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Figure 1: MultiResGNet is a graph-learning-based nonlinear deformation approximation network. Given a set of characters in the rest pose,
they are first roughly deformed by linear-based method. Then, these meshes are encoded with three descriptors and input them into our
MultiResGNet. Finally, MultiResGNet can yield realistic nonlinear results by processing both global and local information, thereby greatly

reducing the manual work of animators.

Abstract

This paper presents a graph-learning-based, powerfully generalized method for automatically generating nonlinear deforma-
tion for characters with an arbitrary number of vertices. Large-scale character datasets with a significant number of poses are
normally required for training to learn such automatic generalization tasks. There are two key contributions that enable us to
address this challenge while making our network generalized to achieve realistic deformation approximation. First, after the
automatic linear-based deformation step, we encode the roughly deformed meshes by constructing graphs where we propose a
novel graph feature representation method with three descriptors to represent meshes of arbitrary characters in varying poses.
Second, we design a multi-resolution graph network (MultiResGNet) that takes the constructed graphs as input, and end-to-end
outputs the offset adjustments of each vertex. By processing multi-resolution graphs, general features can be better extracted,
and the network training no longer heavily relies on large amounts of training data. Experimental results show that the proposed
method achieves better performance than prior studies in deformation approximation for unseen characters and poses.

CCS Concepts

o Computing methodologies — Neural networks; Animation;

1. Introduction

In animation production, character rigging is an important task
which requires animators to spend considerable time and efforts
to compute deformations for given poses. For rigs adopted in in-
teractive applications which have less demanding on deformation
quality, linear blend skinning (LBS) is one of the most common
skinning methods used widely in real-time animation production
due to its computational efficiency. However, the drawbacks of this
method include “candy wrapper” and “volume loss” artefacts and
lack of nonlinear deformation effects. In contrast, to ensure more
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realistic and attractive deformations, heavily manual interventions,
such as manually adjusting weights carefully, implementing addi-
tional skinning algorithms, etc., are required by highly-skilled an-
imators. To eliminate this tedious work, studies on automatically
generating plausible deformations are being carried out continu-
ously [LMR*15,BODO18,L.ZT*19,LSK20]. While these methods
have achieved success to a certain extent with plausible results, the
generalization ability of networks is still a challenge, given that the
trained networks are only applicable to characters with the same
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mesh topologies [LMR*15, BODO18], or prediction accuracy is
substantially dependent on large training sets [LZT* 19, LSK20].

More recently, following the success of graph convolutional net-
works, regarding arbitrary meshes as graphs (involving vertices,
edges, and spatial connectivity) and learning graph data provide
a new perspective on mesh deformation. However, in practice, this
is still a challenging task due to the difficulty of encoding of pose-
based individual features to graph, and the limitation of network
generalization ability. More specifically, first, deformations are per-
sonalized that depend on both character subjects and poses. When
expressing deformations through graph node features, using the
vertices position [LZT*19, LSK20, XZK*20] as features cannot
provide the spatial invariance. For example, this representation will
result in graphs with different spatial positions (but with the same
pose) corresponding to the same output deformations, which will
greatly increase the requirements for the number of poses in train-
ing. Therefore, our first goal is to design representative graph fea-
tures to concisely express character deformations in different poses
independent of spatial position. Once the expressive features are
obtained, next, a graph network needs to be designed for building
the relationship between encoded graph features and final deforma-
tion predictions. Some vanilla graph-based networks tend to overfit
this relationship based on large training set since they are unable to
essentially simplify different mesh graphs and extract more general
features. To this end, our second goal is to propose a novel network
structure with better generalization ability that can summarize fea-
tures from existing character samples.

In this work, we propose a novel multi-resolution graph net-
work, named MultiResGNet, that can automatically generate com-
plex nonlinear deformations for new characters in arbitrary poses.
The outline of the method is shown in Fig. 2. After embedding the
standard skeleton, a mesh of the animated character is first roughly
deformed by linear-based method. The remaining nonlinear defor-
mation part is then approximated by our trained MultiResGNet,
which takes linear skinning graphs as inputs and deviation dis-
placements of each vertex as outputs. The proposed deformation
approach provides two key contributions that enhance network gen-
eralization ability with the help of informative graph features and
multi-resolution graph processes. Specifically, they are:

e An effective graph construction solution introducing three de-
scriptors for each node, which encode the skinning features
along with poses, geometry attributes of meshes, and the rela-
tionships between meshes and skeletons. We have found that us-
ing these graph features, our network is plausible and robust for
deformation approximation for unseen poses and characters.

