
Eurographics Conference on Visualization (EuroVis) 2021
R. Borgo, G. E. Marai, and T. von Landesberger
(Guest Editors)

Volume 40 (2021), Number 3

A Visual Designer of Layer-wise Relevance Propagation Models

Xinyi Huang1 and Suphanut Jamonnak1 and Ye Zhao1and Tsung Heng Wu1 and Wei Xu2

1Kent State University, 2Brookhaven National Laboratory

Abstract
Layer-wise Relevance Propagation (LRP) is an emerging and widely-used method for interpreting the prediction results of
convolutional neural networks (CNN). LRP developers often select and employ different relevance backpropagation rules and
parameters, to compute relevance scores on input images. However, there exists no obvious solution to define a “best” LRP
model. A satisfied model is highly reliant on pertinent images and designers’ goals. We develop a visual model designer, named
as VisLRPDesigner, to overcome the challenges in the design and use of LRP models. Various LRP rules are unified into an
integrated framework with an intuitive workflow of parameter setup. VisLRPDesigner thus allows users to interactively config-
ure and compare LRP models. It also facilitates relevance-based visual analysis with two important functions: relevance-based
pixel flipping and neuron ablation. Several use cases illustrate the benefits of VisLRPDesigner. The usability and limitation of
the visual designer is evaluated by LRP users.

1. Introduction

Deep learning techniques have seen a dominant and pervasive surge
in many domains by producing state-of-the-art results with com-
putational solutions based on deep neural networks (DNNs). Nev-
ertheless, a critical problem remains for neural network models
which reside in the lack of interpretability and transparency. Ex-
plainable deep learning has become an important research topic,
while a variety of visualization methods and tools have been devel-
oped to “open the black box” [YCN∗15, CL18, HKPC19]. In the
field of computer vision, many computational methods discover in-
put data components related to decisions based on perturbation,
gradient, sensitivity, and relevance scores [SMV∗19]. Recently,
Layer-wise Relevance Propagation (LRP) methods [BBM∗15,
MSM18] have become an emerging focus from computer vi-
sion researchers [AHM∗16,SLSM16,BAL∗18,HMK∗19,GCS∗19,
IKU19, KJL19, LWB∗19, NIAN19, SKK∗19], as they can discover
significant input features contributing to the classification or pre-
diction output. LRP also overcomes the weakness of shattered gra-
dients in gradient methods (Grad-CAM) and makes up for the per-
turbation method (occlusion map).

LRP techniques explain the prediction of a convolutional neu-
ral network (CNN) by finding the relevance of input image pixels
to the output. By initiating relevance on a selected output class, a
backward propagation from the output layer to the lower layers is
employed to compute relevance values at each layer and towards
the input pixels. In the backpropagation, the distribution of rele-
vance can be computed by using different relevance propagation
rules that utilize the forward neuron activations and a set of arti-
ficial parameters. Composite LRPs further allow different propa-
gation rules and parameters to be used at different layers selected

by users [SBLM17]. With respect to these variations and selec-
tions, LRP models create different relevance values which are of-
ten shown as heatmaps to explain the contribution of input pixels
towards CNN output.

A preferred LRP model depends on different input images and
the specific goal of the user. For example, finding salient features
for the prediction of “dog” in small scales (e.g. eyes and ears) or
large scales (e.g., body shape) will need to configure different LRP
models. Therefore, there is no “best” LRP model that a user can
create directly. A trial-and-error process often needs to be con-
ducted to investigate different propagation rules and parameter set-
tings. LRP developers have presented suggestions of how to choose
the model [MSM18], such as “if negative relevance is needed, or
the heatmaps are too diffuse, replace the rule LRP-α1β0 by LRP-
α2β1 in the hidden layers”, “If the heatmaps obtained with LRP-
α1β0 and LRP-α2β1 are unsatisfactory, consider a larger set of
propagation rules”. Composite LRPs further confound the situa-
tion when various rules are tested on different CNN layers. Novice
users are often perplexed in understanding and manipulating this
process. Even experienced users need to spend great time and ef-
fort in model design, validation, adjustment, and comparison. Un-
fortunately, in most cases, this exploratory process has to be imple-
mented manually in the coding stage.

In this paper, we develop a visual designer, named as VisLR-
PDesigner, which helps domain experts and students efficiently de-
sign, debug, and compare LRP models. It further integrates two
visual analytics functions based on the computed relevance for
model validation including: (1) pixel flipping which flips input im-
age pixels to check CNN output changes, and (2) neuron ablation
which removes specific neurons to see how that affects perfor-
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mance [VKS20]. The main contributions of this work are as fol-
lows:
• We construct an integrated computational framework of different

LRP rules. Based on it, we propose a configuration workflow
with four parameter-setting steps.

• We identify and utilize segments of CNN layers as basic LRP
configuration and computing units. Users thus can flexibly set up
and visualize LRP rules and parameters over them.

• We build a visual interface which integrates several coordinated
views for multiple segment selection, interactive parameter defi-
nition, and LRP result examination. It also facilitates model man-
agement and comparison.

• We facilitate users to perform relevance-based visual analysis
with popular model explanation tools: neuron ablation and pixel
flipping.

• We evaluate he usability of VisLRPDesigner with LRP learners
and experts, and discuss the benefits and limitations.

In summary, we present the first visual analytics (VA) system, to
the best of our knowledge, that facilitates the easy and intuitive
design of LRP models. VisLRPDesigner has two major benefits in
promoting wider use of LRP in deep learning explanation: (1) it
can mitigate the burden of LRP developers and (2) it can expedite
the learning of LRP techniques in education.

