [Bar17].

Scaling precomputed lighting solutions, e.g., spherical harmonic
irradiance volumes [GSHG98], with growing virtual world sizes
poses an important challenge. As an example, the raw source data
for the indirect illumination in the scene depicted in Figure 1, rep-
resented as volumetric irradiance — a continuous, 5D (position

× direction) signal per color channel — takes 1.5GB of memory,
or 48 bytes for 12 coefficients per voxel, even with only a linear,
or first order spherical harmonics encoding. For many target plat-
forms, this would occupy most of the available GPU memory bud-
get, leaving little to no room for any geometry or materials.

We consider the problem of compressing spatially coherent, po-
tentially high-dimensional signals and present a new basis decom-
position framework, which we call moving basis decomposition
(MBD), that enables scalable rendering of compressed precom-
puted lighting data. In contrast to previous approaches, our solu-
tion provides seamless reconstruction with controlled error while
keeping high compression ratios. For example, the indirect lighting
in Figure 1 can be directly rendered in the MBD representation us-
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ing 1.09 bytes per voxel to reconstruct the target linear SH RGB
irradiance signal, resulting in a roughly 44:1 compression ratio.

1.1. Contributions and Limitations

The main contributions in this paper are the following:

1. We present a basis decomposition framework, moving basis de-
composition (MBD), that generalizes many existing linear basis
decomposition methods (Section 3.1).

2. We develop an algorithm for approximately solving MBD prob-
lems and show that it reliably produces good solutions and
scales to very large problems, e.g., problems with O(108) un-
known parameters (Sections 3.2 and 3.3).

3. We present an application to precomputed light transport (Sec-
tion 4) and demonstrate empirically, both qualitatively and
quantitatively, improved performance of our method compared
to existing methods.

The main limitation of our method is the assumption regarding
the spatial coherence of the input signal. We discuss our assump-
tions and their implications with more detail in Sections 2 and 5.

2. Preliminaries and Related Methods

We begin by introducing a framework that allows us to set the stage
as well as compare and contrast our work to existing methods.

2.1. Basis Decomposition Framework

We’re studying the following problem: given a (discrete) vector
field {(xi,yi)}†, where xi ∈ R3 is a spatial coordinate in the spatial
domain R3 and yi = f (xi) ∈ RD is a potentially high-dimensional
data vector in the data domain RD, produced by some input gen-
erating function f : R3→ RD, our goal is to find a sparse represen-
tation of the data set {yi} in some basis. That is, we seek a basis
decomposition, such that every input vector y ∈ {yi} can be ap-
proximated by a linear combination of a small number basis vectors
ŷ = ∑l clbl , where bl ∈ RD,cl ∈ R, the approximation error ‖ŷ−y‖
is small in some norm and the rank L satisfies L�D. Note that, for
convenience, we assume the data vectors {yi} to have mean zero.

Not all solutions are equal. Given some error threshold, we can
compare different basis representations by their memory efficiency;
that is, the total number of coefficients and basis vectors in the rep-
resentation such that the approximation error is under the threshold.
For compression applications, of course, the fewer coefficients and
basis vectors we need in order to stay under a given error threshold,
the better. Furthermore, we can compare two equal-error represen-
tations by their error distribution, preferring seamless solutions —
solutions where error is a smooth function of space — to avoid ob-
vious visual artifacts associated with highly non-uniform and dis-
continuous error distributions (Figure 2).

Our goal is finding a memory efficient and seamless decomposi-
tion with minimal error.

† For notational convenience, we omit the lower and upper bounds for
sums, sets and sequences and implicitly assume that ∑l ≡ ∑

L
l=1,

{·i} ≡ {·i}I
i=1, (·m)≡ (·m)M

m=1, etc.

2.2. Related Methods

We continue by highlighting basis expansion and dimensionality
reduction techniques in the context of precomputed light transport
data compression.

