
Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

ClusterSets: Optimizing Planar Clusters in Categorical Point Data

J. Geiger1 , S. Cornelsen2 , J.-H. Haunert3 , P. Kindermann1,4 ,
T. Mchedlidze5 , M. Nöllenburg6 , Y. Okamoto7 , and A. Wolff1

1 Universität Würzburg, Würzburg, Germany
2 University of Konstanz, Konstanz, Germany

3 University of Bonn, Bonn, Germany
4 Universität Trier, Trier, Germany

5 Utrecht University, Utrecht, The Netherlands
6 TU Wien, Vienna, Austria

7 University of Electro-Communications, Tokyo, Japan

Figure 1: Part of a larger set of points representing facilities of the University of Bonn, where colors of points reflect department memberships.
Left: Voronoi diagram with Voronoi cells colored with same hues as corresponding points. Right: ClusterSets visualization with edges defining
clusters as selected by our greedy heuristic (and by a post-processing step where intra-cluster edges may cross each other), a line Voronoi
diagram of those edges, and polygonal representations of the clusters. ClusterSets produces larger contiguous regions (compared to the
Voronoi diagram) but still reflects the proximity relationships among the points – see, e.g., the three blue points split up into two clusters.

Abstract
In geographic data analysis, one is often given point data of different categories (such as facilities of a university categorized
by department). Drawing upon recent research on set visualization, we want to visualize category membership by connecting
points of the same category with visual links. Existing approaches that follow this path usually insist on connecting all members
of a category, which may lead to many crossings and visual clutter. We propose an approach that avoids crossings between con-
nections of different categories completely. Instead of connecting all data points of the same category, we subdivide categories
into smaller, local clusters where needed. We do a case study comparing the legibility of drawings produced by our approach
and those by existing approaches.
In our problem formulation, we are additionally given a graph G on the data points whose edges express some sort of prox-
imity. Our aim is to find a subgraph G′ of G with the following properties: (i) edges connect only data points of the same
category, (ii) no two edges cross, and (iii) the number of connected components (clusters) is minimized. We then visualize the
clusters in G′. For arbitrary graphs, the resulting optimization problem, Cluster Minimization, is NP-hard (even to approxi-
mate). Therefore, we introduce two heuristics. We do an extensive benchmark test on real-world data. Comparisons with exact
solutions indicate that our heuristics do astonishing well for certain relative-neighborhood graphs.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14322

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6553-6592
https://orcid.org/0000-0002-1688-394X
https://orcid.org/0000-0001-8005-943X
https://orcid.org/0000-0001-5764-7719
https://orcid.org/0000-0002-1545-5580
https://orcid.org/0000-0003-0454-3937
https://orcid.org/0000-0002-9826-7074
https://orcid.org/0000-0001-5872-718X
https://doi.org/10.1111/cgf.14322

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

1. Introduction

Recent research on set visualization has focused on computing vi-
sual set representations based on visual links that connect elements
within a set. Often, the sets correspond to categories of data enti-
ties. When visualizing sets of non-spatial entities, e.g., sets of com-
posers of different music genres, every entity can be represented
as a point symbol that can be freely placed in the visualization. In
contrast, in this paper we present a new method that we call Clus-
terSets to visualize sets of points in spatial data, such as facilities of
a university categorized by department (Fig. 1) or points of interest
of different categories, e.g., hotels or restaurants (Fig. 9).

Similar to the Bubble Sets method by Collins et al. [CPC09],
our ClusterSets method assumes that the points have fixed posi-
tions. This is highly relevant in geovisualization, where the posi-
tions of point symbols in a map correspond to geographical loca-
tions. Moreover, one may use Bubble Sets or ClusterSets to aug-
ment a primary visualization whose layout has been chosen for a
good reason, thus respecting the spatial rights [CPC09] of the pri-
mary visualization. We take the idea of spatial rights one step fur-
ther, by granting the visualization a right for locality. This means
that not necessarily all points of the same category need to be con-
nected but that the proximity relationships among the points should
be taken into consideration as well when deciding which points to
connect. Two spatial clusters of the same category, for example,
should not be visually linked if they are clearly separated by a third
cluster of a different category. This is most important if the pri-
mary visualization is a map, which usually aims to reveal spatial
patterns and relations [Kra09]. Violating the right for locality by
adding strong visual links between points that do not belong to the
same same spatial cluster could reduce the usability of the map.
Hence, we developed ClusterSets to mediate between (i) the visu-
alization of sets defined with categories of points and (ii) the com-
putation and visualization of clusters based on spatial proximity.

Relaxing the requirement of connecting all points of the same
category allows us not only to maintain the right for locality but
also to keep the visual clutter low. In particular, by computing spa-
tially disjoint clusters we avoid overlapping visual representations
of sets, which are prevalent in set visualizations based on Bub-
ble Sets or related methods. In fact, our approach avoids crossings
between connections of different categories completely. Instead of
connecting all data points of the same category, it subdivides cate-
gories into smaller, local and planar clusters where needed.

Our clustering algorithms construct spanning subgraphs in suit-
ably chosen proximity graphs, whose edges define which pairs of
points are sufficiently close local neighbors that can be used for
growing clusters. Since these proximity graphs are in general not
plane, but overlapping clusters in the solution would negatively im-
pact their readability, we require solutions to be plane, leading to
the following optimization problem for geometric graphs, that is,
for graphs whose vertices are points in the plane and whose edges
are straight-line segments connecting the vertices.

Definition 1 (CLUSTER MINIMIZATION) Let G be a geometric
graph that may contain edge crossings. Find a plane subgraph of G
that has as few connected components (clusters) as possible.

Note that this definition does not take different vertex categories

into account. Instead, we can simply delete all edges between ver-
tices of different categories; see Fig. 3b. Then our clustering prob-
lem for categorical point data becomes exactly CLUSTER MINI-
MIZATION. Consequently, in the context of this problem, a crossing
between two edges is forbidden, no matter whether the two edges
belong to different categories or the same category. Since adding
intra-cluster edges may help to improve the visual representations
of clusters, however, we will introduce a post-processing step to
augment solutions of CLUSTER MINIMIZATION with edges that
may cross other edges of the same cluster.

Results Our contribution is two-fold. First, we deal with the chal-
lenging combinatorial problem CLUSTER MINIMIZATION. Sec-
ond, we present ways to visualize any clustering of the input points
if (i) the clustering is a refinement of the given point categories and
(ii) no edge of one cluster crosses any edge of another cluster.

Concerning our first contribution, it turns out that, CLUSTER

MINIMIZATION is NP-hard, even if each connected component
of the input graph contains exactly two vertices (maximum inde-
pendent set of segment intersection graphs [KN90]). Our problem
is even hard to approximate (Section 8). Therefore, we introduce
two greedy heuristics (Section 5.1). For these, we give examples
of graph families on which they perform arbitrarily badly. Still the
heuristics perform surprisingly well on real-world data (Section 7).
For the case of 1-plane graphs, i.e. graphs in which each edge is
crossed by at most one other edge, the heuristics actually yield the
optimum (Section 5.1). This graph family includes the graph of
all useful order-1 Delaunay edges [GHvK02]. To evaluate the two
heuristics, we devised an exact solution for CLUSTER MINIMIZA-
TION based on integer linear programming (Section 5.2).