2. Related Work

Computational approaches of deep learning explanation have been
addressed through a variety of algorithms [SMV∗19]. Importance
scores of the input features (i.e., saliency map, relevance map) can
be computed for model understanding. For instance, perturbation
methods [AMJ17], saliency-based methods [SCD∗20], and influ-
ence functions [KL17] were proposed for these purposes. These
approaches were mostly aimed at CNN models to visualize learned
features. A general taxonomy classified them into three main cat-
egories [GRNT16]: input modification methods, deconvolutional
methods, and input reconstruction methods. They often elucidated
the internal processes by visualizing input contribution heatmaps.
Deconvolutional Networks (DeconvNets) [SVZ14, ZF14], Guided
Back Propagation [SDBR15], Class Activation Mapping (CAM)
[LCY14, SCD∗17, ZKL∗16], were the popular approaches. Re-
cently, LRP has become an emerging focus from computer vi-
sion researchers [AHM∗16,SLSM16,BAL∗18,HMK∗19,GCS∗19,
IKU19, KJL19, LWB∗19, NIAN19, SKK∗19, HMK∗19, IKU19,
GYT19, LLMX20]. Heatmaps were mostly used in these methods
to visualize input pixels’ relevance values. An online Interactive
LRP Demo System (at heatmapping.org) was developed for users
to study a few popular LRP rules and see the resultant heatmap. The
parameters were changeable through input boxes. However, this
demo is very simple and does not support users to customize mod-
els, define multi-segments with various rules, and perform model
comparison. In comparison, VisLRPDesigner provides a compre-
hensive visualization tool for LRP design and exploration. It also
novelly integrates relevance-based pixel flipping and neuron abla-
tion in the visual system.

Interactive visualization tools have been developed to provide an
in-depth understanding of how deep learning models work [CL18,

Figure 1: LRP computational process with two phases: forward
propagation of activation and backward propagation of relevance.

HKPC19, RFFT17]. Some design tools [WSW∗18, Kar, STN∗16]
allowed users to interact with the activation maps and network
structures. CNNVis [LSL∗17] helped designers in exploring the
learned representations in the graph layout. ActiVis [KAKC18] in-
tegrated embedding view with multiple coordinates views for vi-
sual model exploration. Deep View [ZXZ∗17] presented a level-
of-detail framework that measured the evolution of the deep neural
network both on a local and on a global scale. DeepEyes [PHV∗18]
supported the identification of layers that learned a stable set of pat-
terns during training. REMAP [CPCS20] discovered a DNN model
via visual exploration and rapid experimentation including ablation
of neural network architectures. SUMMIT [HPRP20] performed
activation aggregation and neuron-influence aggregation, and vi-
sualized an attribution graph. For model comparison, DeepCom-
pare [MMD∗19] visually compared multiple DNN models for their
behaviors and assessed trade-offs among them. A visual genealogy
of DNNs helped practitioners understand the behavior and evolu-
tion of many existing DNN models [WYC∗19]. VATLD [GZL∗20]
applied representation and adversarial learning to understand the
accuracy and robustness of traffic light detectors. CNN Explainer
[WTS∗21] allowed students to interactively learn and understand
high-level structure function and low-level mathematical computa-
tion of CNN. However, LRP technologies have not been well uti-
lized in the VA approaches.

3. LRP Method and Relevance Data

LRP computes relevance values that quantify the contribution of
CNN components and input image features to prediction class.
Next, we briefly introduce the LRP computing process and rules
for a trained CNN.

3.1. LRP Computational Process

LRP computation is implemented in two phases shown in Fig. 1:
• First, a standard forward propagation pass is applied to the net-

work from an input image. The activation ai of each neuron xl
i at

layer l is collected. The network weight from neuron xl
i to neuron

xl+1
j in its successor layer l +1 is also recorded as wi j .

• Second, with a layer-wise backward propagation pass, a rele-
vance map Rl

k is computed to represent the relevance of each
neuron k at each layer l. The computation starts from an ini-
tial (input) relevance vector R defined at the output layer. Then a
backpropagation from layer l + 1 to layer l is implemented with
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Table 1: Popular LRP rules within the unified formula.

LRP Rule Reference Original Formula Parameters in the Unified Formula (Eqn. 5)

LRP-0 [BBM∗15] Ri = ∑
j

aiwi j
∑
i

aiwi j
R j α=1, β=0, ε =0, θ0=0, θ1=1,

γ0=0, γ1=1, γ1p=0, γ1n=0, γ2=0

LRP-ε [BBM∗15] Ri = ∑
j

aiwi j
ε+∑

i
aiwi j

R j α=1, β=0, ε ∈ [0,1], θ0=0, θ1=1,
γ0=0, γ1=1, γ1p=0, γ1n=0, γ2=0

LRP-γ [MBL∗19] Ri = ∑
j

ai(wi j+γw+
i j)

∑
i

ai(wi j+γw+
i j)

R j
α=1, β=0, ε =0, θ0=0, θ1=1,

γ0=0, γ1=1, γ1p=1, γ1n=0, γ2=0

LRP-αβ [BBM∗15] Ri = ∑
j
(α

aiw
+
i j

∑
i

aiw
+
i j
−β

aiw
−
i j

∑
i

aiw
−
i j
)R j

α-β=1, β≥ 0, ε =0, θ0=0, θ1=1,
γ0=0, γ1=0, γ1p=1 , γ1n=1 , γ2=0

LRP− z+ [BBM∗15] Ri = ∑
j

aiw
+
i j

∑
i

aiw
+
i j

R j
α=1, β=0, ε =0, θ0=0, θ1=1,

γ0=0, γ1=0, γ1p=1, γ1n=0, γ2=0

LRP−w2 [MLB∗17] Ri = ∑
j

w2
i j

∑
i

w2
i j

R j
α=1, β=0, ε =0 , θ0=1, θ1=0,
γ0=0, γ1=0, γ1p=0, γ1n=0, γ2=1

LRP-flat [LWB∗19] Ri = ∑
j

1
∑
i

1R j α=1, β=0, ε =0, θ0=1, θ1=0,
γ0=1, γ1=0, γ1p=0, γ1n=0, γ2=0

relevance conservation as:

Rl
i = ∑

j
F(ai,wi j)R

l+1
j , ∑

i
Rl

i = ∑
j

Rl+1
j . (1)

Here F is the LRP propagation rule. This process stops when a
relevance map R0 is achieved on the input image (l = 0).