K-Means and K-SVD. Silvennoinen et al. [ST15] applied K-
Means vector quantization [Llo82] — a simple model, where each
data vector is represented by a cluster mean vector — to compress
precomputed light transport operators. In terms of our basis de-
composition framework, the coefficients are constants and we only
need to find and store the cluster representatives, i.e., the basis vec-
tors. K-SVD [AEB06] can be seen as a generalization of k-means,
where instead of cluster representatives, we build a global dictio-
nary of basis vectors and approximate the given data as a sparse
linear combination of these shared basis vectors. However, with
both K-means and K-SVD, the choice of global basis vectors with
non-zero coefficients, i.e., the cluster, depends only on the data vec-
tor y, and there are no guarantees of a seamless reconstruction with
respect to the spatial coordinate x.

PCA and SVD. PCA-based approaches come with strong error
bounds due to their connection to the SVD [GV13]. In contrast to
K-SVD, a global PCA basis is not necessarily sparse and the ap-
proximation error depends heavily on the input data distribution.
Instead of a global PCA basis, blockwise PCA (BPCA) [NNJ05]
leverages spatial coherence to form spatially localized clusters
while clustered PCA (CPCA) [SHHS03] partitions the input data
set {yi} into signal-coherent clusters using a modified K-Means al-
gorithm. Both methods then proceed to compute a local, per-cluster
basis for each cluster without considering seamless reconstruction
in the spatial domain.

Observation. In the above methods, the clusters are independent;
that is, the reconstruction does not allow interaction between the
clusters. As a consequence of this fundamental limitation, there are
no guarantees that a reconstruction across cluster boundaries with
respect to the spatial coordinate x is continuous (Figure 2). Further-
more, this cluster discontinuity problem is more pronounced with
highly memory efficient representations.

Spectral Methods. Spectral methods, e.g., methods based on
Fourier or wavelet transforms, introduce a change of basis y = Ψz
to obtain a sparse representation in terms of Ψ [KTHS06; NRH03;
WZH07; LZT*08]. Analogous to PCA, the support of the spectral
basis is often global but we can introduce locality by working in
smaller windows or clusters, similar to the DCT in JPEG [WZH07].
However, as we noted above, independent clusters lead to the clus-
ter discontinuity problem. Continuing the image compression ex-
ample, this is often visible in terms of "block"-artifacts between
the neighboring compression windows.

Non-linear Dimensionality Reduction. Non-linear dimensional-
ity reduction (NLDR) methods can be roughly divided into embed-
dings [RS00; TDL00] and mappings [Bra03]. For reconstruction,
we need a reversible mapping and some of the methods based on
local charts, or clusters, avoid the cluster discontinuity problem by
coordinating the local clusters [RSH02; VVK02; TR03]. Methods
based on local cluster coordination, however, do not directly con-
sider seamless reconstruction in the spatial domain; that is, they
coordinate basis vectors for neighboring clusters only in the data
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Figure 2: Independent clusters and cluster discontinuity problem. A non-linear reference vector field (d) is compressed using block PCA
[NNJ05] (a, g), clustered PCA [SHHS03] (b, f), and our method (c, e), using one basis vector per-cluster and either 4 (left) or 9 (right)
clusters. Cluster discontinuity artifacts are clearly visible when the reconstruction model does not allow interactions between clusters (a, b,
f, g). In contrast, our method (c, e) allows interactions between neighboring clusters via spatial kernels and is visually indistinguishable from
the reference (d). Note that figures (c) and (f) have similar error, although (c) is preferable visually, highlighting the fact for roughly equal
error solutions, a smooth, uniform error distribution is preferable to a non-uniform, discontinuous one.

domain, independently of the given spatial coordinates {xi} using
information contained in {yi} alone.

Neural Methods. Non-linear PCA [BH89] can be seen as a gen-
eralization of PCA for capturing non-linear coherence but shares
the same limitations as global PCA. A local approach can be de-
rived by considering smaller data windows. For example, Ren et
al. [RWG*13] applied neural networks to represent precomputed
lighting data in local regions of space utilizing the full data set
{(xi,yi)}. However, by assuming the windows are independent,
their reconstruction is exposed to the cluster discontinuity problem.

