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1. Details of the Neural Network Structure

1.1. RepVGG Block Structure
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Figure 1: Structural re-parameterization between training-time and inference-time. For the parameter-level illustration, we use single-
channel input and single-channel output convolutional layer for example case, where the parameters of the 5×5 kernel size Conv layer can
be represented as a 5×5 matrix (bottom left), and it is similar for 3×3 and 1×1 Conv layers after padding with zero values (presented with
empty grid cell). At the inference-time, we construct one single 5×5 convolutional parameters with an element-wise addition (bottom right).

For the 1-spp BMFR dataset, we build our ImportanceNet with the efficient RepVGG Block [DZM∗21]. The RepVGG Block has different
structures in training-time and inference-time. At the training-time, it has multiple branches: 1×1 Conv layer, 3×3 Conv layer, 5×5 Conv
layer, and identity branch (Figure 1, top left). Since all the identity branch, 1× 1 and 3× 3 convolution kernel parameters can be padded
with zero values to be presented as a 5× 5 convolution kernel (Figure 1, bottom left), we construct a single 5× 5 convolution kernel with
an element-wise addition to the trained and zero-padded parameters of the branches for inference (Figure 1, bottom right), which is called
the structural re-parameterization technique [DZM∗21]. Consequently, the converted RepVGG Block structure has only one single branch
compositing with a 5× 5 Conv layer and a ReLU layer (Figure 1, top right), so the network architecture for inference is an efficient fully
convolutional network. Note that we only add the identity branch in Conv layer where the output channel count equals the input.

The conversion of RepVGG Block needs only to be done once, which can be treated as an offline post-process step right after the training.
Besides, RepVGG Block executes completely the same computations before and after the conversion, so it will not reduce the network
precision.

The original RepVGG architecture achieves the best performance with the batch-normalization (BN) layer’s nonlinear behavior in structural
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Table 1: Average relative-MSE comparison (lower is better) on 1-spp BMFR test data. Ours 6-layer represents the 6-layer convolutional
neural network architecture and Ours 3-layer represents the 3-layer convolutional neural network architecture.

Scene
relative-MSE

NFOR BMFR ONND SVGF MR-KP KP NBGD Ours(6-layer) Ours(3-layer)

Classroom 0.0568 0.0784 0.0326 0.0725 0.0117 0.0103 0.0180 0.0109 0.0130
Living room 0.0651 0.0736 0.0463 0.1188 0.0068 0.0102 0.0256 0.0093 0.0113
San Miguel 1.2393 1.7860 0.7842 0.6968 0.2406 0.2251 0.4723 0.2393 0.0245

Sponza 0.0565 0.0423 0.1455 0.0512 0.0100 0.0091 0.0128 0.0097 0.0120
Sponza (glossy) 0.2538 0.3049 0.1812 0.0954 0.0689 0.0425 0.0971 0.0455 0.0551

Sponza (mov. light) 0.1383 0.1983 0.1681 0.1111 0.0373 0.0360 0.0529 0.0433 0.0421

re-parameterization [DZM∗21]. Although the variant of RepVGG Block we used loses this property when not including the BN layer, it still
retains the over-parameterization property, which is important for our real-time application because the multi-branches structure is practically
beneficial to training and this structure will not introduce additional costs to network inference.

1.2. Multi-resolution Kernel Prediction Structure
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Figure 2: Network architecture for denoising Tungsten dataset.

For the 64-spp Tungsten dataset, we build our ImportanceNet with a more complex multi-resolution network architecture as shown in
Figure 2. This network has a U-Net architecture, and we add three additional convolutional layers to predict our importance map at the last
three resolutions.

2. Additional Evaluation Metrics on the 1-spp BMFR Dataset

2.1. Training Details

Note that temporal accumulation operation with geometry rejection strategy acts up for moving light effects [SKW∗17, KIM∗19], which
mismatches the temporal information and introduces bias to the input image. This bias would mislead the training process for a supervised-
learning method, so we remove the BMFR dataset’s sponza-moving-light scene (static camera, changing light position) from the training
data. This setting experimentally improved the reconstruction quality of ours and the previous denoisers MR-KP and NBGD [MZV∗20]
by giving better quantitative metrics and visual quality. Besides, we take the sponza-moving-light scene as test data to check our method’s
generalization ability to moving light effects.
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Table 2: Average RMSE comparison (lower is better) on 1-spp BMFR test data. Ours 6-layer represents the 6-layer convolutional neural
network architecture and Ours 3-layer represents the 3-layer convolutional neural network architecture.

Scene
RMSE

NFOR BMFR ONND SVGF MR-KP KP NBGD Ours(6-layer) Ours(3-layer)

Classroom 0.0321 0.0356 0.0431 0.0561 0.0223 0.0223 0.0265 0.0229 0.0245
Living room 0.0272 0.0316 0.0526 0.0435 0.0204 0.0198 0.0227 0.0199 0.0227
San Miguel 0.0813 0.0895 0.0982 0.1160 0.0629 0.0617 0.0644 0.0614 0.0644

Sponza 0.0307 0.0282 0.0591 0.0661 0.0186 0.0189 0.0207 0.0189 0.0207
Sponza (glossy) 0.0504 0.0564 0.0671 0.0900 0.0285 0.0292 0.0318 0.0289 0.0318

Sponza (mov. light) 0.0811 0.1450 0.0773 0.1418 0.0556 0.0556 0.0572 0.0552 0.0572

Table 3: Average SMAPE comparison (lower is better) on 1-spp BMFR test data. Ours 6-layer represents the 6-layer convolutional neural
network architecture and Ours 3-layer represents the 3-layer convolutional neural network architecture.