R is typically defined for a target class t from N output classes as:

Ri =

{
ct , i = t i ∈ [1..N]

0, otherwise.
(2)

Here ct is the pre-softmax value of class t.

3.2. LRP Propagation Rules

In the original paper of LRP [BBM∗15], the propagation rule F is
defined in two popular forms called LRP− ε and LRP−αβ:

LRP-ε : Rl
i = ∑

j

aiwi j

ε+∑
i

aiwi j
Rl+1

j , (3)

where a small constant ε prevents numerical instability.

LRP-αβ : Rl
i = ∑

j
(α ·

aiw+
i j

∑
i

aiw+
i j
−β ·

aiw
−
i j

∑
i

aiw
−
i j
)Rl+1

j , (4)

where ()+ and ()− denote the positive weights and the nega-
tive weights, and α and β are chosen parameters with α− β = 1.
LRP−αβ splits the positive and negative activations, while α and
β modulate the contributions of excitatory and inhibitory effects
(see [MSM18]). The result LRPs are usually referred by the α and
β values, such as LRP− α2β1 for using α = 2 and β = 1, and
LRP−α1β0 for using α = 1 and β = 0.

Researchers have further proposed more LRP forms by manipu-
lating the propagation function F , such as LRP-γ, LRP-w2, LRP-
z+, LRP-zβ, and so on, which are summarized in Table 1. For ex-

ample, one popular enhancement approach is LRP-γ which empha-
sizes positive contributions over negative contributions.

A composite LRP strategy is proposed [SBLM17], where dif-
ferent rules are used at different layers. It provides more flexibil-
ity for users. For instance, it has been suggested that LRP− 0 for
top layers, LRP− ε for middle layers, and LRP− γ for lower lay-
ers [MBL∗19]. However, the flexibility of LRP also imposes a great
burden on users. VisLRPDesigner is designed for making this pro-
cess comfortable and effective.

3.3. Relevance Data

LRP computes neuron relevance maps (Rl
i) on every neuron. These

neuron maps of a layer can be aggregated (usually by averaging) to
form a layer relevance map. An input relevance map (R0) is gener-
ated on the input layer. The relevance values in these maps include
positive and negative scores. We can compute positive and negative
relevance scores for each neuron by summing up the positive and
negative relevance values, respectively. These relevance maps and
scores can be visualized to show LRP behaviors.

4. VisLRPDesigner Design Overview

4.1. Design Goal

An LRP model is defined with specific LRP rules and parameters
over CNN layers. The process of selecting different LRP models
and comparing their results can be perplexing and overwhelming
without an easy-to-use tool. VisLRPDesigner is designed to pro-
vide visual interactions for easy configuration and investigation of
different LRP models. The aimed users are domain experts or stu-
dents who want to understand how different LRP rules and param-
eters affect the results of relevance score computation.

VisLRPDesigner is developed to overcome several practical
challenges, including (1) LRPs have many different propagation
rules which need to be tested and selected for different purposes;
(2) An LRP model needs to adjust multiple parameters to find good
results; (3) different LRP functions and parameters may need to be
applied to different CNN layers. Moreover, users may need to uti-
lize the computed relevance in the study of CNN performance so
as to investigate different LRP models. VisLRPDesigner thus inte-
grates two popular methods including:
• Relevance-based noise flipping: flipping high- or low-relevance

pixels to study the change of the CNN prediction.
• Relevance-based neuron ablation: cutting off selected neurons

based on relevance and evaluating how the CNN’s performance
changes due to the ablation.

These visual analytics functions enable users to visually study
whether the computed relevance scores can successfully discover
CNN prediction behaviors. For noise flipping, users can link rele-
vance scores to features on the input images. For neuron ablation,
users can investigate neuron-level relevance scores related to pre-
diction output. Then users can justify their selection of different
LRP rules and parameters.

In summary, VisLRPDesigner is developed to promote easier
and wider LRP application in (1) helping users design, manage,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

229



Huang et al. / A Visual Designer of Layer-wise Relevance Propagation Models

and compare LRP models; and (2) integrating relevance-based vi-
sual analytics for optimal LRP model design.

4.2. System Functions

To fulfill the goal, VisLRPDesigner is developed as a VA system
integrating modeling (M1-M2), visual configuration (V1-V4), and
visual analysis (V5-V6) functions as follows:

• M1: Unified LRP Formula: Various LRP rules are integrated
into one formula so that users can perform interactive visual con-
figuration easily;

• M2: LRP Parameter Setting Guide: LRP parameters are
categorized into four groups leading to a four-step workflow
with guidance, through which users can control and understand
this task better.

• V1: Visual Definition of LRP Segments: We propose a concept
of “segment” of CNN layers so that multiple LRP rules can be
applied to different groups of CNN layers. Users are allowed to
interactively split CNN into a few segments, define different rules
on them, and compare their relevance results.

• V2: Interactive Setting of LRP Rules and Parameters: We
develop a visual interface for intuitive LRP rule selection, cus-
tomization, and parameter adjustment.

• V3: Relevance Examination: Users can interactively compute
and visualize the relevance data (Sec. 3.3) to examine LRP re-
sults.

• V4: Model Management and Comparison: A visual manager
allows users to create, change, and remove LRP models. A
model comparison interface further helps them perform compar-
ison studies on different LRP models.