In the context of precomputed light transport, previous methods
have addressed the cluster discontinuity problem from three main
directions:

• Interpolating the reconstructed values. To provide visually
smooth solution, a common solution is to reconstruct-then-
interpolate [LZT*08; ST15; SL17]. In addition to requiring ad-
ditional memory and compute for the intermediate values, this
approach does not provide any control of approximation error
due to this additional interpolation step. Furthermore, as we will
see in Section 4, reconstruct-then-interpolate approach can be
ineffective when dealing with low-frequency cluster artifacts.
• Increasing the number of basis vectors. Sloan et al. [SHHS03]

proposed to adaptively increase the number of basis vectors un-
til the cluster discontinuity artifacts were unnoticeable. Unfor-
tunately, this solution works against our goal of minimizing the
number of basis vectors to achieve high memory efficiency.
• Overlapping clusters. To avoid discontinuities between clus-

ters, Ren et al. [RWG*13] expanded the spatial regions to in-
clude neighboring samples, similar in spirit to lapped transforms
[Cas85]. As we demonstrate in Section 4, this windowing pro-
cess is not effective in reducing low-frequency artifacts due to
cluster discontinuities.

To summarize, methods that assume independent clusters, e.g.,
K-Means, K-SVD, PCA variants and localized spectral methods,
either ignore or apply the above ad-hoc solutions to the cluster dis-
continuity problem, while methods that allow local cluster coordi-
nation in the data domain, e.g., cluster coordination methods in the

context of NLDR, do not, by design, consider seamless reconstruc-
tion in the spatial domain, leaving a gap which we aim to fill.

Key Idea. Our key idea is to combine interpolation with basis de-
composition framework from first principles. In particular, we de-
couple the spatial frequency of the coefficients and the basis vec-
tors in the basis decomposition model for compression, and apply
spatial kernels from scattered data interpolation literature to allow
coordination and information sharing between neighbors in order
to enable seamless reconstruction. Note that in contrast to previous
reconstruct-then-interpolate approaches, we seek to jointly mini-
mize the basis expansion approximation and interpolation error by
construction.

Next, we formulate our key idea the basis decomposition frame-
work (Section 3.1), consider the related optimization problem (Sec-
tion 3.2), and develop an algorithm for solving MBD problems
(Section 3.3). Finally, we discuss the connections between our
method and texture compression, scattered data interpolation and
clustering methods in Section 5.

3. Method

3.1. Moving Basis Decomposition

A key component for a moving basis decomposition is the ability
to perform interpolation of the basis vectors and coefficients sepa-
rately in the spatial domain. In particular, we use a kernel formu-
lation of interpolation, where the interpolants for the basis vectors
b : R3 → RD and coefficients c : R3 → R are written in terms of a
spatial kernel expansions:

c(x) = ∑
m

φm(x)cm (1)

b(x) = ∑
n

ψn(x)Bn, (2)

where φm : R3 → R is a coefficient kernel and ψn : R3 → R is a
basis kernel, cm ∈ R are coefficients and Bn ∈ RD are basis vectors.
From this perspective, we can view linear interpolation as a kernel
expansion with the usual hat functions, while Shepard’s method
can be used to construct more general, spatially scattered kernels
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with compact support that automatically form a partition-of-unity
[She68].

We construct the moving basis decomposition (MBD) by com-
bining the kernel formulation of interpolation with the basis de-
composition framework (Section 2.1), where the role of the kernel
functions φm and ψn is to control the spatial region of influence of
the basis vectors and basis coefficients in a decoupled manner. Con-
cretely, a rank L moving basis decomposition is defined as a tuple
((φm),(ψn),c,B), and the reconstruction f̂ : R3→ RD is given by:

f̂ (x) = ∑
l

cl(x)bl(x) (3)

cl(x) = ∑
m

φm(x)cm,l (4)

bl(x) = ∑
n

ψn(x)Bn,l , (5)

where f̂ (x) is the product of two spatial kernel expansions for the
moving basis vectors bl and coefficients cl , φm is a coefficient ker-
nel, ψn is a basis vector kernel, c is the coefficient tensor and B is
the basis tensor. In this context, tensors are an organized collection
of vectors or scalars that provide a convenient way of indexing their
elements. For example, the lth basis vector over a basis kernel ψn
is given by Bn,l , and the corresponding scalar basis coefficient over
a coefficient kernel φm is given by cm,l .