Scene
SMAPE

NFOR BMFR ONND SVGF MR-KP KP NBGD Ours(6-layer) Ours(3-layer)

Classroom 0.0289 0.0261 0.0528 0.0405 0.0177 0.0176 0.0206 0.0185 0.0203
Living room 0.0201 0.0182 0.0418 0.0220 0.0124 0.0124 0.0140 0.0118 0.0137
San Miguel 0.1172 0.1160 0.1425 0.1278 0.1037 0.1086 0.0982 0.1052 0.1106

Sponza 0.0377 0.0314 0.0715 0.0530 0.0180 0.0183 0.0190 0.0183 0.0194
Sponza (glossy) 0.0770 0.0730 0.0966 0.0759 0.0374 0.0393 0.0442 0.0387 0.0425

Sponza (mov. light) 0.1012 0.1492 0.0882 0.1408 0.0556 0.0578 0.0593 0.0563 0.0580

Table 4: Average VMAF comparison (higher is better) on 1-spp BMFR test data. Ours 6-layer represents the 6-layer convolutional neural
network architecture and Ours 3-layer represents the 3-layer convolutional neural network architecture.

Scene
VMAF

NFOR BMFR ONND SVGF MR-KP KP NBGD Ours(6-layer) Ours(3-layer)

Classroom 79.815 85.333 70.147 96.095 90.953 89.280 85.412 88.105 85.879
Living room 81.285 81.735 70.842 79.989 83.268 85.050 85.866 83.726 78.283
San Miguel 45.080 43.596 49.803 49.840 59.909 60.295 60.212 60.021 58.689

Sponza 84.373 93.934 61.799 91.555 94.302 92.875 90.410 91.759 88.536
Sponza (glossy) 61.477 69.807 73.334 94.793 84.422 79.906 76.839 82.292 77.363

Sponza (mov. light) 47.552 55.348 56.693 66.840 75.414 70.732 69.131 70.385 65.630

Table 5: Error metrics comparisons on 1-spp BMFR test scenes to evaluate the effectiveness of our kernel fusion module. KP refers to
the basic kernel prediction method, and KP-fusion refers to the KP extended with our kernel fusion module. Ours refers to the complete
architecture described in our paper, and Ours-same-size refers to our architecture fusing 6 kernels with the same filtering size ki = 13.

Scene
PSNR SSIM

KP KP-fusion Ours-same-size Ours KP KP-fusion Ours-same-size Ours

Classroom 33.047 33.308 32.572 32.827 0.978 0.979 0.976 0.977
Living room 34.090 34.506 33.548 34.063 0.978 0.980 0.977 0.979
San Miguel 24.215 24.348 23.946 24.269 0.851 0.857 0.846 0.849

Sponza 34.595 35.068 34.319 34.600 0.982 0.983 0.983 0.983
Sponza (glossy) 30.719 30.739 30.385 30.805 0.960 0.960 0.959 0.961

Sponza (mov. light) 25.324 25.424 35.259 25.374 0.958 0.960 0.958 0.958
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Table 6: PSNR and SSIM comparison of KP variants for each test scene. KP-1 represents a KPCN variant with two layers CNN and filtering
kernel size 13. KP-2 represents a KPCN variant with five layers CNN and filtering kernel size 7.

Scene
PSNR SSIM

KP1 KP2 Ours KP1 KP2 Ours

Classroom 33.047 32.522 32.827 0.972 0.974 0.977
Living room 34.090 33.032 34.063 0.968 0.972 0.979
San Miguel 23.871 24.160 24.269 0.837 0.841 0.849

Sponza 33.776 33.780 34.600 0.976 0.980 0.983
Sponza (glossy) 29.653 30.202 30.805 0.948 0.957 0.961

Sponza (mov. light) 24.998 25.156 25.374 0.945 0.950 0.958

Table 7: Error metrics comparisons on 64-spp Tungsten test scenes of Bedroom, Classroom, and Living room. We use the multi-resolution
neural network architecture with 2 fused kernels each level. Compared with these methods, ours achieves comparable quality.

Scene
PSNR SSIM

NFOR ONND MR-KP KP NBGD-7 Ours(MR) NFOR ONND MR-KP KP NBGD-7 Ours (MR)

Bedroom 35.05 34.44 36.32 36.36 35.98 36.34 0.973 0.971 0.975 0.976 0.974 0.977
Classroom 31.67 32.87 32.99 32.89 32.12 32.82 0.940 0.949 0.950 0.951 0.942 0.949

Living room 37.63 36.60 38.02 38.46 38.08 38.53 0.977 0.973 0.978 0.979 0.977 0.979

2.2. Evaluation Metrics Comparison

We also compute additional evaluation metrics, including relative mean square error (relative-MSE), root mean square error (RMSE), sym-
metric mean absolute percentage error (SMAPE), and Video Multi-Method Assessment Fusion (VMAF) [ALM∗15]. As shown in Table 1,
Table 2, and Table 3, our method is superior in most of the pixel-wise error metrics. The VMAF scores in Table 4 show that we achieve
similar temporal stability to the state-of-the-art real-time neural denoiser.