e A novel graph-learning-based network MultiResGNet enabling
the reuse of existing artist-created skinning features and their
easy application to new character meshes. The training param-
eters of the network are independent of the number of mesh ver-
tices, but are related to the fixed feature dimensions of the in-
put mesh graphs. To improve the ability of expressing arbitrary
graphs, we designed the MultiResGNet with two branches, i.e.,
a global branch that deals with lower-resolution graphs for in-
tegrating structural information and a local branch that handles
original-resolution graphs for enhancing and propagating detail
features. To address the limitations of insufficient training sam-

ples, for the global branch, we designed graph pooling and cor-
responding unpooling operations to extract the holistic features
of various characters and poses, thereby realizing better general-
ization and performance.

We implemented the proposed strategies on datasets involving
a set of high-quality rigs with random poses. After training, the
network we designed was found to effectively predict nonlinear de-
formations for both new character models and new motions, which
demonstrates the strong generalization abilities of our approach.

2. Related work
2.1. Skinning Methods

Standard rigging pipelines include the steps of defining the control
structure inside the character model, which is usually a skeleton
structure, and then binding the skeleton to the mesh with skinning
algorithms. There are mainly three types of skinning algorithms:
geometry-based, example-based, and physics-based methods.

Linear blend skinning (LBS) as described in [MTLT88] is one
of the fastest and most efficient geometry-based methods widely
used in real-time animation. This method computes deformed ver-
tex positions from rest pose positions as a weighted combina-
tion of joint transformations. Due to the nature of LBS, while
joints are rotated in a large range, the undesired deformation effect
“volume-loss” will be produced. To eliminate this artefact, studies
in [Kav05, KCvO07a, OBP*13] replaced linear blending with non-
linear blending without sacrificing large computation time. How-
ever, other artefacts, like joint-bulging could happen that still need
to be manually fixed by animators. By embedding the mesh into a
implicit volume, Vaillant et al. [VBG™ 13] avoided the self-collision
and volume loss during deformation. To compensate the unnatural
deformations of naive LBS and generate more natrual and plausible
behaviours, helper bone rigs that can create the muscle bulging and
soft tissue jiggling effects have been adopted in [Muk15, MK16].
Such helper bone rig techniques have been successfully used in
practice for game productions. Despite of the high flexibility of
secondary dynamics, it is difficult to control deformations stably
in some cases.

Example-based methods provide another perspective on enhanc-
ing deformation quality. To remove artefacts from geometry-based
skinning, Mohr et al. [MGO03] proposed a method by adding addi-
tional joints to achieve the convincing deformations. By interpolat-
ing a set of examples, the pose-space deformation (PSD) [LCF00]
method formulates deformations as a function of articulated poses.
It can achieve more attractive skinning effects like skin slide, mus-
cle bulges, and cloth wrinkles while at the cost of additional compu-
tation. More recent studies [HTRS10,LD14] also compute weights
based on a large set of poses. The limitation of these approaches is
that they are only optimized for specific characters, and are hard to
generalize for other character models.

To make the generated deformations closer to real-world hu-
man behaviour, physics-based approaches are actively used for
animations since they formulate deformations within simulation
frameworks. Studies have been explored for skin deformation
[MZS*11,KB18], second motion rigs [HTC*13] and cloth simula-
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Figure 2: Pipeline of our method. It is based on the graph-attention-network (GAT) that is detailed in Sec. 3.3. After the rough linear-based
deformation step, We first design a new way of expressing graph features of deformed meshes during the process of graph construction
(top left orange wireframe). The constructed graph is then forward into our MultiResGNet (right grey wireframe) to realize the deformation
approximation. The designed network consists of a global branch and a local branch. The global branch using our proposed graph pooling
and unpooling strategy is used to handle the holistic features for better generalization. The local branch that consists of four densely
connected GAT blocks is adopted for detail features extraction. Feature transformation modules (bottom left brown frame) are adopted at the
beginning and the end of network, which respectively for high-dimensional feature mapping and feature integration. The internal architecture
of the GAT block and the connection are also shown at the bottom left green frames.

tion [KJMOS8]. While producing highly detailed results, significant
computational cost is required to get satisfactory deformations.