The coefficients cm,l are linked to their kernels φm via index m
and the basis vectors Bn,l are linked to their kernels ψn via index n,
allowing each kernel to be unique. The kernels can all come from
a parameterized family, such as linear hat functions, or they can
come from different families, allowing flexibility in applications,
as we’ll see in Section 5. Note that the sums are defined over all
kernels, but, depending on the choice of the kernel functions, most
terms in this sum will be zero due to the local region of influence,
or, compact support of each kernel. For example, in a 3D grid, a
trilinear hat kernel is non-zero only in the trilinear footprint of the
nearest 8 basis vectors or coefficients for any given query position.

In addition to enabling local information sharing, the spatial
kernels φm and ψn allow us to decouple and control the spa-
tial frequency of the low-dimensional coefficients c and the high-
dimensional basis vectors B separately for compression. Further-
more, the kernels act as glue for seamless reconstruction, allowing
us to query the reconstruction f̂ (x) at any point x in the spatial
domain. With a suitable choice of kernel functions that form a par-
tition of unity, e.g., linear hat functions, we can think of MBD as
interpolating the basis vectors in space and then finding local co-
efficients that express the input data in terms of this interpolated,
moving basis. It is this moving property of the basis that allows the
MBD model to continuously adapt to local changes in the spatial
domain.

Assumptions. In order for a moving basis decomposition to be fea-
sible, we assume that the high-dimensional input data {yi} lives
on a low-dimensional manifold that is locally linear and piecewise
smoothly varying in space as a function of the spatial coordinate
x ∈ R3. In the context of our target application, the validity of this
assumption is supported by the theory of locally low dimensional
light transport [MSRB07].

3.2. Optimization Problem

The previous section introduced the moving basis decomposition,
and in this section, we discuss the related optimization problem and
develop an algorithm for approximately solving MBD problems.
We formulate our objective as a minimization problem in terms of
the residual r : R3→ RD:

r(x) = f̂ (x)− f (x), (6)

where f̂ is the MBD reconstruction (Equation 3) and f is the tar-
get function, i.e., either the input generating function f , or, in cases
where it is impractical to directly sample the input generating func-
tion f , the extension of the discrete input set {(xi,yi)} over R3

space via interpolation. For example, in our light transport results
in Section 4, we use a dense trilinear grid to represent the input
data set and evaluate the target function f via interpolation instead
of recomputing the light transport operator — expensive operation
— for each query point.

Loss. Given fixed sequences of kernels (φm) and (ψn), we define
our objective using a loss function L(B,c) as follows:

L(B,c) = 1
2

∫
‖r(x)‖2

2dx =
1
2 ∑

k

∫
rk(x)

2dx, (7)

where rk is the kth component of the residual vector r and the inte-
geral are over R3. We define the loss function over the full spatial
domain R3 instead of over the discrete input points {(xi,yi)} to
prevent the solver from overfitting to the discrete input data.

Gradient and Hessian. The derivatives of the loss function with
respect to the unknown parameters B,c in terms of the kernels
φm,ψn and the coefficient and basis expansions cl and bl are:

∂L
∂cm,l

= ∑
k

∫
rk(x)φm(x)bl,k(x)dx (8)

∂L
∂Bn,l,k

=
∫

rk(x)ψn(x)cl(x)dx (9)

Second order derivatives, or the diagonal Hessian entries are:

∂
2L

∂c2
m,l

= ∑
k

∫
φm(x)2bl,k(x)

2dx (10)

∂
2L

∂B2
n,l,k

=
∫

ψn(x)2cl(x)
2dx (11)

Regularization. MBD solutions are not unique, since for any given
solution, we can form an equivalent loss solution by scaling the co-
efficient tensor c by some α > 0 and the basis tensor B by its in-
verse. In other words, L(B,c) = L( 1

α
B,αC). To resolve this scale

ambiguity, we add a regularization term to our objective that penal-
izes coefficients far from the origin, pushing the intrinsic scale to
the basis vectors‡. Our final objective becomes:

Lλ(B,c) = L(B,c)+
1
2

λ‖c‖2
F , (12)

‡ We use λ = 0.0001 for all our results.
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where ‖ · ‖F is the Frobenius norm. The added penalty term results
in slightly altered derivatives with respect to the coefficients c:

∂Lλ

∂cm,l
=

∂L
∂cm,l

+λcm,l (13)

∂
2Lλ

∂c2
m,l

=
∂

2L
∂c2

m,l
+λ (14)

.