• V5: Interactive Pixel Flipping: A pixel flipping interface sup-
ports users to freely brush over relevance heatmaps or input im-
ages. The selected pixels are flipped by setting their values to ze-
ros for the new input image to compute the new CNN prediction
result so as to understand CNN behavior.

• V6: Visual Neuron Ablation: A neuron ablation interface al-
lows users to select CNN layers and visualize their neuron-level
relevance data. Then, they can choose individual neurons or
groups of neurons for ablation study [LMM18, VKS20], where
the new prediction result when the selected neurons are removed
can be compared with the original CNN prediction.

5. Unified LRP Formula and Parameters Setting Guide

There exist a variety of LRP propagation rules and users need to
adjust their parameters on the fly. In order to support visual interac-
tions in a consistent manner for different rules, we develop a unified
formula (for M1) to represent LRP rules:

Rl
i = ∑

j

[
α

(θ0 +θ1ai)(γ0 + γ1wi j + γ1pw+
i j + γ2w2

i j)

ε+∑
i
(θ0 +θ1ai)(γ0 + γ1wi j + γ1pw+

i j + γ2w2
i j)

−β
(θ0 +θ1ai)(γ0 + γ1wi j + γ1nw−

i j + γ2w2
i j)

ε+∑
i
(θ0 +θ1ai)(γ0 + γ1wi j + γ1nw−

i j + γ2w2
i j)

]
Rl+1

j .

(5)

Based on this formula, various LRP rules can be defined and
compared uniformly by using different sets of the ten parameters
(see Table 1). VisLRPDesigner allows users to easily select heuris-
tic values presented in the literature. In addition, users can try dif-
ferent values: for example, instead of simply using α and β as either
1 or 0, they can also try float values to flexibly combine excitatory
and inhibitory effects.

We further design four-parameter setting steps with different
tasks following the nature of LRP rules. Users are also guided to
control different relevance effects within these steps.
• Step 1: Control positive/negative contribution with α and β:

Guide to users: This step is to define the relevance with differ-
ent contributions from the positive and negative backpropagated
relevances. With α− β = 1, increasing the values (e.g., from
(α = 1,β = 0) to (α = 2,β = 1) can focus on small but important
features.
• Step 2: Control activation effect with θ0 and θ1:

Guide to users: This step is to tune the dependency of activation.
In most cases, use θ0 = 0 and θ1 = 1 to include activations in
LRP. When activations are not involved, use θ0 = 1 and θ1 = 0.
• Step 3: Control weight effect with γ0, γ1, γ1p,γ1n, and γ2:

Guide to users: This step is to tune the dependency of different
weights. Use these parameters to define the contributions of CNN
filters with original weight (γ1), positive weight (γ1p), negative
weight (γ1n), and squared weight (γ2); Use γ0 as a constant if
weights are not involved.
• Step 4: Control suppression effect with ε :

Guide to users: This step is to suppress a certain level of noise.

6. VisLRPDesigner System

6.1. Visual Interface

VisLRPDesigner interface is shown in Fig. 2 consisting of four
parts (A-D):
• Model Manager (for V4): In Fig. 2A, users can create, edit,

and remove multiple LRP models whose names are set by users.
Each model shows its configuration information including multi-
segment with start and end layers, and the LRP rules used on
these segments. Users can choose any model to make it as the
active model for investigation.
Design rationale: An overview of LRP models with segment bars
can help users quickly identify their features and directly select
multiple models for comparison study. Horizontal segment bars
are used here since usually, the number of segments is not large
in a range between 1 to 5. It is easy to display LRP rules on the
bars together with start and end layers.
• Model Result View (for V3): In Fig. 2B, users can load an im-

age (Fig. 2B1: “barn on lake”), and then check its CNN classifi-
cation results (Fig. 2B2). By selecting one class (“barn”), the ac-
tive LRP model is used to compute relevance to this class. Then,
users can study its relevance map as a color-encoded heatmap
(Fig. 2B3). The heatmap visualizes positive and negative values
of relevance with red and blue colors so that users can easily
check the contribution of input pixels.
Design rationale: The VGG model predicts an image with scores
for 1000 classes. The top 10 classes (Fig. 2B2) are shown while
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Figure 2: VisLRPDesigner interface. (A): Model manager for users to create, edit, and compare multiple LRP models, and to change
heatmap color spectrum. (B): Model result view for selecting an image of interest (B1), checking CNN prediction results (B2), and studying
LRP computed relevance heatmap (B3). (C): LRP configuration view which includes a segment ruler (C1) for users to drag and define
segments, and LRP parameter view (C2) visualizing parameters of four segments, and intermediate relevance heatmaps (C3) after each
segment. (D): LRP configuration panel for users to select a predefined LRP rule (D1) and customize LRP parameters in four steps (D2).
Please note that VGG16 is used in the examples throughout the paper unless otherwise specified.

their scores are mapped to the bar lengths, and class names are
labelled on the bars for easy observation.
For the relevance heatmap, in default, negative relevance and
positive relevance are shown in blue and red, respectively, be-
cause this color scheme is the most popular one widely used in
LRP literature. The color mapping scheme can be changed from
a list of color spectra (at the bottom of Fig. 2A), so as to meet the
need of users such as color-blind people.