Our second contribution is a case study (Section 6) where we ex-
plore ways to visualize clusterings with disjoint clusters. Consider
first the following naive baseline method. Compute the Voronoi di-
agram [dBCvKO08] of the input points and color each cell accord-
ing to the category of the corresponding point site; see Fig. 1 (left).
This is the same as using the Delaunay triangulation as proxim-
ity graph and removing all edges between points of different cate-
gories. This would yield a large number of clusters. Therefore, we
use a denser proximity graph (see Section 3.2), apply one of our
clustering algorithms, and then use any of the following three visu-
alization methods.

The tree method simply takes the plane edge sets of the clus-
ters and highlights them using thick segments; clusters that belong
to the same category use the same color. The other two methods
add all intra-cluster edges back in under the condition that they do
not cross edges of other clusters. This connects the clusters more
densely. The line-Voronoi method simply computes the line Voronoi
diagram [dBCvKO08], where the Voronoi sites are not the vertices
but the straight-line edges in the clustering. Finally, the polygon
method traces the outline of each cluster using thick line segments.
Each “areal” cluster is filled with a lighter color that can be trans-
parent as in Fig. 3c. Adding back edges can lead to enclaves; we
avoid this by additional checks. For a comparison of the three meth-
ods, see Fig. 9 in our case study (Section 6). Clearly, our clusterings
can also be used as input for other visualization methods. Moreover,
we combine the visualization methods as in Fig. 1 (right), where the
line-Voronoi method and polygon method are combined.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

472

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

2. Related Work

Finding and visualizing clusters in point sets is a common task in
visual data analytics to reveal, explore, and communicate their spa-
tial patterns.

Several methods have been proposed in the literature to compute
cluster visualizations. Generally speaking, cluster visualization is
a special case of set visualization [AMA∗16], where the clusters
form a partition of the elements with disjoint sets, rather than with
sets having more complex intersection patterns. Set visualization
itself can be grouped into abstract set visualization, where elements
do not have initial spatial locations (e.g., movies and their genres),
and into spatial set visualization, where all elements come with a
predefined position (e.g., points of interest in a map or points in
a scatter plot). Our paper falls into the latter category, where the
most prominent existing methods are overlay techniques that aim to
visually group elements of the same cluster into coherent regions,
often making use of the Gestalt principles for grouping.

The first group of techniques are region-based overlay tech-
niques, which enclose the points of each cluster by a closed
curve and typically fill the regions by distinct colors. Bubble
Sets [CPC09] is a well-known region-based technique that draws
isocontours surrounding the points of each cluster as a contigu-
ous hull minimizing (but not excluding) overlap with other hulls.
GMap [GHK10] computes Voronoi-based cluster shapes for the
given point locations with the aim to create resemblance to political
maps. However, depending on the properties of the point configu-
rations, it may create fragmented, disconnected cluster shapes from
the computed Voronoi cells. MapSets [EHKP15] uses a similar map
metaphor as GMap, but was designed with the goal to obtain con-
nected cluster shapes based on a set of plane spanning trees for the
different clusters. Both GMap and MapSets properly subdivide the
canvas and hence do not create cluster overlaps.

A second group of overlay techniques are line-based overlays,
which connect the points of each cluster into a spanning graph. The
first such technique is LineSets [AHRRC11], which uses a traveling
salesperson heuristic to find a short path for each cluster that vis-
its all its points. The resulting lines are rendered as colored Bézier
splines. However, since each path is computed independently, dif-
ferent lines may mutually cross each other in visually complex
ways. Kelp diagrams [DvKSW12] generalize the idea of LineSets
and compute sparse spanning graphs for possibly overlapping sets
indicated as a nested containment. Kelp diagrams typically produce
fewer line crossings than LineSets, but are not guaranteed to be pla-
nar. In contrast, Castermans et al. [CvGM∗19] require planarity of
their tree-based spatial set visualization technique, which aims to
minimize the total edge length of the plane spanning trees. The un-
derlying computational problem is shown as NP-hard; heuristic and
exact ILP-based algorithms are proposed. The planarity require-
ment comes at the cost that a valid solution does not always exist,
which limits the method’s applicability.

An interesting compromise between region-based and line-based
techniques is KelpFusion [MHRS∗13]. This hybrid technique uses
local hulls for denser configurations of points in the same cluster
and lines to bridge larger distances between different parts of a clus-
ter. With its parameterization it can be customized to create cluster
shapes that range from a spanning tree to a convex hull. While all

of the line-based and hybrid techniques create connected cluster
shapes, they do suffer from various degrees of possibly disturbing
crossings and visual clutter. With ClusterSets, we study the other
end of the trade-off between connectivity and planarity. Rather than
enforcing a single connected cluster per category in the data, we re-
quire crossing-free cluster layouts at the cost of creating possibly
disconnected clusters of the same categories. However, we mini-
mize the number of disconnected clusters per category.

For the cartographic visualization of categorical point data,
Bertin’s system of visual variables [Ber11] is usually applied, often
by representing different categories with point symbols of differ-
ent shapes or hues. Recent research has dealt with special symbols,
termed Micro Diagrams, that display multiple categories [GB20].
Generally, the (dis-)similarity of point symbols can help humans
discover spatial patterns such as a group of multiple points of the
same category. It has also been shown, however, that connectiv-
ity has a higher influence on perceptual grouping than similarity
[BP02]. With our graph-based visualization method we thus con-
tribute to making patterns in categorical point data more explicit.

Finally, we note that our method can be classified as a
neighborhood-based clustering algorithm, of which there are too
many to provide a comprehensive review. Nevertheless, we refer
to basic concepts [Zah71], recent work on the topic including a
discussion of the state of the art [AOA19], and the popular DB-
Scan algorithm [EKASX96], which is based on an ε-neighborhood
graph. A special characteristic of our method is that it is not re-
stricted to a specific neighborhood graph (although we suggest us-
ing β-skeletons) and that the produced clustering is defined by a
crossing-free spanning forest (a forest is a cycle-free graph, i.e., a
union of trees). This is particularly useful to avoid visual clutter.

3. ClusterSets

ClusterSets is a combined clustering and visualization approach for
categorical point data. In this section we present our design goals
as well as the underlying modular pipeline.