Optimization Problem. Finally, the MBD optimization problem
can now be stated as follows:

argmin
B,c
Lλ(B,c). (15)

The optimization problem in Equation 15 is non-linear and bi-
convex; it is convex in either B or c separately. The problem is
global but has a sparse structure that comes from the spatial sup-
port of the chosen kernels. Spatially local kernels prevent direct
long-range interactions between the parameters.

3.3. Solver

To solve the optimization problem in Equation 15, we use stochas-
tic quasi-Newton descent with diagonal Hessian approximation and
line-search backtracking [NW06].

In order to evaluate the gradient (Equations 13, 9) and the di-
agonal Hessian (Equations 14, 11), we use Monte-Carlo integra-
tion and apply stratified sampling to generate one spatial sample
for each of the coefficient kernels. Note that since the coefficient
kernels overlap, each coefficient derivative estimator uses, on aver-
age, 8 samples. For further variance reduction, we apply the tech-
nique of common random numbers [Owe13] and reuse the coeffi-
cient kernel samples to evaluate the basis vector derivatives. Again,
since the basis kernels typically have larger support than the coef-
ficient kernels, each basis derivative estimator can use all samples
under its support. In summary, each iteration of the optimization
loop consists of:

1. Generating spatial samples and evaluating the Monte Carlo es-
timators for the derivatives, i.e., gradient and diagonal Hessian,
using Equations 13, 9, 14, 11.

2. Updating the current values of the unknown parameters c,B via
a quasi-Newton descent step using the gradient and diagonal
Hessian estimators from step 1).

3. Performing a back-tracking line search in the gradient direction
if the loss increases.

Next, we’ll discuss how to initialize the parameter values c,B.

Initialization. A good initial guess for the unknown parameters
c,B has a big impact on convergence. We evaluated three methods
for providing a starting point for our solver:

1. Random. Each parameter is initialized from a uniform distribu-
tion in (−1,1).

2. Local PCA. The basis vectors associated with kernel ψn are ini-
tialized with block PCA vectors, where block contains all data
points (x,y) under the support of the kernel ψn. After initializing
the basis vectors, the coefficients c are determined by solving a
least-squares problem to minimize Lλ(c;B) keeping the basis
vectors B fixed.

3. Global PCA. The basis vectors B are initialized using global
PCA and the coefficients c are determined as with the local PCA
method.

The random initialization method converges slowly, while local
PCA converges quickly but is prone to getting stuck in a local min-
ima due to overfitting. Out of the methods we evaluted, global PCA
provides fast convergence, and, in contrast to local PCA, avoids
getting stuck in local minima. Thus, we use global PCA initializa-
tion in all our results and based on our experiments, the global PCA
initialized solver converges typically in 16-128 iterations.

4. Results

In this section, we present experimental results in an application to
precomputed radiance transport and evaluate our method both qual-
itatively and quantitatively against previous work. For comparison,
we implemented the following methods:

• BPCA Blockwise PCA (BPCA) [NNJ05] uses fixed spatial
clusters — or blocks — that match the support of the basis ker-
nels we use for MBD and computes a unique PCA basis for each
cluster.
• WBPCA Windowed blockwise PCA (WBPCA) is a windowed,

or lapped, version of BPCA; that is, the blocks are twice as large
to incorporate more data points in the neighborhood with the
goal of reducing discontinuities at cluster boundaries.
• CPCA We implemented the highest quality, distance-to-

subspace variant of clustered PCA (CPCA), as detailed
in [SHHS03].

In our comparisons, we are using equal number of basis vectors
and coefficients for all the methods. In particular, this means that
CPCA uses more memory, as it needs to store the high-frequency
cluster index in addition to basis vectors and coefficients.

4.1. Precomputed Light Transport Experiments

We begin with an application to precomputed light transport (Fig-
ures 3, 4). In our application, the input data consists of a 3D light
transport volume, where each voxel contains a concatenated, 324-
dimensional vector representing both direct-to-indirect and direct
transport operators in the quadratic Spherical Harmonic (SH) ba-
sis; that is, three 9x9 SH direct-to-indirect transport matrices for
RGB color channels and one 9x9 transport matrix for direct illumi-
nation, stacked into a single 324-dimensional vector. In this appli-
cation, the kernels φ and ψ are the usual trilinear hat kernels of their
corresponding volume textures to enable fast, hardware accelerated
texture lookups.