2.2. Learning-Based Animations

Learning-based methods are aimed to learn mappings from param-
eters to perform deformations using neural networks. For the an-
imation of human bodies, there are methods [PMRMB15, CO18]
that approximate soft-tissue deformations of real-humans with the
help of network-based regressors. Loper et al. [LMR*15] pro-
posed a skinned vertex-based model that can represent different
body shapes with natural poses. Their approach has unique ad-
vantages such as being able to create realistic animated human
bodies and compatibility with graphics pipelines. Recently, Igor et
al. [SGOC20] went a step further and modeled soft-tissue dynam-
ics as a function of shape and motion descriptors. This approach is
efficient for generalization to new shapes and motions, but can be
used only for meshes with the same number of vertices. A similar
strategy in [SOC19] learned the nonlinear deformation of clothing
as a function of shape and pose. Both garment fit and wrinkles can
be represented with lower computation time. A study for garment
deformation has also been conducted in [WSFM19]. One short-
coming of this method is that the network needs to be re-trained for
different characters with different garments. For production char-
acters with non-manifold meshes and complicated skeleton struc-
tures, based on graph learning, a skin weight prediction method
called NeuroSkinning was introduced in [LZT™ 19]. More recently,
Xu et al. [XZK*20] proposed a complete solution for character
rigging named RigNet, which includes skeleton and skin weight
prediction. Unlike NeuroSkinning and RigNet studies, our method

(© 2021 The Author(s)
Computer Graphics Forum (© 2021 The Eurographics Association and John Wiley & Sons Ltd.

does not generate fixed skinning weights but realizes more versatile
nonlinear deformations which include more convincing and elabo-
rate effects under different poses by directly yielding an incremen-
tal displacement per mesh node in each pose step.

2.3. Graph Convolution Networks and Applications

Convolutional Neural Networks (CNNs) have achieved a great suc-
cess in various challenging tasks, especially for dealing with 2D
images and regular 3D grids. Alternatively, there are many irregu-
lar data structures that can be represented as graphs such as point
clouds, social networks and meshes. These complicated graph data
cannot be directly applied with traditional convolution. Recently,
many attempts have been made to explore the extension of the
CNNs to Graph Convolutional Networks (GCNs) by defining the
convolution in the spectral domain [BZSL13, LWZHI18] and the
spatial domain [VCC*17,NAK16], and successfully adopt the ex-
tension in many applications. To extract intuitive localized defor-
mations of 3D meshes, Tan et al. [TGL*18] introduced an au-
toencoder architecture based on spatial construction, which en-
ables reuse of extracted components to reconstruct meshes. Train-
ing the graph convolutional variational autoencoder in [LBBM1§]
solved the problem of 3D object construction from missing data
and achieved the completion of partial shapes. In a recent study,
Jiang et al. [JZH*20] proposed a method for the automatic recon-
struction of the body and clothing shape from a single RGB image.
Following the self-attention strategy, the graph-attention-network
(GAT) [VCC*17] computes the hidden states of each node by at-
tending over the neighboring nodes. Since the GAT operation is ef-
ficient without information on graph structure front, it can be used
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in inductive learning easily. Mesh deformation studies in [LZT*19]
and [LSK20] utilized GAT and its extended structure for skin-
ning weight prediction and nonlinear deformation prediction re-
spectively. In this work, we also extend the original GAT by ap-
plying with pooling, unpooling, and dense connection pattern for
producing nonlinear deformation effects.

Graph pooling plays an important rolem, as they can avoid over-
fitting and improve generalization ability of networks. Because
of the complicated and irregular characteristics of graph nodes,
few graph pooling studies have been done. Ying et al. [YYM™* 18]
proposed DiffPool which learns the assignment matrix of clusters
based on node features. The number of clusters needs to be decided
beforehand. Gao and Ji [GJ19] introduced TopKPool in Graph U-
Net. The strategy of their pooling is to simply keep nodes with top-
k scores and drop all other nodes. One drawback of this approach
is poor robustness where small local changes will affect the whole
pooling results. Recently, Lee et al. [LLK19] presented SAGPool
that uses self-attention mechanism to calculate node scores and
then mask all but the top nodes. Different from their masking nodes,
inspired by the method of computing attention coefficients men-
tioned in [VCC*17], we conduct merging neighbor nodes accord-
ing to maximum attention coefficients, which has the effect for con-
tracting edges, so that both nodes features and topologies will be
considered for graph processing and conveyed to deeper layers.