3.1. Design Goals

The challenge in visualizing categorical point data is that there are
multiple diverging optimization goals. On the one hand, one can
use symbols of different colors or shapes to indicate the categorical
information. Such visualizations show every point as a singleton
but especially in dense point sets it can become difficult to detect
spatial grouping patterns visually. On the other hand, overlay set
visualization methods apply the Gestalt principle of enclosure to
highlight all points of the same category as a common geometric
shape. But these cluster regions may easily produce clutter if the
categories are not well separated in the point set. Hence, we decided
to develop a geometric clustering strategy that aims to partition all
points of the same category into a minimum number of pairwise
disconnected clusters such that no two clusters overlap, regardless
of their category. Such a clustering can then be visualized as a col-
lection of planar regions, which avoids the visual clutter of region
overlaps but still applies the enclosure principle as much as possi-
ble. With such a cluster visualization approach the number of clus-
ters per category adapts to the spatial properties of the distribution

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

473

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

(a) (b) (c) (d) (e)

Figure 2: Four steps of the ClusterSets pipeline. (a) Input point data with three categories (red, blue, green), (b) proximity graph (black
edges are intra-category edges), (c) planar cluster spanning forest, (d) edge augmentation, (e) final layout with four planar clusters.

of the categories in the point data. With this in mind we define the
following four design goals:

1. Each category is represented by a distinct color.
2. Each cluster is a subset of points from the same category that

can be enclosed/connected into a single geometric component
that does not overlap with the component of any other cluster.

3. For each point in a cluster there is a sufficiently close point in
the same cluster to which it can be connected by an edge in a
suitable proximity graph.

4. The number of clusters per category should be small.

3.2. ClusterSets Pipeline

ClusterSets is implemented as a modular 4-step pipeline that real-
izes the above design goals. This pipeline is shown in Fig. 2.

1. Proximity graph. In the first step we create a suitable proxim-
ity graph for the point set. This graph guides how clusters can
be formed in the subsequent steps. The principle of a proxim-
ity graph is to define edges between any two points that can
be considered sufficiently close to each other with respect to
the surrounding points. Examples of such proximity graphs are
the Delaunay triangulation, the Gabriel graph [MS80], or the β-
skeleton, which we use in our implementation. Since clusters
must have a unique category, we remove all edges with endpoints
in different categories before we proceed to the next step.

2. Planar spanning forest. In the second step we compute a pla-
nar spanning forest in the proximity graph that minimizes the
number of connected components. Since this problem is NP-
hard [JW93, KN90], we propose two simple heuristics and an
exact integer linear program in Section 5. The result of this step
is a collection of crossing-free subgraphs of the proximity graph.
They define a set of homogeneous clusters.

3. Edge augmentation. While we can use the spanning trees di-
rectly to visualize the clusters, this would result in a purely line-
based overlay. Hence we define an optional edge augmentation
step, which enriches each cluster by additional edges from the
proximity graph such that no two edges from different clusters
cross each other. The contours of these spanning graphs yield
hull polygons for each cluster.

4. Rendering. The last step visualizes the clusters using one of
three representations. In particular, we propose a tree represen-
tation that shows a spanning tree for each cluster, a line-Voronoi

representation partitioning the plane into regions of different
colors, and a polygon representation showing the area enclosed
by selected edges as colored polygons. We use thicker colored
edges for the contours of the cluster regions, and a lighter shade
of the same color to fill the polygons if applicable. Singleton
clusters receive a larger colored halo to highlight their category.

4. Proximity Graphs

The first step of our pipeline computes a suitable proximity
graph, in which we can then construct planar clusters. An exam-
ple for a possible proximity graph is the Delaunay triangulation
[dBCvKO08], which gives reasonably-well-defined clusters – and
no edge crossings – but the clusters tend to be rather small. Denser
graphs contain more connections to choose from in order to obtain
larger clusters. Such graphs can be obtained via the set of useful
higher-order Delaunay edges [GHvK02]. For example, the set of
useful order-1 Delaunay edges induces a 1-plane graph. For our
case study and our experimental analysis, we opted, however, for
another type of proximity graphs, the β-skeletons. In the β-skeleton
for some 0< β≤ 1, two points p, q are connected if there is no third
point in the lune defined as the intersection of the two disks with
diameter |pq|/β passing through p and q. Depending on the chosen
parameter β, the skeletons can range from a complete graph (β = 0)
to the Gabriel graph (β = 1), a subgraph of the Delaunay triangula-
tion that was introduced by Matula and Sokal [MS80] in the context
of geographic cluster analysis. The fact that we can directly control
the density of these proximity graphs via a single parameter makes
them very handy for us. Larger values of β are possible, but yield
rather sparse results and are therefore of minor interest for our ap-
plication. An example of a 0.5-skeleton is given in Fig. 3a. As we
will show in our experimental evaluation (Section 7), denser prox-
imity graphs mean fewer (but less compact) clusters; see Fig. 8.
Setting β = 0.5 yields a good trade-off. We note that edges in the
proximity graph that connect points from two different categories
are not useful for cluster formation. Hence we delete all these inter-
category edges before proceeding to the next step (see Fig. 3b).

5. Clustering Algorithms

As we noted in the introduction, CLUSTER MINIMIZATION is NP-
hard even in the case that each category consists of only two ver-
tices [KN90]. This complexity result justifies that, in the remainder

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

474

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

(a) β-skeleton for β = 0.5 (b) removal of all bichromatic edges (c) an optimal solution

Figure 3: Input and output for CLUSTER MINIMIZATION given a 50-point instance from the OSM data set.

of this section, we present two fast heuristics for the problem (thus
accepting suboptimal solutions) and an exact ILP formulation (thus
accepting exponential running time).

5.1. Heuristics

We propose two heuristics for the cluster minimization problem.
The GREEDY heuristic keeps joining subclusters by edges that are
crossed by as few other edges as possible. The REVERSE GREEDY

heuristic keeps removing edges that are crossed by many edges.
We show that in theory both heuristics can perform arbitrarily bad
and that neither is better than the other (Figs. 4–5). More precisely,
given a geometric graph G = (V,E), the two heuristics compute a
plane spanning subgraph G′ = (V,E′) of G. Starting with E′ = ∅,
we empty E by repeating the following three steps.

GREEDY: (1) Keep removing edges from E whose end vertices
belong to the same connected component in G′. (2) Move an
edge e from E to E′ that is crossed by the minimum number of
edges. (3) Remove all edges from E that used to cross e.

REVERSE GREEDY: (1) Keep removing edges from E whose end
vertices belong to the same connected component in G′. (2) Move
all edges from E to E′ that are not crossed by any other edge of E
unless they would close a cycle in G′. (3) Remove an edge e
from E that is crossed by the maximum number of edges.

In both cases, the result is a crossing-free spanning forest. Using
a sweep-line algorithm for computing the crossings [BO79] and a
Union-Find data structure for maintaining the connected compo-
nents, the run time of GREEDY and REVERSE GREEDY on input
graphs with m edges is in O(m2).