Compression is achieved by representing the input data using
a basis expansion and storing less basis vectors than coefficients.
Moreover, we can control the number of basis vectors by adjusting
the resolution of the 3D basis kernel grid, while keeping the co-
efficient grid at the input data resolution. For CPCA, which does
not rely on any spatial structure, we set the number of clusters
to match the resolution of the 3D basis kernel grid. In addition,
since the comparison methods are not directly filterable, we resam-
ple all reconstructions to a 3D trilinear grid before performing the
final lookup for a fair comparison with interpolation enabled for all
methods.
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Figure 3: Application to precomputed light transport. We compress a joint, high-dimensional signal consisting of direct-to-indirect diffuse
light transport (top) and direct sky visibility (bottom) components using different methods and compare both the reconstruction quality and
the resulting approximation error. (The reference column in the top row shows the full, direct and indirect lighting instead a zero error image).
The key observation is that MBD provides qualitatively seamless results with quantitatively low error. Furthermore, the convergence in error
is consistent as the number of basis vectors increases. Note that MBD has competitive error compared to CPCA, even though MBD uses less
memory since the cluster mapping is implicit. (The dashed line in the graph indicates the number of basis vectors used in the images.)

4.2. Quality and Basis Vector Count

Next, we investigate how the approximation changes with respect
to varying the number of basis vectors, i.e., the local rank L of the
expansion, both qualitatively and quantitatively (Figures 6 and 5,
respectively). For a fixed lighting environment, we compare the
convergence visually in Figure 6 and observe that MBD has quali-
tatively the least artifacts compared to the comparison methods. In
order to analyze the convergence dynamics for all possible lighting
environments, we study the Frobenius norm of the operator approx-
imation error (Figure 5). We observe that the signal-agnostic MBD
is able to match the performance of the signal-specialized CPCA
while using less memory.

4.3. Quality and Basis Support Size

The previous section demonstrated that, empirically, MBD pro-
vides consistent results with varying number of basis vectors. Now,
we investigate how the approximation behaves when adjusting the
size of the spatial support of the basis kernels while keeping the
number of basis vectors fixed (Figure 7). In contrast to the compar-

ison methods, which are more sensitive to the number of clusters,
MBD yields a consistent approximation even with a small number
of basis kernel functions with increasing basis kernel support size
corresponding to a decreasing basis kernel grid resolution.

4.4. Computation Times

Finally, we compare the computation times for the methods (Figure
8). Although our MBD solver is based on gradient descent — and
therefore it is particularly well suited to a GPU implementation —
we implemented all methods in multi-threaded C/C++ for a fair
comparison. The computation times were measured on a computer
equipped with a Intel Core i9-9960X CPU and 128GB RAM.

5. Discussion

We’ve demonstrated that our method yields qualitatively better and
quantitatively similar results with less memory and faster computa-
tion times than CPCA, while enabling more efficient direct render-
ing from the compressed format. Furthermore, our method is robust
and consistent with respect to variation in both the number of basis
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Figure 4: Seamless reconstruction comparison. Given an equal number of basis vectors, we highlight the differences between the com-
parison methods in the zoomed-in regions. In contrast to WBPCA, BPCA, and CPCA that suffer from cluster discontinuity problem, MBD
provides a seamless reconstruction that is visually close to the reference. The input data consists of light transport operator volume (Section
4.1) with resolution 128x128x128 (Sponza/top) and 64x64x64 (Cornell/bottom). Note that the cluster discontinuity problem is visible even
when the reconstruction is resampled to a volume texture for continuous reconstruction. In other words, using a spatial high-frequency,
continuous reconstruction is not effective in masking low-frequency cluster discontinuities.
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Figure 5: Basis vector count and operator approximation error. As the number of basis vectors increases, the Frobenius norm of the
difference between the target light transport operator and the various approximations decreases. MBD and CPCA have similar empirical
convergence rates while MBD requires less memory due to its non-adaptive basis support grid. For comparison, both BPCA and WBPCA
use identical basis support grid as MBD but suffer from slower convergence rates. (The dashed line indicates the number of basis vectors
used for comparisons throughout the results, unless stated otherwise).
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Figure 6: Basis vector count and approximation quality. We compare the reconstruction quality as the number of basis vectors, or the local
rank, increases. Note that MBD converges fast; with 4 basis vectors, MBD is visually close to the reference solution while WBPCA, BPCA,
and CPCA show visible artifacts even with 15 basis vectors (we encourage the reader to zoom in the PDF images).
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Figure 7: Basis vector grid resolution and approximation quality. We compare the reconstruction (left) and the approximation error (right)
as the number of clusters decreases from 93 = 729 to 33 = 27 as a function of basis vector grid size. The right panel visualizes the absolute
error distribution and shows the relative mean squared error (white labels). WBPCA, BPCA, and CPCA have visible discontinuities at hard
cluster boundaries, while MBD is robust with respect to varying basis kernel support size.