3. Method

As illustrated in Fig. 2, our goal is to explore a framework that
is able to generate nonlinear deformations by generating offset ad-
justments based on automatic and rough linear-based deformations.
Therefore, the first challenge is to represent linearly deformed
meshes with corresponding poses concisely. Once graph represen-
tations are defined, the second challenge is to develop a network
architecture which allows the large volumes of complicated mesh
representations to achieve linear-nonlinear mappings.

Graph neural networks find many applications on processing 3D
mesh data. The main idea is to first construct meshes into graphs,
and then to use the defined convolution algorithms to achieve tasks.
Graph-attention-networks (GAT) allow for dealing with variable-
size input by following attention mechanisms. Inspired by them, we
introduce an attention-based architecture MultiResGNet to perform
nonlinear deformation approximation.

3.1. Deformation Approximation

We assume that character deformation can be regarded as a com-
bination of two parts: the linear deformation computed directly ac-
cording the bone transformations in the skeleton with the linear
blend skinning method, and the nonlinear deformation for correct-
ing visible errors caused by linear deformation.

Based on a linear blend skinned mesh M;,0q € R3>*N with N
vertices, we first extract its mesh graph G, and then learn the func-
tion to produce corresponding nonlinear mesh shape corrections.
The final deformed mesh M € R3*¥ can be expressed as:

M:Mlinear+W(g;a)v (1)

where W (-) is MultiResGNet, a graph-learning-based nonlinear re-
gressor, that takes graph G as input and calculates shape offsets for
each vertex by learning a set of parameters o. It should be noted
that, unlike the previous work that also predicts the nodal displace-
ments for character nonlinear deformations [LSK20], our key im-
provement lies in the better generalization of the trained models by
efficiently encoding mesh features via graph G and then refine it
through the multi-resolution graph network W (-).

3.2. Encoding of rough deformed mesh

Having the linear-deformed mesh My, directly computed, we
need to construct a parametric space that is capable of representing
different mesh topologies and varying poses. Here, we consider the
input of our framework to be a mesh graph G = (V,£,U) which
stores features of vertices and edges. Here, V ={1,...,N} and £ C
VY x V denote the set of vertices (nodes) and edges respectively. U €
[0,1]V*N is the adjacency matrix where u(i, j) € [0,1] indicates
whether there is an edge between nodes i and j, (i, j) € £. For the
node i € V, the set of neighboring nodes is represented by N (i).

To make graph nodes informative and discriminative among di-
verse meshes with different geometries and different transforma-
tions, it requires to assign attributes to each node. While the feature
design method mentioned in [LZT*19, LSK20] can be followed,
we found that their approximated results are heavily affected by
the amount of character translations due to the global position of
the node attribute of their methods. To strengthen the feature ex-
pression, we assign each node i € V with a feature vector which
consists of three descriptors: v; = [r! (8),n] ,x]]. Concretely, to
represent skinned mesh features with various poses, given the pose
vector 6 = [@,..., 0 ,...,®% ], where S is the total number of joints
of arig, and @ € R’ denotes the axis-angle of joint s. We define a
novel relative skinning feature descriptor as ri(_é) € R3. When the
joint s is rotated by an angle, the corresponding rotation matrix can
be expressed as:

—

G0)= [] Z(@p), )
pEA(s)
Z(@p) = 1+sin(||@p|)dp + (1 —cos (|, |)dp,  (3)

where p € A(s) is the ordered set of joint ancestors of joint s. Z(@))
is a local rotation matrix computed by Rodrigues formula through
axis angle @), skew symmetric matrix CAO,, corresponding to vector
®p, and identity matrix /.

Then, to reflect the influence of bone movement on each mesh
node, we combine the rotation matrix, linear skinning weight and
rest pose position. Thus, our relative skinning feature descriptor can
be defined as:

ws 1G5 (8)Gs(6%) "7, )

g

ri(8) =
i

A

where G‘y(é*) is the rotation matrix of joint s in the rest pose 6*.
wy,; and 7; respectively denote the skinning weight of the vertex v;
influenced by the joint s, and the rest pose position of the vertex i.

Note that r;(0) is translation-invariant instead of the simple vertex
position, because Gs(6*) is independent of joint position.

For the descriptor of n; € R3, it is the normal of vertex v; that is
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able to represent the attribute of mesh appearance. To capture the
relationship between each vertex and the skeleton, we define the
distance vector as x; = [X; 1, ..., Xis, .-, Xi,s| € RS, where x; s refers to
the volumetric geodesic distance [DdL13], i.e., the shortest distance
from vertex v; to joint s passing though the interior voxels.