• LRP Configuration View (for V1-V3): In Fig. 2C, a segment
ruler (Fig. 2C1) shows how the CNN layers are divided into seg-
ments. Users can easily drag a segment on the ruler to change
its effective layers. Here, four segments (Segment1 to Segment4)
are shown with different colors (for V1). In an LRP parameter
view (Fig. 2C2), the parameter values and LRP rules applied to
each segment (for V2) are visualized. Moreover, the intermedi-
ate relevance heatmaps (for V3) are shown for each segment (Fig.
2C3). Here, Segment1 is highlighted and its configuration can be
adjusted in Fig. 2D.
Design rationale: The ruler helps users easily add, remove, and
edit multiple segments flexibly. Defining LRP rules on CNN seg-
ments need to consider the types of layers. Therefore, each layer
is labelled (Conv, Pooling, ReLU, etc.) to provide direct hints.
The parameter view (Fig. 2C2) presents ten bars with different
colors (in four groups) for the ten LRP parameters. The bar sizes
are fixed while the min and max values allowed by LRP rules
are shown. The parameter value is highlighted over its bar. This

design enables quick observation of LRP rules at segments and
promotes easy comparison of individual parameters over differ-
ent segments.
The intermediate relevance heatmaps (Fig. 2C3) are important
for people to understand the LRP effect of the segments they
define. They are visualized in the same way as in the input image
heatmap (Fig. 2B3) for easy understanding and comparison.
• LRP Configuration Panel (for V2): In Fig. 2D, users can select

a popular LRP rule (Fig. 2D1), and then the parameters can be
adjusted interactively in their sliders (Fig. 2D2). Moreover, they
can also directly customize these parameters to define a preferred
LRP model.
Design rationale: The panel presents existing LRP rules in the
predefined buttons for quick selection (Fig. 2D1). Users can di-
rectly set the parameter values in four steps (Fig. 2D2). The slid-
ers can be adjusted with the min and max values usually allowed
by the LRP rules. Clicking the question marks will show the
guide to users in Sec. 5.

These views are coordinated for effective LRP configuration and
investigation. The details of this case are discussed in Sec. 7.2.

6.2. LRP Model Comparison

Fig. 3 shows the model comparison interface (for V4) where five
popular LRP rules (Model1 to Model5) are used in the compar-
ison study. Here, the system works on the CNN architecture of
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Figure 3: Model comparison view of popular LRP rules with an image (“A glass of wine with plastic bag”). Here ResNet34 is used with
the top prediction class “red wine”. The relevance heatmaps of Model1 to Model5, together with their LRP rule equations, are shown for
comparison. Purple/orange color refers to positive/negative relevance pixels.

Figure 4: Model comparison view of multi-segment LRP models with an image (“barn on lake”). Row1: Study for class “barn”. Row2:
Study for class “ox”. (A) Configuration 1 and 2 have two segments with different sizes; (B) Configuration 3 and 4 have three segments with
the same size but different LRP rules at the last segment; (C) Configuration 5 has four segments defined in Fig. 2.

ResNet34. Users can choose their preferred LRP models from the
model manager (as Fig. 2A) and open this interface. Selecting a
prediction class (e.g., “red wine”) of an image (e.g. “a glass of
wine with plastic bag”), the relevance heatmaps of these models
are computed and visualized for comparison. Here a different color
spectrum is used where purple and orange colors show positive and
negative relevance, respectively. Each model also displays its seg-

ments and LRP rules. Users can also add multiple rows to study
relevance results for different images in one or multiple classes.

Design rationale: First, multiple comparison rows are enabled for
users to apply the same models to different images/classes, which
is a key method in examining LRP model performance. Second,
the heatmaps are shown side-by-side and the same color encoding
of relevance is utilized so that their differences can be identified
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Figure 5: Relevance-based pixel flipping study with image “barn
on lake”. Users brush on the image or the relevance heatmap to flip
pixels, so as to study new CNN prediction results. Multiple rows are
added with different flipping operations for comparison study.

easily. Third, each model’s segments and LRP rules are shown for
easy observation and comparison of these model details.

6.3. Interactive Pixel Flipping

Based on LRP results (e.g., Fig. 2B), users can open a pixel flip-
ping interface (for V5), as illustrated in Fig. 5. Multiple rows, Fig.
5A-Fig. 5C, can be added to compare different pixel flipping op-
erations. At each row, the input image and its relevance heatmap
are presented. Users can brush over the input image to flip pix-
els. They can also brush on the relevance heatmap directly to flip
pixels according to the relevance information. The brushed pixels
are highlighted on both images. While brushing, new prediction re-
sults are automatically computed and visualized for examination.
Sec. 7.3 discusses the example in detail.

Design rationale: Pixel flipping is designed to link output to “fea-
tures” on the input images. It is important to flip different im-
age parts and investigate their prediction results. Their differences
help users understand how CNN works with respect to image con-
tents and relevance. Therefore, multiple brushing rows are imple-
mented with the same layout to facilitate immediate comparison.
Two brushing options on either the image or the heatmap are syn-
chronized (brushing on either one also highlights the same pixels
on another one). This design directly links the relevance and the
image content information for effective flipping.

6.4. Visual Neuron Ablation

Fig. 6 shows the interface to perform relevance-based neuron abla-
tion. Fig. 6A is the model result view from an active LRP model.
A similar layer ruler (Fig. 6B) is provided for users to choose a

convolutional layer. Then, three distribution charts (Fig. 6B) visu-
alize neuron points of the selected layer based on their positive rele-
vance scores, negative relevance scores, and CNN activation scores.
Users can select individuals or groups of the neurons (points) in ei-
ther chart. Two neuron matrices (Fig. 6C) further enumerate and
visualize the positive and negative relevance scores, where each
cell represents a neuron and the selected neurons are highlighted.
Users can hover over the cells to see relevance information, and
then add/remove specific neurons to/from a selection. The rele-
vance heatmaps of each selected neuron are presented (Fig. 6D),
together with its activation map. Finally, a new CNN prediction
result after ablating the selected neurons is shown in Fig. 6E for
investigation. Please see Sec. 7.4 for the details of this example.