For the remainder of this section, we focus on 1-plane graphs,

︸ ︷︷ ︸
k − 2

k

w

v

(a) graph, k > 4 even (b) GREEDY (c) REVERSE GREEDY

Figure 4: Both GREEDY and REVERSE GREEDY first pick the
k− 3 uncrossed (bottommost) edges. Then (b) GREEDY picks the
two vertical edges that are crossed k/2 times and removes the edges
incident to v. (c) REVERSE GREEDY removes all edges incident to
w and then the two vertical edges. Finally, uncrossed edges are
added resulting in a graph with k+ 3 (GREEDY) or 6 (REVERSE

GREEDY) connected components.

︸ ︷︷ ︸
k − 2

k

w

v

(a) graph, k > 4 even (b) GREEDY (c) REVERSE GREEDY

Figure 5: Both, GREEDY and REVERSE GREEDY first pick the
k− 1 uncrossed (leftmost) edges. Then (b) GREEDY picks the two
vertical edges that are crossed k/2 times and removes the edges in-
cident to v. (c) REVERSE GREEDY removes all edges incident to w
and one among the two vertical edges. Then one of the uncrossed
edge incident to v is picked and the others removed. Finally, un-
crossed edges are added resulting in a graph with 4 (GREEDY) or
k+2 (REVERSE GREEDY) connected components.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

475

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

e

(a) (b) (c) (d)

Figure 6: GREEDY solves CLUSTER MINIMIZATION on 1-plane
graphs not always optimally: (a) input graph, (b) optimal solution,
(c) GREEDY first chooses the four uncrossed edges. Next it might
pick edge e, which would lead to suboptimal solution (d).

i.e., graphs where each edge is crossed at most once. Admittedly, 1-
plane graphs are a rather special case, but – see the discussion about
useful order-1 Delaunay edges in Section 4 – it is not irrelevant.

Observe that minimizing the number of connected components
corresponds to maximizing the number of edges when looking for
crossing-free spanning forests. Thus, it is possible to use some
heavy machinery from algorithm theory and formulate CLUSTER

MINIMIZATION for 1-plane graphs as the intersection of two ma-
troids [KV18]: the set of all cycle-free edge sets and the set of
all crossing-free edge sets. Hence, cluster minimization can be
solved optimally in O(n3 logn) time on 1-plane graphs with n ver-
tices [CLS∗19].

As it turns out, however, for 1-plane graphs, the two heuristics
are identical and yield an optimal result under the following condi-
tion. We need to allow the merging of clusters at crossings between
edges that join vertices of the same category, i.e., we have to re-
place initial crossings of edges of the same connected component
by 4-stars. (Note that this modification may change the optimum.)
Figure 6 shows that the modification is necessary.

Theorem 1 Both GREEDY and REVERSE GREEDY solve the clus-
ter minimization problem optimally in O(n logn) time on 1-plane
graphs with n vertices in which no two edges of the same connected
component cross.

Proof Let G = (V,E) be a 1-plane graph. Both GREEDY and RE-
VERSE GREEDY behave in the same way on 1-plane graphs: They
add uncrossed edges to E′ whenever there is one. They remove
edges closing a cycle. Finally, they pick a random pair of crossing
edges, remove one of them, and move the other to E′. We have to
show that this algorithm computes the minimum number of con-
nected components.
Assume that at some point we have computed a set E′ that could
be extended to an optimal solution M of the cluster minimization
problem, that we added e = {v,w} and that E′∪{e} cannot be ex-
tended to an optimum solution. Thus, M must contain an edge e′

that crosses e. We may assume that M does not contain any cycles.
If v and w are not in the same connected component in the graph
(V,M), then (M \{e′})∪{e} is also crossing-free and induces the
same number of components as M. Thus, there is exactly one v-w-
path P in M. Since there was no v-w-path in E′ at the time when
we considered e, there must be an edge e1 on P that is crossed by
an edge e′1 = {v′,w′}. The edge set M′ := M \{e1,e

′}∪{e′1,e} is
crossing-free.
If v′ and w′ are in different connected components of (V,M), then

M′ induces the same number of connected components as M. Oth-
erwise the unique v′-w′-path P′ in M must cross the cycle C induced
by P and e. Since e′1 and e1 cross, they must stem from different
connected components of G. Hence P′ crosses C in an edge. Since
M is crossing-free, P′ crosses C in e. By 1-planarity it follows that
P′ contains e′. Hence, also in this case, M′ induces the same num-
ber of connected components as M; contradicting the assumption
that E′∪{e} cannot be extended to an optimal solution.
For the runtime, observe that both, the number of edges and the
number of crossings of a 1-plane graph with n vertices are inO(n).
Thus all crossings can be computed in O(n logn) time. Instead of
iteratively applying Step (1), it suffices to first compute a spanning
forest of uncrossed edges and then to check each time when we pick
a pair of crossing edges whether one of them has its end vertices in
different connected components.

5.2. An Exact Method

Linear programming is a popular tool for solving combinatorial op-
timization problems. A linear program (LP) consists of real-valued
variables x1, . . . ,xn, a target function that is restricted to be linear in
the variables (minimize (or maximize) c1x1 + · · ·+ cnxn for some
constants c1, . . . ,cn), and a set of linear constraints (for i= 1, . . . ,m,
ai,1x1+ · · ·+ai,nxn ≥ bi). Linear programs can be solved efficiently
[Kar84]. A (mixed-) integer linear program (ILP) is a generaliza-
tion of a linear program where some variables can be restricted to
integer values. Often, binary (that is, 0–1) variables are used. This
makes it possible to encode NP-hard optimization problems, hence
ILPs cannot be solved efficiently in general, but in practice small
and medium-sized instances of such problems can often be solved
relatively fast. For our problem we could solve each instance of up
to 100 points within 1.8 hours, and some instances with 150 points,
each within about a day; see Section 7.

We restate CLUSTER MINIMIZATION in a way that is conve-
nient for deriving an ILP formulation. Given an undirected geo-
metric graph G = (V,E), we want to find a smallest set of plane
connected subgraphs of G whose vertex sets partition V . As above,
we refer to these plane subgraphs as clusters. We can think of the
clusters as trees, but we don’t forbid cycles. For a vertex v ∈ V ,
let N(v) denote the neighborhood of v. Set n = |V |. We identify the
potential clusters with numbers in C = {1,2, . . . ,n}.

Following an idea of Shirabe [Shi05], we define a flow in G and
constrain it such that the connected sets of edges that carry positive
flow define the clusters. Since we need flow to go either direction
along an edge, we introduce the arc set A = {uv,vu : {u,v} ∈ E}.
We need the following variables, all of which are binary (except the
flow variables). To help intuition, we specify the intended meaning
of setting the variables to 1.

xuv = 1⇔ arc uv ∈ A is in the solution
ac = 1⇔ cluster c ∈C contains at least one vertex
tvc = 1⇔ vertex v is a sink in cluster c
tv = 1⇔ vertex v is a sink
sv = 1⇔ vertex v is a source

fuv ≥ 0 denotes the flow along arc uv ∈ A (i.e., from u to v)

Then our ILP for minimizing the number of clusters is as follows.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

476

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

Minimize ∑
c∈C

ac subject to the following conditions.