The total dimension of the node feature v; is 6 + S. Such graph
feature representation has the expressive power of basic linear-
based deformations that can capture the skinning features across
different joint transformations (r,-(é)), the whole range of mesh sur-
face features of different shapes (n;), and the binding relations be-
tween joints and meshes (x;). The designed feature descriptors are
translation-invariant and enable the network to handle data more
effectively.

3.3. Refining deformation through MultiResGNet

As constructed descriptive and discriminative graphs are insuffi-
cient alone, they have to be directly mapped to per-vertex displace-
ments. As this is a challenging task, for high-dimensional inputs
and highly nonlinear outputs, we propose a two-branch strategy
that enables the network to learn the features of mesh graphs in
a multi-resolution way and then to predict nonlinear offsets.

To acquire the latent representations of irregular mesh graph
data, the work of GAT [VCC*17] defines graph convolutions by
aggregating the node representations from its neighborhoods, fol-
lowing the self-attention strategy. Due to its directness and with-
out need of knowing graph structure upfront, graph-learning-based
character deformation studies [LZT*19, LSK20] both extended
original GAT structure for effectively learning complicated graph
features. While the designed operations for networks (eg., max
pooling, dense connection) are workable to a certain extent that
make the prediction results satisfactory, their training relies on a
large set of training samples and parameters with redundancies,
which makes the learning task prone to overfitting. Meanwhile, the
generalization ability of the trained networks are limited that output
predictions sometimes are sensitive to tiny changes of the features
in the input.

We therefore propose a novel and effective approach to ad-
dress limitations of network generalization capabilities. Our pro-
posed model, named Multi-Resolution Graph Network (MultiRes-
GNet), integrates multi-resolution graph features for training and
inferencing. It contains a local branch and a global branch, deal-
ing with original-resolution graphs and down-sampled lower-
resolution graphs respectively. At last, processed features from two
branches will be concatenated, and then pass through a feature
transformation module to generate the final predictions.

Local branch utilizes several densely connected graph-
attention-network (GAT) blocks to deal with local features. Specifi-
cally, after the feature transformation module, the node features are

transformed into v/l = {17[11]7 -..,\7,[1] , ...,171[6] }’ V,[l] € Rdm, where d!/
is the feature dimension after previous / layers’ feature transforma-
tion. In each GAT block, we adopt the same structure as mentioned
in [LSK20], which consists of an aggregation stream and a self-
reinforced stream for dealing with complicated detailed features.

The aggregation stream performs the self-attention mechanism to
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compute the attention coefficient of a node with its neighbors N (i):

o exp(LeakyReLU(EiU]T (WVl[l] HW\';‘E.I] 1))
Y% eni exp(LeakyReLU (@ (Wil |[wil))))’

(&)

. . . 0 gt n
where || is the concatenation operation. W € R4 x4 Gl e R

respectively indicate the weight matrix and the weight vector of a
single-layer feed forward network. The aggregation stream and the
self-reinforced stream are concatenated to form the GAT block:

W= foam@ =o( X awillimi'),  ©

JEN (D)
N——
aggregation self-reinforced
. . BdW wxdll .
where ¢ denotes a nonlinear transformation. H € R is a

trainable weight for self-reinforcement.

Furthermore, to ensure the efficient learning of local features, m
GAT blocks with the dense connection pattern is adopted, resulting
in the output of the local branch:

S[l4-m] Sll+m—1]
Vi = foate(¥;

= fonrs (T A=y foars G4

where YH represents all parameters of the transformation function
fcats in different layers. \7[[1+m] is the result of fusing all the in-
termediate GAT block layer outputs. Thanks to these densely con-
nected GAT blocks, local details can be well captured by combin-
ing features from different scales, and the problem of vanishing
gradients can then be effectively avoided. In the processing in GAT
blocks, the number of graph nodes is constant, but the dimension
of node features is changing. Thus, on the path of our local branch,
the number of nodes always equals to N.

’,Y[l+m— 1] ) ||‘7l[l+m7 1]

(N

Despite the outstanding performance in extracting detail fea-
tures, pure single-resolution graph convolution is not enough for
complicated character deformation approximation. It neglects the
entire graph structure information and tends to overfit the relation-
ship between input features and output deformations, thus some-
times generalizing poorly to new characters and poses. To address
the aforementioned limitations, we additionally propose the global
branch with the attention-based pooling operation to globally sum-
marize all the node feature representations.