Resolution 163/33 323/53 643/93

WBPCA 4.7s (1.31x) 22.5s (0.95x) 189.5s (0.62x)
BPCA 3.3s (0.92x) 7.8s (0.33x) 52.2s (0.17x)
CPCA 3.6s (1.00x) 23.7s (1.00x) 303.7s (1.00x)

MBD (ours) 2.1s (0.58x) 12.6s (0.53x) 199.3s (0.66x)

Figure 8: Computation times. We compare the computation times
as a function of increasing target volume/basis resolution. Note that
while our method is slightly slower than a purely local BPCA, MBD
is faster to compute than CPCA for all resolutions.

vector and the size of the spatial support of the basis vector kernels,
and thus provides a practical and efficient framework for approxi-
mation of locally low rank vector fields with a comparatively small
number of basis vectors.

5.1. Benefits and limitations

The main benefit of MBD is that it provides seamless reconstruc-
tion and efficient random access queries with lower error com-
pared to previous block based methods, such as BPCA. Since the

MBD representation is filterable, it enables direct rendering using
the compressed representation without decompressing to an inter-
mediate, filterable representation. This additional step uses more
memory, compute and it comes without any guarantees on the re-
sulting approximation error. In addition, the choice of the basis and
coefficient kernels allow flexibility for applications and makes it
possible to mix and match kernels to better suit the problem. We
take advantage of this additional freedom in Figure 1 by storing the
high-dimensional basis vectors in a low-resolution (256x256) 2D
texture over the terrain heightfield while the low-dimensional co-
efficients are stored in high-resolution (2048x2048x8) 3D volume
texture. This hybrid, directly filterable and renderable MBD rep-
resentation takes 1.09 bytes per voxel to reconstruct the linear SH
RGB irradiance in 3D space using a rank-3 MBD.

The main limitation of MBD is the assumption regarding the spa-
tial coherence of the input data. In contrast to CPCA, MBD is un-
able to capture long-range coherence in the target signal using only
locally supported kernels. That is, CPCA is free to leverage any
structure in the data domain without being tied to the spatial do-
main. In addition, MBD requires us to solve a global optimization
problem, where block based methods, such as BPCA, are purely
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local. However, compared to existing methods, our approximate
solver is competitive in terms of computation times and is scal-
able to large problems. For example, the scene in Figure 1 has on
the order of O(108) unknowns and the solver takes only a few min-
utes. In other words, the solver time is a small fraction of the time
it takes to generate the input data, making the method suitable for
production pipelines.

We conclude this section by drawing connections between our
method and texture compression, scattered data interpolation and
clustering methods before considering some open questions in Sec-
tion 5.5.

5.2. Relation to Texture Compression Methods

The idea of utilizing spatial smoothness of the input vector
field to aid compression is widely used in texture compression
[NLP*12; Fen03] and its application to compression of lighting
data [MRP98; KKSM17; XP04]. In particular, Fenney [Fen03] de-
scribes a method — PVRTC — for block texture compression that
is closely related to our method. PVRTC reconstruction is defined
as a convex combination of two linearly interpolated and upsam-
pled color values. In terms of the basis decomposition framework,
we can express PVRTC reconstruction as follows:

f̂PV RTC(x) = c(x)b1(x)+(1− c(x))b2(x) (16)

bl(x) = ∑
n

ψn(x)Bn,l , l ∈ {1,2} (17)

where ψn is the bilinear hat kernel and 0 ≤ c(x) ≤ 1 is a coupled
weight coefficient that determines how to blend between the two
upsampled color values b1(x) and b2(x). This line segment lies on
an affine rank-1 subspace, and, assuming linear independence of
b1(x) and b2(x), this affine subspace is a small subset of the plane
span{b1(x),b2(x)}. Thus, from this perspective, we can think of
PVRTC as a special case of rank-2 moving basis decomposition
with constrained coefficients.