Edge connections are symmetric:

xuv = xvu for uv ∈ A

For each pair of crossing edges, pick at most one edge:

xe + xe′ ≤ 1 for each crossing (e,e′) ∈ A2

A vertex is a sink if it is the sink for any cluster:

tv = ∑
c∈C

tvc ≤ 1 for v ∈V

Each vertex is either a source or a sink:
sv = 1− tv for v ∈V

Each cluster with a sink is counted:

∑
v∈V

tvc = ac ≤ 1 for c ∈C

Flow can only pass through selected edges:

fuv ≤ n · xuv for uv ∈ A

Net outflow from sources is 1, net outflow from sinks is at most 0:
sv−n · tv ≤ ∑

u∈N(v)
(fvu− fuv)≤ sv for v ∈V

The last constraint forces the net outflow ∑u∈N(v)(fvu − fuv) for
each vertex v to be 1 if v is a source (that is, if sv = 1). This is
due to the fact that sv = 1 implies that the left-hand side and the
right-hand side are both 1. Otherwise, v is a sink (that is, sv = 0 and
tv = 1). Then the net outflow is bounded from below by 1− n and
from above by 0. The conditions of the ILP can be fulfilled if and
only if {{u,v} ∈ E : xuv = 1} is crossing-free and induces at most
as many connected components as there are sinks. In an optimal
solution there is exactly one sink in each connected component.

6. Case Study

In this section, we present and compare results obtained with differ-
ent visualization methods, including our own methods and methods
from the literature. For all results computed with our own methods
that are presented in this section, we used a β-skeleton as under-
lying neighborhood graph and the greedy heuristic to compute the
clustering. Our aim is to shed light on how the choice of β and the
choice of the method for displaying the resulting clusters affect the
quality of the visualization with respect to Design Goals 1–4.

We tested our methods for three different data sets, which we
refer to as UBN, OSM, and NYC.

UBN is a set of 78 points representing facilities of the University
of Bonn, Germany, where each facility belongs to one of seven de-
partments defining the categories. A small part of this set of points
is shown in Fig. 1. After retrieving the points [Goo], we classified
them by department membership and excluded points that we could
not assign to any department. We consider this data set interesting
since points of the same category tend to form local clusters, sim-
ply because facilities of the same department are located close to
each other. Nevertheless, the point sets of different categories are
interwoven spatially, making it challenging to find a crossing-free
graph of few connected components spanning the point set.

We computed two different visualizations for UBN, which are

shown in parts in Fig. 1 and at full extent in the supplementary ma-
terial. The first visualization is simply using a Voronoi diagram of
the point set to partition the plane into regions of different colors;
see Fig. 1 (left). This is a popular approach in Geographic Infor-
mation Science to generate polygonal maps from categorical point
data [GNY96,AP08]. Although most facilities of the Department of
Agriculture (brown) and the Department of Mathematics and Natu-
ral Sciences (yellow) are located on or close to the main university
campus, both point sets are split over multiple regions. Only the
Department of Protestant Theology (red) with only one building
and the Department of Law (orange) with two buildings constitute
contiguous regions. In contrast, when using our greedy algorithm
to select edges from a β-skeleton with β = 0.5 and additional intra-
cluster edges, four of the seven departments are represented with
a single cluster; see Fig. 1 (right). Approximating a line Voronoi
diagram by sampling points on the selected edges yields a partition
of the plane into relatively compact regions corresponding to the
clusters, which can be thought of as a political map or categorical
coverage map; see the transparent, colored areas in Fig. 1 (right). A
disadvantage of the Voronoi-based methods is that large empty re-
gions are colored, which might seem incomprehensible to the user.
Moreover, although the colored regions are displayed transparent,
they substantially reduce the readability of the content in the back-
ground. Therefore, we consider the method that fills only the ar-
eas enclosed by the displayed edges as a good alternative; see the
opaque areas in Fig. 1 (right). A drawback of this method is, how-
ever, that singletons and other clusters that do not enclose any area
are hardly visible. This drawback can be compensated by combin-
ing the polygon-based visualization with the line-Voronoi method
(as in Fig. 1 (right)) or displaying colored halos around singletons
and edges, as we will show on two other data sets next.

OSM is a set of 16320 points of interest (POIs) that we extracted
from a file of OpenStreetMap data provided for download [GO].
It has a similar spatial extent as UBN covering the whole city of
Bonn. These points belong to 123 different categories, of which
some constitute local clusters (e.g., POIs of category “clothes” in
shopping centers) while others do not (e.g., POIs of category “bak-
ery”). We used this data set in particular to draw smaller samples
from it for the experiments presented in Sect. 7, which we con-
ducted to analyze the running times of our methods and their per-
formance in terms of quality, for instances of different sizes. In the
following, we use this data set to study the influence of β.

Figure 7 shows visualizations we obtained by applying our
method with different values for β to a subset of points from OSM.
For the same data set, Fig. 8 shows the influence of β on the number
of clusters. (The same figure for the other data sets can be found
in the supplemental materials.) While with smaller β the number
of clusters decreases substantially, it appears that the choice of RE-
VERSE GREEDY or GREEDY has only a minor influence. In the spe-
cial case β = 0, the β-skeleton is the complete graph. Accordingly,
choosing it leads to few and relatively large clusters, satisfying De-
sign Goal 4; see Fig. 7a. On the other hand, some clusters are con-
nected only via very long edges, contradicting Design Goal 3. We
also note that a cluster might completely enclose another cluster—
a situation that may be difficult to comprehend. Since this can also
be interpreted as a hole in the larger polygon, we do not explicitly
forbid nested clusters, but allow the user to specify a threshold θ

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

477

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

(a) β = 0.0; 11 clusters (b) β = 0.5; 15 clusters (c) β = 1.0; 22 clusters

Figure 7: Greedy solutions for different values of β on a section of the OSM data. In postprocessing, we added intra-cluster edges from the
original β-skeleton. We added only those edges that would not cross edges of other clusters or enclose other clusters. We then applied the
polygonal visualization style to the resulting set of edges.

β

C
lu

st
er

s

10

12

14

16

18

20

22

0 0.2 0.4 0.6 0.8 1

Greedy ReverseGreedy ILP

Figure 8: Influence of β on the cluster number produced by the ILP,
GREEDY, and REVERSE GREEDY for the instance in Fig. 7.

that forbids the algorithm to enclose clusters of size at most θ. In
our experiments we observed that setting θ = 1 worked well. For
β = 1, which is the other extreme, we obtain the Gabriel graph,
which is crossing-free. The partition of the points into clusters is
thus determined already with the proximity graph, while the edge
augmentation step may add some additional intra-cluster edges; see
Fig. 7c. Since we obtain many small clusters or even singletons,
the method fails entirely to satisfy Design Goal 4. The solution for
β = 0.5, which is shown in Fig. 7b, can be considered a good trade-
off between Design Goals 3 and 4 since the clusters are relatively
large and the edges connect points that are relatively near to each
other. Design Goals 1 and 2 are reached for all β.