Design rationale: The positive relevance score and negative rele-
vance score of a neuron are two important factors for users to se-
lect neurons of interest in a layer. Note that one neuron has both
negative and positive scores (see Sec. 3.3). A neuron’s activation
represents its behavior in CNN. These scores are presented to guide
users in ablation. They are separated in the visualizations (Fig. 6B)
while the three charts are coordinated for interaction. Users can
easily select neurons on one chart and then identify their distribu-
tions on all three charts. The matrix view (Fig. 6C) compensates
for the charts by providing detailed neuron information and sup-
porting users to adjust individual neurons. The matrix-based visu-
alization is applied because it can easily handle varying numbers of
neurons in different layers. Relevance heatmaps (Fig. 6D) are dis-
played side-by-side with activation heatmaps, which directly rep-
resent neurons’ behaviors in both forward (CNN) and backward
(LRP) processes.

6.5. System Implementation

VisLRPDesigner has been applied on different CNN models, in-
cluding VGG [SZ15], AlexNet [KSH12], and ResNet [HZRS16].
A Web-based prototype is made publicly available based on a
pre-trained VGG-16 by the ImageNet dataset [DDS∗09]. The sys-
tem is built with an Intel i7-9700K CPU and 32GB memory,
and an NVidia GTX 1070 GPU with 8GB texture memory. The
forward-pass computation is performed through PyTorch [KK17]
with CUDA on the GPU. We also leverage GPU computation with
CUDA for the implementation of LRP backpropagation. Relevance
scores and heatmaps are created and then transferred to the browser
for visualization with Node.js [Tai13] and D3.js [BOH11].

7. Use Cases of VisLRPDesigner

7.1. Case 1: Studying Popular LRP Rules

A primary use of VisLRPDesigner is to visually explore popu-
lar LRP models. It is demanded by novice users (or students) in
learning LRP concepts and gaining firsthand experience of dif-
ferent LRP backpropagation rules. Users can select these rules,
change their parameter values, and compare them with different
input images. Fig. 3 shows five models with the following rules
(Model-1): LRP− ε with ε = 0.3; (Model-2): LRP− γ rule with
γ = 0.3; (Model-3): LRP−α1β0 with α = 1 and β = 0; (Model-4):
LRP−α2β1 with α = 2 and β = 1; and (Model-5): LRP−α3β2
with α = 3 and β = 2. Users can observe the differences in their
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corresponding LRP equations. In Fig. 3, a class “red wine” is se-
lected to study the relevance of “a glass of wine and bag” image. It
can be realized that Model-2 LRP− γ can discover clearer edges of
the glass and bag than the basic rule LRP− ε in Model-1. Model-
2 removes the most of negative contribution pixels in Model-1. In
addition, LRP−α1β0 (Model-3) keeps all relevance positive since
the weight is positively filtered. Users can further compare dif-
ferent α and β values to understand their effects in LRP results.
LRP−α2β1 (Model-4) leads to closer result to LRP− γ (Model-2).
Comparing with Model-3, it justifies the suggested model behav-
ior in [MSM18]: “if ... the heatmaps are too diffuse, replace the
rule LRP-α1β0 by LRP-α2β1...”. Using LRP−α3β2 in Model-5
further takes out more small details. In fact, either from Model-3
to Model-1 or from Model-3 to Model-5, the contribution of grad-
ually suppressing the pixels of “plastic bag” in the background is
coming from the negative weights kept in the original kernel mixed
with positive weight or in the separated inhibitory term.

7.2. Case 2: Exploring Customized LRP Models

LRP designers and experienced users can configure composite LRP
models by applying LRP rules on multiple segments of CNN lay-
ers. In Fig. 4, five different configurations are shown with the “barn
on lake” image. Both Row1 and Row2 use this image but perform
relevance study over two different classes: “barn” and “ox”, respec-
tively. It is interesting that for this image, VGG identifies horses as
oxen, which might be related to the bowing postures by the horses.
Please note that the operation on the “ox” class actually involves
horses in the image.

Fig. 4A shows two LRP models designed with two segments,
both using LRP− γ on Segment1 and LRP− 0 on Segment2.
Configuration-1 defines Segment1 at layers 1-10 and Segment2 at
layers 11-38, while Configuration-2 has Segment1 at layers 1-30
and Segment2 at layers 31-38. It can be realized that Configuration-
1 has unsatisfied relevance results. Their negative and positive rele-
vance pixels on the heatmaps do not present a meaningful explana-
tion for either “barn” or “ox” classes. In contrast, Configuration-2
performs very well. In Row1, the barn house is discovered while
the horses are not emphasized in the relevance heatmap. In Row2,
the horses (i.e., ox class) are identified with high positive relevance,
and the barn is realized with negative contributions. This example
shows that different segment sizes can lead to very different LRP
behaviors.

In Fig. 4B, Configuration-3 and Configuration-4 are defined
on three fixed segments. In Configuration-3, LRP− γ, LRP− ε,
and LRP− γ are applied on Segment1, 2 and 3, respectively. In
Configuration-4, LRP− γ, LRP− ε, and LRP− 0 are used on Seg-
ment1, 2 and 3, respectively. Configuration-3 fails to achieve good
class discriminative results, since both “barn” and “ox” classes are
related to the pixels of the barn house and horses, although its
LRP− ε in Segment 2 removes many noise pixels in Fig. 4(A).
In contrast, Configuration-4 creates very good class discriminative
results with a different LRP− 0 in Segment 3. In Row1, it iden-
tifies the barn house as a positive contributor and the horses as a
negative contributor. In Row2, it discovers the horses with positive
relevance and the barn house with negative relevance. The reason
is: Configuration-3 deploys LRP− γ on Segment 3 including fully

connected layers, which enhances the positive weight by adding
0.3w+ and thus suppresses the magnitude of negative weights. This
causes “ox” and “barn” are not discriminated against in Row1 and
Row2, while LRP−0 does not introduce the effect.