2.3. Metrics comparison of kernel fusion module evaluation

In theory, the network can use multiple kernels of equal sizes in the fusion module. We experimentally checked this by fusing 6 kernels with
the same size ki = 13. While the result in Table 5 shows this variant performs worse than the configuration of fusing with different kernel
sizes, and our analysis is that fusing with different sizes is an explicit and helpful constrain about the noise frequency for the training, which
is similar to why the layer-based denoiser [MH20] performs better with an ordered alpha-blending than a direct weighted average. Besides,
we also extended the basic kernel prediction method with our kernel fusion module to see how much our importance map affects the result
and further check the effectiveness of our kernel fusion module, which is presented in Table 5.

2.4. Additional metrics comparison with Kernel Prediction Variants

To further compare our method and the basic kernel prediction method, we design another two architecture variants of KPCN: a 2-layer
network with filtering kernel size 13 (KP-1) and a 5-layer network with filtering kernel size 7 (KP-2). We show the metrics comparison in
Table 6. The results show that our method achieves the best quantitative quality because it maintains both a deep network and a large filtering
size.

3. Additional Comparison on the 64-spp Tungsten Dataset

For the 64-spp Tungsten dataset, we use a three-resolution architecture, and for each resolution we construct and fuse two filtering kernels
with sizes 3 and 5. The visual comparisons in Figure 3 show that our method can generate more smooth glossy reflections and soft shadows
and produce fewer artifacts than NBGD and MR-KP. The PSNR and SSIM of these three scenes are presented in Table 7. We compute the
average numerical error metrics over 100 consecutive frames and present the results in Table 8, Table 9, Table 10, Table 11. The comparison
results show that our method has a comparable denoising ability for the high spp input in both pixel-wise error metrics and temporal stability.
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Table 8: Average relative-MSE comparison (lower is better) on 64-spp Tungsten test data. We use the multi-resolution neural network
architecture with 2 fused kernels each level.

Scene
relative-MSE

NFOR ONND MR-KP KP NBGD-7 Ours

bedroom 0.0335 0.0423 0.0076 0.0072 0.0258 0.0092
classroom 0.0450 0.0609 0.0151 0.0139 0.0290 0.0137

dining-room 0.0537 0.1847 0.0420 0.0439 0.0483 0.0260
kitchen 0.0636 0.0455 0.0148 0.0133 0.0293 0.0193

living-room 0.0262 0.0133 0.0041 0.0039 0.0089 0.0043

Table 9: Average RMSE comparison (lower is better) on 64-spp Tungsten test data. We use the multi-resolution neural network architecture
with 2 fused kernels each level.

Scene
RMSE

NFOR ONND MR-KP KP NBGD-7 Ours

bedroom 0.0179 0.0190 0.0157 0.0155 0.0159 0.0154
classroom 0.0261 0.0227 0.0230 0.0233 0.0248 0.0234

dining-room 0.0155 0.0128 0.0133 0.0128 0.0137 0.0131
kitchen 0.0185 0.0183 0.0159 0.0165 0.0168 0.0167

living-room 0.0132 0.0149 0.0129 0.0126 0.0125 0.0122

Table 10: Average SMAPE comparison (lower is better) on 64-spp Tungsten test data. We use the multi-resolution neural network architec-
ture with 2 fused kernels each level.

Scene
SMAPE

NFOR ONND MR-KP KP NBGD-7 Ours

bedroom 0.0162 0.0194 0.0146 0.0150 0.0158 0.0150
classroom 0.0301 0.0321 0.0280 0.0281 0.0299 0.0284

dining-room 0.0252 0.0467 0.0294 0.0287 0.0268 0.0274
kitchen 0.0215 0.0257 0.0202 0.0209 0.0223 0.0214

living-room 0.0126 0.0149 0.0116 0.0123 0.0124 0.0117

Table 11: Average VMAF comparison (higher is better) on 64-spp Tungsten test data. We use the multi-resolution neural network architecture
with 2 fused kernels each level.

Scene
VFAM

NFOR ONND MR-KP KP NBGD-7 Ours

bedroom 96.31 96.34 98.32 95.29 96.06 98.47
classroom 93.09 99.84 98.87 97.94 96.05 97.66

dining-room 98.04 99.87 99.86 99.87 98.74 99.17
kitchen 95.70 98.19 99.04 97.35 96.06 98.91

living-room 97.90 98.64 99.04 98.21 97.63 98.86
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Figure 3: Visual comparisons of denoising quality on the 64-spp Tungsten test scenes of Bedroom, Classroom, and Living room. We use the
multi-resolution neural network architecture with 2 fused kernels each resolution.
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