NYC is a set of 96 points that are located in Manhattan,
New York, each belonging to one of the three categories “ho-
tel”, “subway station”, and “clinic”. We use this data set pri-
marily since it has been used as a benchmark before. In partic-

ular, Fig. 9 shows three different visualizations generated with
our ClusterSets method as well as visualizations of Bubble
Sets [CPC09], LineSets [AHRRC11], KelpFusion [MHRS∗13],
and MapSets [EHKP15]. The four methods from the literature
shown in Figs. 9d–9g ensure that all points of the same category are
displayed with a connected shape. Generally, this is difficult with-
out tolerating crossing lines or overlapping areas; only MapSets, by
design, achieves crossing-free, yet rather complex cluster shapes;
see Fig. 9g. Overlaps and crossings can be particularly problematic
if happening near set elements as the shape intersection may cre-
ate ambiguities in the category memberships of enclosed or nearby
points; see Figs. 9d–9f. It is not clear, however, whether the global
connectivity per category justifies the resulting line crossings, some
of which form acute crossing angles or occur close to data points.
While MapSets does not create any overlaps of the cluster shapes,
the connectivity requirement comes at the cost of highly complex
shape boundaries and non-compact clusters, see, e.g., the red clus-
ter wrapping around the blue one and claiming the empty area on
the left-hand side in Fig. 9g. Unlike our method, the four systems
have not been designed to separate local clusters of the same cate-
gory, which limits their range of applicability. With respect to our
own visualizations, we argue that the tree representation (Fig. 9a) is
in a sense similar to KelpFusion and LineSets since it shows lines
that connect points of the same category without giving a good idea
of local clusters. Local clusters become more apparent, however,
with the display of additional intra-cluster edges and polygons en-
closing the clusters (Fig. 9b) or Voronoi regions partitioning the
plane (Fig. 9c). The representation based on the line Voronoi dia-
gram works particularly well in this example, since the points are
almost uniformly distributed over the extent of the data set. Recall,
however, that the polygon representation (Fig. 9b) should be cho-
sen if a data set (such as UBN) contains large regions without any
points.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

478

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

(a) ClusterSets: Tree representation (b) ClusterSets: Polygon representation (c) ClusterSets: Line-Voronoi representation

(d) Bubble Sets [CPC09]

0

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82
83

84

85

86

87

88

89

90

91

92

93

94

95

(e) LineSets [AHRRC11] (f) KelpFusion [MHRS∗13]

0

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56

57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

8283

84

85

86

87

88

89

90

91
92

93

94

95

(g) MapSets [EHKP15]

Figure 9: Comparison of different visualizations for the NYC data. We digitized the Bubble Sets representation from Figure 9 of the original
paper [CPC09]. The LineSets and MapSets representations were produced at http://gmap.cs.arizona.edu.

7. Quantitative Experiments

We conducted experiments to compare the running time and quality
of the GREEDY and REVERSE GREEDY heuristic with the ILP for
different values of β. In particular, we wanted to measure if one
of the two heuristics performs better in practice and how close the
solutions are to the optimum.

Experimental Setup We created 45 data sets based on the OSM
data as follows. We divided the map that contains all points of in-
terest uniformly into nine squares and computed the center of each
square. Then, for n = 50,100,150,200,250, we computed the n
closest points of interest for each center. This way, we created 9
different data sets for each n. We restricted β to values in the range

from 0.5 to 0.9 in steps of 0.05, as larger values created too many
clusters (the β-skeleton is too sparse) and smaller values do not rep-
resent geometric closeness well (the β-skeleton is too dense; recall
that for β = 0 all possible edges are in the β-skeleton). We com-
puted the solutions of our greedy heuristics and the ILP for all data
sets for these values of β .

We ran our experiments on a server with an Intel Xeon X5550
processor with 16 cores of 2.67GHz. The server runs under Ubuntu
20.04 and has 16GB of memory. Our heuristics were implemented
in Java (openjdk 11.0.9.1) and the ILP was implemented in IBM
ILOG CPLEX Optimization Studio 12.9.0.0. The code is available
at https://github.com/JakobGeiger/ClusterSets.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

479

http://gmap.cs.arizona.edu
https://github.com/JakobGeiger/ClusterSets

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

150 200 250

50 100 150

35

40

45

60

65

70

25

30

35

50

55

60

65

15

20

40

45

C
lu

st
er

s

G ILP R G

Figure 10: Comparison of solutions for β = 0.5. The y-axis counts
the number of clusters in the solutions. In the top row we show the
instances for which we found an optimum solution with the ILP; in
the bottom row we show the remaining instances.

Results Both heuristics were able to compute a solution within less
than 50ms for all instances. On the other hand, the ILP was con-
siderably slower. For instances with 50 points it required up to 11
seconds, for instances with 100 points it required up to 1.8 hours,
and for instances with 150 points it required up to 2 days. Hence,
we did not run the ILP for instances with 200 and 250 points, and
only for some of the instances with 150 points.

In Fig. 10, we analyze the number of clusters produced by the
heuristics and the ILP grouped by the number of points of an in-
stance for β = 0.5 as a whiskers plot. The lower hinge is the 25th
percentile, the middle hinge is the 50th percentile (the median), and
the upper hinge is the 75th percentile. We display the results for
β = 0.5 because the differences between the algorithms are larger
for this choice of β than for larger ones. For all instances, the num-
ber of clusters produced by the two heuristics were close. Out of the
405 created instances, GREEDY gave the better solution 66 times,
REVERSE GREEDY performed better 126 times, and they produced
the same number of clusters 213 times. The same plot for the other
values of β is available in the supplemental materials.

Surprisingly, the solutions of our heuristics were close to the op-
timum: they produced at most 10% more clusters than the optimum
solution for β = 0.5, at most 7.5% more clusters for β = 0.75, and
at most 5% more clusters for β = 0.9; see Fig. 11.

8. Discussion and Limitations

Finally, we discuss limitations and improvements of our approach.

Both heuristics consider only the number of crossings of an edge
to decide which edges to pick or to remove. In general, close points
should be more likely to be in the same cluster than points that are
far away from each other. To this end, one could try to also mini-
mize the total edge length of the solution, for example by breaking
ties in the greedy approach by preferring shorter edges.