In Fig. 4C, four segments are defined in Configuration-5 which
uses LRP− γ, LRP− ε, and LRP− 0 in Segment1, Segment3, and
Segment4 (similar to Segment 1-3 in Configuration-4). A custom
LRP rule is designed and inserted as Segment2. The parameter set-
tings of this configuration are shown in Fig. 2. In comparison to
Configuration-4, this model detects more positive pixels to the tar-
get class. This example shows the exploratory process of the LRP
model design.

7.3. Case 3: Relevance Based Pixel Flipping

VisLRPDesigner allows users to analyze CNN prediction by per-
forming pixel flipping with the help of relevance information. In
Fig. 5, users apply three different pixel flipping operations on
different parts of the “barn on lake” image. Here the relevance
heatmap of “ox” class from Configuration-4 of Fig. 4 is selected. In
Fig. 5A, users brush on the relevance heatmap to remove positive
contributor pixels. The new CNN prediction result shows the top
class as “boathouse”, which reflects the effect of CNN prediction
after removing horses. In Fig. 5B, the barn house with negative rel-
evance is removed. The new prediction shows top classes “water
buffalo” and “ox”, which helps understand the prediction behavior.
Finally, in Fig. 5C, users directly brush on the input image to re-
move the pond. The new result shows “barn” and “worm fence” as
top classes. Here, “boat house”, which is the second class in the
original classification (see Fig. 2), is no longer discovered. It indi-
cates how the water surface contributes to the classification.

7.4. Case 4: Relevance Based Neuron Ablation

By selecting a “street view” image, as shown in Fig. 6A, users
find the prediction result with the top three classes as “street sign”,
“parking meter”, and “restaurant”. By selecting class “street sign”,
the relevance heatmap shows high relevance pixels of signs to this
class. For the ablation study, users can click on the ruler to select the
convolution layer 2. The distribution charts show the neuron points
in this layer. Users select a group of neuron points with high posi-
tive relevance scores, as shown inside the purple box in Fig. 6B. It
can be seen these neurons also have large activations (green points)
and small negative relevance values (blue points). Users further ex-
plore these neurons in the matrices of layer 2 in Fig. 6C. By observ-
ing Fig. 6D, it can be seen that Neuron 57, 58, 59 (more heatmaps
of the selected neurons can be observed by scrolling down further)
show different neuron activations but their high-relevance pixels are
mostly located on the street signs. Since the layer’s LRP heatmap is
a result of aggregation by all heatmaps of neurons in that layer, Fig.
6D allows users to visually check the individual heatmaps of neu-
rons to see how the layer’s heatmap is decomposed at the neuron
level. That compensates the relevance scores in Fig. 6B by showing
their specific spatial distributions. Fig. 6E shows the new prediction
result after these neurons in layer 2 are removed from the CNN
computation. Now “street sign” is not the top class while “parking
meter” becomes the top class. Since the most relevant neurons of
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Figure 6: Relevance-based neuron ablation study with an image (“street view”). (A) Relevance result view for a top-class “street sign”;
(B) Neuron points from a selected layer 2 showing their positive relevance, negative relevance, and activation distributions. Users select a
group of neurons (in a purple rectangle); (C) Neuron matrices for detailed study of positive/negative relevance; (D) Relevance heatmaps and
activation heatmaps of selected neurons; (E) Prediction results after ablation with a top-class “parking meter”.

the target class “street sign” are ablated, it makes sense that the pre-
diction score (without softmax function applied) of this class drops.
Instead, when low relevant neurons are removed the impact is not
significant. Thus, it provides a basic ablation analysis down to the
level of neurons to verify the model performance. Advanced meth-
ods can be added for further neuron-wise analysis as future work
and are summarized in Sec.9.

8. Evaluation by LRP Learners and Experts

User groups: Two LRP user groups with different tasks evaluate
the software. Group 1 (G1) included 4 Ph.D. students in CS as LRP
learners. They were familiar with DL toolboxes and visualization
but had no background in LRP. Group 2 (G2) has three CS Ph.D.
students and one professor who had done LRP-related research
and published papers in medical image analysis and explainable
AI. These LRP experts had abundant knowledge and experience of
LRP model design and programming.

Comparison tool: There has no comprehensive VA system like
VisLRPDesigner for LRP exploration. An online Interactive LRP
Demo System (abbr. InterLRP) has been developed in a famous
LRP webpage (heatmapping.org), which only has limited functions
for LRP tutoring. We used it to partly compare with VisLRPDe-
signer in the level of basic functions.

Procedure and tasks: For G1, we first introduced LRP and showed

Table 2: LRP User Evaluation of InterLRP and VisLRPDesigner.

Functions InterLRP VisLRPDesigner
0(poor) - 9(excellent) (Mean/SD) (Mean/SD)

Part I: LRP Model Design:
Predefined LRP models 8.4/1.5 9/0
LRP parameter setting 7.8/1.8 8.4/1.5
Image and relevance visualization 7.8/1.8 8.7/0.5
Define segments for composite LRP N.A. 8.9/0.4
Multi-segment and rule visualization N.A. 8.7/0.3
Intermediate relevance heatmaps N.A. 8.6/0.5
User model management N.A. 9/0
Part II: LRP Model Comparison:
Multiple model selection N.A. 8.7/0.7
Images and classes selection N.A. 8.7/0.8
Comparative visualization of multi-models N.A. 9.8/0.5
Part III: Relevance-based pixel flipping:
Brushing on image and heatmap N.A. 8.7/0.8
Flipping result analysis N.A. 8/2.6
Comparative visualization of multi-flippings N.A. 8.7/0.5
Part IV: Relevance-based ablation study:
Neuron relevance distribution view N.A. 8.1/0.8
Neuron selection with matrix view N.A. 8.3/0.9
Ablation result analysis N.A. 8.4/0.7

them basic LRP codes and InterLRP demo. This step was skipped
for G2. Then, we discussed our motivation and introduced VisLR-
PDesigner. The users were guided to explore InterLRP and VisLR-
PDesigner through Web browser for at least half an hour with pre-
trained VGG16 neural network and images from ImageNet.