We note that since MBD is a generalization of PVRTC, MBD
has the capacity to represent piecewise smooth signals; that is, sig-
nals with discontinuities in space. However, our approximate solver
may not necessarily find these solutions before converging to a lo-
cal minima.

5.3. Relation to Radial Basis Functions and Shepard’s Method

Similar to MBD, radial basis function (RBF) expansions are built
on top of kernel functions that enable information sharing between
kernels with overlapping support. The RBF expansion is typically
defined in the data domain [Alf89], and thus, it doesn’t take seam-
less reconstruction in the spatial domain into account. In contrast,
Shepard’s method [She68] allows one to build seamless, potentially
high-dimensional, affine rank-0 reconstructions in the spatial do-
main. Compared to Shepard’s method, MBD is suited for compres-
sion, due to the explicit decoupling of the spatial frequency of the
coefficients c and the basis vectors B. Furthermore, a rank-1 MBD
can be thought of as the product of two Shepard expansions, cl
for the coefficients and bl for the basis vectors. Finally, both RBF
expansion and Shepard’s method are instances of function approxi-
mation by way of interpolation, while MBD combines interpolation
with basis decomposition to enable analysis-by-synthesis.

5.4. Relation to Clustering Methods

Blockwise PCA, as well as the solutions of K-means, K-SVD and
clustered PCA — when extended to the spatial domain via the nat-
ural point-to-cluster mapping — can be thought of as special cases
of MBD where the kernels are simply indicator functions for both
the basis vectors and coefficients. In particular, these kernels are
piecewise constant functions with non-overlapping support, high-
lighting the fact that a seamless reconstruction, in general, would
require a post-process filtering step, i.e., an example of reconstruct-
then-interpolate approach. In comparison, MBD considers interpo-
lation as an essential part of the reconstruction, and takes the re-
sulting interpolation error directly into account when solving for
the decomposition.

5.5. Future work

We believe that MBD has potential applications in other problem
domains with piecewise smooth structure, e.g., in the context of
natural images, and the presented framework opens up some inter-
esting questions for future work:

• Signal-Adaptive Kernels. While replacing a fixed grid of ker-
nels with a scattered set of kernels is straightforward, a more
interesting question considers the kernels themselves: is it feasi-
ble to jointly learn a set of adaptive kernels that are 1) efficient
to evaluate and 2) efficient to store?
• Robust and Adaptive Rank MBD. Similar to PCA, the local

low-rank assumption might be sensitive to outliers. Thus, split-
ting the input signal into a locally low-rank component and a
sparse, high-rank component before computing MBD in addi-
tion to adaptively adjusting the local rank seems like a promising
avenue to enable even higher compression ratios.
• Manifold Learning. What if we are not given position labels
{xi}, i.e., the input consists only of the data vectors {yi}? Can
we learn a low-dimensional embedding, say z(y) : RD→ R3 such
that {(z(yi),yi)} has a low rank MBD in z(y) coordinates?

6. Conclusion

Many existing dimensionality reduction and compression meth-
ods rely on independent, discrete choices in the data domain with-
out considering the approximation error distribution in the spatial
domain. On the other hand, scattered data interpolation methods
provide seamless reconstruction in the spatial domain, but do not
typically support analysis-by-synthesis. To jointly achieve analy-
sis in the data domain and seamless synthesis in the spatial do-
main, we constructed a moving, locally adaptive basis decomposi-
tion using spatial kernels that transform many discrete decisions,
such as choosing a basis for a cluster tangent space, into continu-
ous ones. Furthermore, MBD enables analysis-by-synthesis while
decoupling the spatial frequency of the coefficients and the basis
vectors for compression tasks. We anticipate that future work will
apply the MBD framework to other problem domains along with
further investigation into adaptive kernels and robust and adaptive
rank solvers.
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