We have considered only data in which every point belongs to

C
lu

st
er

s
m

or
e

th
an

 o
pt

im
um

0%

2%

4%

6%

8%

10%

0.5 0.65 0.8

50

0.5 0.65 0.8

100

0.5 0.65 0.8

150

β

G R G

Figure 11: Comparison of solutions by our greedy heuristics with
the optimum. The y-axis shows the additional number of clusters
(in percent) computed by the heuristics compared to the optimum
for each β, grouped by number of points.

exactly one category. In practice, it could happen that some points
belong to more than one category. Our heuristics do not easily ex-
tend to cover this more general case, and probably some more in-
volved approaches are necessary to solve it.

In the Edge Augmentation step, we added edges to the spanning
tree in an arbitrary order. It might be possible to obtain better results
by using heuristic approaches similar to GREEDY and REVERSE

GREEDY to maximize the number of edges that are added.

When clustering categorized geographic data, crossings between
edges connecting vertices of the same category could also be used
to connect clusters. For 1-plane graphs, we discussed replacing
such intra-category crossings by 4-stars (see Theorem 1). It is not
clear, however, how to generalize this approach if edges are in-
volved in both intra- and inter-category crossings.

CLUSTER MINIMIZATION is also NP-hard in the case that all
vertices belong to the same category since Jansen and Woegin-
ger [JW93] showed that it is NP-hard to decide whether a given
geometric graph contains a crossing-free spanning tree. While
this case is not so interesting for our clustering application, we
can show, using a simple trick [KSSW07], that “monochromatic”
CLUSTER MINIMIZATION is even hard to approximate.

Consider the geometric graph that Jansen and Woeginger [JW93]
construct to show that crossing-free spanning tree is NP-hard. If we
place k disjoint copies of this graph along the x-axis and connect
the rightmost vertex of one copy with the leftmost vertex of the next
copy, then we get a new geometric graph for which it is NP-hard to
distinguish between the case that it has a plane spanning tree (i.e.,
one cluster) and the case that any plane subgraph has at least k+1
connected components (i.e., many clusters).

Acknowledgments We thank the organizers of Dagstuhl seminar
19192, where this work originated. Among the participants, we par-
ticularly thank Hugo Akitaya for discussions. We thank Joachim
Spoerhase for simplifying our NP-hardness argument. We thank
Wouter Meulemans for running his KelpFusion implementation on
several instances for us. We thank Sergey Pupyrev for adjusting his
code to produce Fig. 9g for us.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

480

J. Geiger et al. / ClusterSets: Optimizing Planar Clusters in Categorical Point Data

References

[AHRRC11] ALPER B., HENRY RICHE N., RAMOS G., CZERWINSKI
M.: Design study of LineSets, a novel set visualization technique. IEEE
Trans. Visualization and Computer Graphics 17, 12 (2011), 2259–2267.
doi:10.1109/TVCG.2011.186. 3, 8, 9

[AMA∗16] ALSALLAKH B., MICALLEF L., AIGNER W., HAUSER H.,
MIKSCH S., RODGERS P. J.: The state-of-the-art of set visualization.
Computer Graphics Forum 35, 1 (2016), 234–260. doi:10.1111/
cgf.12722. 3

[AOA19] AKSAC A., ÖZYER T., ALHAJJ R.: CutESC: Cutting edge spa-
tial clustering technique based on proximity graphs. Pattern Recognition
96 (2019), 106948. doi:10.1016/j.patcog.2019.06.014. 3

[AP08] ABELLANAS M., PALOP B.: Urban data visualization with
Voronoi diagrams. In Proc. International Conference Computational
Science and Its Applications (ICCSA), Part I (2008), Gervasi O., Mur-
gante B., Laganà A., Taniar D., Mun Y., Gavrilova M. L., (Eds.),
vol. 5072 of Lecture Notes in Computer Science, Springer, pp. 126–136.
doi:10.1007/978-3-540-69839-5_10. 7

[Ber11] BERTIN J.: Semiology of Graphics: Diagrams, Networks, Maps.
ESRI Press, 2011. 3

[BO79] BENTLEY J. L., OTTMANN T. A.: Algorithms for reporting
and counting geometric intersections. IEEE Trans. Computers C-28, 9
(1979), 643–647. doi:10.1109/TC.1979.1675432. 5

[BP02] BECK D. M., PALMER S. E.: Top-down influences on perceptual
grouping. Journal of Experimental Psychology: Human Perception and
Performance 28, 5 (2002), 1071–1084. doi:10.1037/0096-1523.
28.5.1071. 3

[CLS∗19] CHAKRABARTY D., LEE Y. T., SIDFORD A., SINGLA S.,
WAI WONG S. C.: Faster matroid intersection. In Proc. 60th Annual
Symposium on Foundations of Computer Science (FOCS) (2019), IEEE,
pp. 1146–1168. doi:10.1109/FOCS.2019.00072. 6

[CPC09] COLLINS C., PENN G., CARPENDALE S.: Bubble Sets: Re-
vealing set relations with isocontours over existing visualizations. IEEE
Trans. Visualization and Computer Graphics 15, 6 (2009), 1009–1016.
doi:10.1109/TVCG.2009.122. 2, 3, 8, 9

[CvGM∗19] CASTERMANS T., VAN GARDEREN M., MEULEMANS W.,
NÖLLENBURG M., YUAN X.: Short plane supports for spatial hy-
pergraphs. J. Graph Algorithms Appl. 23, 3 (2019), 463–498. doi:
10.7155/jgaa.00499. 3

[dBCvKO08] DE BERG M., CHEONG O., VAN KREVELD M., OVER-
MARS M.: Computational Geometry: Algorithms and Applications,
3rd ed. Springer, Berlin, 2008. 2, 4

[DvKSW12] DINKLA K., VAN KREVELD M., SPECKMANN B., WEST-
ENBERG M. A.: Kelp diagrams: Point set membership visualization.
Computer Graphics Forum 31, 3 (2012), 875–884. doi:10.1111/j.
1467-8659.2012.03080.x. 3

[EHKP15] EFRAT A., HU Y., KOBOUROV S. G., PUPYREV S.:
MapSets: Visualizing embedded and clustered graphs. J. Graph Algo-
rithms Appl. 19, 2 (2015), 571–593. doi:10.7155/jgaa.00364.
3, 8, 9

[EKASX96] ESTER M., KRIEGEL H.-P., A SANDER J., XU X.:
A density-based algorithm for discovering clusters in large spatial
databases with noise. In Proc. 2nd International Conference on Knowl-
edge Discovery and Data Mining (SIGKDD) (1996), pp. 226–231. doi:
10.5555/3001460.3001507. 3

[GB20] GRÖBE M., BURGHARDT D.: Micro diagrams: Visualization of
categorical point data from location-based social media. Cartography
and Geographic Information Science 47, 4 (2020), 305–320. doi:10.
1080/15230406.2020.1733438. 3

[GHK10] GANSNER E. R., HU Y., KOBOUROV S. G.: GMap: Vi-
sualizing graphs and clusters as maps. In Proc. Pacific Visualization
Symposium (PacificVis) (2010), IEEE, pp. 201–208. doi:10.1109/
PACIFICVIS.2010.5429590. 3