For G1, they were asked to find LRP settings that can clearly
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discover input features of given predictions in a few images. They
first used popular LRP rules with adjusted parameter, and then de-
signed different composite LRPs with multiple segments. For G2,
they first tested the system in a similar way to G1. Then, they were
asked to design a new LRP model which provided better results in
comparison to popular models.

Both groups employed InterLRP and VisLRPDesigner for the
tasks with about half an hour. Then, they evaluated each major
function of VisLRPDesigner for its visual design and effectiveness
with a score of 0 (poor) to 9 (excellent). These functions were cat-
egorized into four parts: model design, model comparison, pixel
flipping, and ablation study. These functions were also evaluated if
they exist in InterLRP. Moreover, users described their experiences
and gave comments for limitations and suggestions.

Scores: The questions and mean scores are shown in Table 2 with
standard deviation (SD). InterLRP has three basic functions in
model design, and other functions it does not include are shown
as N.A. (not available). VisLRPDesigner gained better scores than
InterLRP, achieving mean scores of more than 8 out of 9 which in-
dicated satisfaction. We noted that there was no big difference in
G1 and G2 for the scores, so we reported mean/SD together.

Feedback: The contribution of VisLRPDesigner were agreed. For
G1, the LRP concept was a little hard to consume at the beginning,
but they were happy that VisLRPDesigner gave them an intuitive
understanding for quickly learning the technology. In G2, the pro-
fessor with abundant LRP experience said “Brandnew approach to
support many new capabilities. This is a profound LRP design tool
for the AI community. I haven’t seen anything like this before for
a model customization.” “This is the framework that scientists and
researchers are looking for”. We summarized the feedback as:
• Comparison of direct coding, InterLRP, and VisLRPDesigner:

G2 group (who programmed LRP before) mentioned: “it is too
tedious and hard to implement and debug”. Both G1 and G2 in-
dicated the limitation of InterLRP such as “Demo interface is
straightforward and simple, but the functionality of modifying
LRP is very limited.” “It doesn’t allow the user to check in-
termediate results”. They agreed that “VisLRPDesigner is more
friendly to let more people learn and use it.”

• VisLRPDesigner interface: Both groups were satisfied with
VisLRPDesigner’s comprehensive functionality. They mostly
liked: “a clean and clear dashboard”. “The bar charts for param-
eter visualization are very straightforward but effective”. “I like
the way to change parameters. The layout for target class and
model comparison is intuitive and easy to follow.” “I really like
the feature that the formula is explicitly displayed. And the inter-
active update of formulas while changing the parameters makes
the design very easy to conduct. When comparing with other
models, the summary view is also very helpful”.
Limitation: They suggested to provide more guidance and expla-
nation through labels and popup windows, such as “A set of lines
connecting the heatmaps of adjacent segments ... help users to
see how relevance value propagates.”.

• Application of visual pixel flipping: This is very important for un-
derstanding LRPs. They said: “This is a vital function for model
understanding using the LRP. It directly visualizes the impact of
changes in the input image.” “A very practical feature to include.”

Limitation: They complained that the flipping brushing was fixed
and could be improved with finer adjustment. They suggested to
add multiple brushes and zooming.
• Use of ablation study: The effectiveness of relevance-based ab-

lation was agreed, such as “I find this function very useful and
insightful.” ”With this function, the VisLRPDesigner is a power-
ful tool for model compression”.
Limitation: They said that the interface needed some learning
efforts before using, and the ablation can be further linked to LRP
refinement.
• System Speed: All agreed that the system well supported interac-

tive operations with real-time response and visualization refresh-
ment.

9. Discussion and Future Work

In addition to the limitations described above, we discuss a few
important issues and future directions:
• LRP parameter space: The ten LRP parameters and CNN layer

segments form a parameter data space. Different parameter com-
binations create different relevance discoveries (e.g., small struc-
tures or large profiles). The space may be analyzed and visualized
to help users understand the performance of these combinations,
with respect to image classes and CNN models. This is out of the
scope of VisLRPDesigner as an LRP design tool but leads to a
critical direction in future work.
• LRP for DNNs: More technique options could be added in the fu-

ture, including layers fusing for Batch-Normalization [GHK∗20]
vs. its bypassing in this system, bias switching, and differ-
ent attribute-discriminative LRP approaches [NGC∗20]. Besides,
While designed mostly for CNNs, LRP is also used in other
DNNs such as natural language processing [AHM∗16], EEG
analysis [SLSM16], and audio classification [BAL∗18]. VisLR-
PDesigner is working on CNNs for image datasets but needs to
be extended to these various scenarios.
• LRP inside neurons and layers: While VisLRPDesigner shows

intermediate relevance heatmaps, more visual debugging tools
may be developed so that LRP models can be refined in the levels
of neurons and layers.
• Quantitiative metrics: Relevance study mostly relies on visual

observation of heatmaps. A very challenging topic is to develop
quantitative metrics and recommendations and incorporate them
into the visual system.

10. Conclusion

VisLRPDesigner is a visualization tool to facilitate an easy and effi-
cient design of the emerging LRP approach in deep learning expla-
nation. Users can explore multiple models with relevance data visu-
alization, together with the integrated visual analysis tools of pixel
flipping and neuron ablation. VisLRPDesigner has been shared
with researchers and general LRP users. We will promote it in the
communities of computer vision and deep learning, and perform
software enhancement.
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