[GHvK02] GUDMUNDSSON J., HAMMAR M., VAN KREVELD M.:
Higher order Delaunay triangulations. Comput. Geom. Theory Appl. 23
(2002), 85–98. doi:10.1016/S0925-7721(01)00027-X. 2, 4

[GNY96] GOLD C. M., NANTEL J., YANG W.: Outside-in: an alter-
native approach to forest map digitizing. International Journal of Geo-
graphical Information Systems 10, 3 (1996), 291–310. doi:10.1080/
02693799608902080. 7

[GO] GEOFABRIK GMBH, OPENSTREETMAP CONTRIBU-
TORS: Regierungsbezirk Köln. URL: https://download.
geofabrik.de/europe/germany/nordrhein-westfalen/
koeln-regbez-latest-free.shp.zip. 7

[Goo] GOOGLE MAPS: Standorte der Universität Bonn. URL:
https://www.google.com/maps/d/viewer?mid=
1wZ53XzFZeQLRtUuz0FMsH3_GbANYrfQq. 7

[JW93] JANSEN K., WOEGINGER G. J.: The complexity of detecting
crossingfree configurations in the plane. BIT 33 (1993), 580–595. doi:
10.1007/BF01990536. 4, 10

[Kar84] KARMARKAR N.: A new polynomial time algorithm for linear
programming. Combinatorica 4, 4 (1984), 373–395. doi:10.1007/
BF02579150. 6

[KN90] KRATOCHVÍL J., NEŠETŘIL J.: Independent set and clique
problems in intersection-defined classes of graphs. Comment.
Math. Univ. Carolinae 31, 1 (1990), 85–93. URL: https:
//gdz.sub.uni-goettingen.de/id/PPN316342866_
0031?tify={"pages":[89]}. 2, 4

[Kra09] KRAAK M.-J.: Geovisualization. In International Encyclope-
dia of Human Geography, Kitchin R., Thrift N., (Eds.). Elsevier, Ox-
ford, 2009, pp. 468–480. doi:10.1016/B978-008044910-4.
00033-X. 2

[KSSW07] KNAUER C., SCHRAMM É., SPILLNER A., WOLFF A.: Con-
figurations with few crossings in topological graphs. Comput. Geom.
Theory Appl. 37, 2 (2007), 104–114. doi:10.1016/j.comgeo.
2006.06.001. 10

[KV18] KORTE B., VYGEN J.: Combinatorial Optimization: The-
ory and Algorithms, 6th ed., vol. 21 of Algorithms and Combina-
torics. Springer-Verlag Berlin Heidelberg, 2018. doi:10.1007/
978-3-662-56039-6. 6

[MHRS∗13] MEULEMANS W., HENRY RICHE N., SPECKMANN B.,
ALPER B., DWYER T.: KelpFusion: A hybrid set visualization tech-
nique. IEEE Trans. Visualization and Computer Graphics 19, 11 (2013),
1846–1858. doi:10.1109/TVCG.2013.76. 3, 8, 9

[MS80] MATULA D. W., SOKAL R. R.: Properties of Gabriel graphs
relevant to geographic variation research and the clustering of points in
the plane. Geographical Analysis 12, 3 (1980), 205–222. doi:10.
1111/j.1538-4632.1980.tb00031.x. 4

[Shi05] SHIRABE T.: A model of contiguity for spatial unit alloca-
tion. Geographical Analysis 37, 1 (2005), 2–16. doi:10.1111/j.
1538-4632.2005.00605.x. 6

[Zah71] ZAHN C.: Graph-theoretical methods for detecting and describ-
ing gestalt clusters. IEEE Trans. Computers C-20, 1 (1971), 68–86.
doi:10.1109/T-C.1971.223083. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

481

https://doi.org/10.1109/TVCG.2011.186
https://doi.org/10.1111/cgf.12722
https://doi.org/10.1111/cgf.12722
https://doi.org/10.1016/j.patcog.2019.06.014
https://doi.org/10.1007/978-3-540-69839-5_10
https://doi.org/10.1109/TC.1979.1675432
https://doi.org/10.1037/0096-1523.28.5.1071
https://doi.org/10.1037/0096-1523.28.5.1071
https://doi.org/10.1109/FOCS.2019.00072
https://doi.org/10.1109/TVCG.2009.122
https://doi.org/10.7155/jgaa.00499
https://doi.org/10.7155/jgaa.00499
https://doi.org/10.1111/j.1467-8659.2012.03080.x
https://doi.org/10.1111/j.1467-8659.2012.03080.x
https://doi.org/10.7155/jgaa.00364
https://doi.org/10.5555/3001460.3001507
https://doi.org/10.5555/3001460.3001507
https://doi.org/10.1080/15230406.2020.1733438
https://doi.org/10.1080/15230406.2020.1733438
https://doi.org/10.1109/PACIFICVIS.2010.5429590
https://doi.org/10.1109/PACIFICVIS.2010.5429590
https://doi.org/10.1016/S0925-7721(01)00027-X
https://doi.org/10.1080/02693799608902080
https://doi.org/10.1080/02693799608902080
https://download.geofabrik.de/europe/germany/nordrhein-westfalen/koeln-regbez-latest-free.shp.zip
https://download.geofabrik.de/europe/germany/nordrhein-westfalen/koeln-regbez-latest-free.shp.zip
https://download.geofabrik.de/europe/germany/nordrhein-westfalen/koeln-regbez-latest-free.shp.zip
https://www.google.com/maps/d/viewer?mid=1wZ53XzFZeQLRtUuz0FMsH3_GbANYrfQq
https://www.google.com/maps/d/viewer?mid=1wZ53XzFZeQLRtUuz0FMsH3_GbANYrfQq
https://doi.org/10.1007/BF01990536
https://doi.org/10.1007/BF01990536
https://doi.org/10.1007/BF02579150
https://doi.org/10.1007/BF02579150
https://gdz.sub.uni-goettingen.de/id/PPN316342866_0031?tify={"pages":[89]}
https://gdz.sub.uni-goettingen.de/id/PPN316342866_0031?tify={"pages":[89]}
https://gdz.sub.uni-goettingen.de/id/PPN316342866_0031?tify={"pages":[89]}
https://doi.org/10.1016/B978-008044910-4.00033-X
https://doi.org/10.1016/B978-008044910-4.00033-X
https://doi.org/10.1016/j.comgeo.2006.06.001
https://doi.org/10.1016/j.comgeo.2006.06.001
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1007/978-3-662-56039-6
https://doi.org/10.1109/TVCG.2013.76
https://doi.org/10.1111/j.1538-4632.1980.tb00031.x
https://doi.org/10.1111/j.1538-4632.1980.tb00031.x
https://doi.org/10.1111/j.1538-4632.2005.00605.x
https://doi.org/10.1111/j.1538-4632.2005.00605.x
https://doi.org/10.1109/T-C.1971.223083