Global branch utilizes lower-resolution graphs (with sparse ver-
tices) to capture the overall structural information. To achieve the
coarse representation of the original graph, there is a need to first
define the pooling strategy. In our work, we present an edge con-
traction operation which follows the attention mechanism to calcu-
late the coefficient otl[l] of a node with its neighbors in Equation (5).
We regard the obtained coefficient as being the edge score of each
pair of nodes. By sorting all edges of their scores, the node which is
adjacent to i with the highest attention coefficient can be depicted
as:

S 1
= max o, . 8
J argjej\a;((i> ij (®)

Iteratively, we implement edge contraction on the overall mesh.
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i)

Figure 3: Five example characters in our test set.

Edges with highest score are contracted and the nodes that belong
to the contracted edges are ignored for other edge contractions. The
defined pooling operation allows both nodal features and topology
features to yield hierarchical representations. Through this process,
the total number of nodes will become N* that roughly equals to
50% of the original N.

The pooling operation will create newly merged nodes. Together
with the edge score, we combine the features from the previous pair
of nodes to obtain the new node features:

gl = ol @t i, ©)

In order to learn the global information, the new node features
gl[’f 1 of the lower-resolution mesh graph are then fed as input for

several GAT blocks. After processing with b GAT blocks, the fea-
_[I4+b+1]

tures are transformed into g; I

For the inverse of pooling, we also perform the corresponding
unpooling operation. To restore the graph to its original structure,
nodes are given the mapping of location information from the pool-
ing layer. After this step, the number of nodes will be restored from
N* to N. Moreover, the unpooled features of nodes are computed
with the edge score:

S[1+b+42]

g =gl ol (10)

Lastly, the output features from the local branch and global
branch are concatenated together. This strategy enables fusion of
the fine detail information and spatial context information. These
fused features finally undergo a feature transformation module
ftrans to enable the final prediction:

Ar = Forans | foarp (), an

where A; € R? is the corrective displacement of the node i in the
graph. While forwarding a linear-deformed mesh graph into our
MultiResGNet W (-), it can produce a set of refined displacements
A of mesh vertices. It should be noted that the trainable weights (W,
H, etc.) in the network are related to the dimension of node features
but are not affected by the number of mesh vertices N. Therefore,
the trained networks has no constraints on the number of vertices
and can be applied to meshes with different topologies.

4. Dataset, Network Implementation, and Training

To evaluate our proposed method, we created 75 character models
by different shapes and customizations for training, five characters

Table 1: Statistics of the example characters

Index | Joints Heights Number of vertices
1 65 165.69cm 17351
2 65 180.28cm 15389
3 65 180.60cm 16623
4 65 189.96cm 16208
5 65 171.58cm 16438

for validation, and 10 characters for testing with Adobe Fuse CC.
All characters share the same standard skeleton with 65 joints. As
shown in Fig. 3, there are five test examples and their statistics are
provided in Tab. 1. Each character contains linear-based deforma-
tions as the baseline, and high-quality nonlinear deformations as
the learning objective. Specifically, the LBS method is used to cre-
ate linear-based deformations where skinning weights are directly
determined by the geodesic voxel distance without modification
and a vertex is set to be influenced by no more than four joints.
Here, we have tried to replace this LBS baseline with Dual Quater-
nion Skinning (DQS) method [KCvO07b], and found that the ac-
curacy of the approximation results has no obvious improvement.
For the ground truth data, to reduce the tedious rigging workload,
the characters are firstly auto-skinned by Mixamo [mix]. Then, for
the inaccurate deformations with obvious artefacts in specific poses
(e.g., elbow bending, twisting, etc.), manual refinements [LCFO00]
were done by animators for more realistic effects. In particular,
each character in our training set is animated with 250 poses, of
which 150 poses are randomly generated and the remaining 100
poses are from frequent motions of walking, jumping, and running.

To further evaluate our method on standard human models, we
also leveraged the SMPL dataset [LMR*15] which contains de-
tailed deformations of different bodies performing animation se-
quences. For our training set, it includes five female subjects and
three male subjects. These characters are deformed with sample
poses, with the total number of 2955, which are selected from mo-
tion sequences of dancing, jumping, and butterfly kicking. For test-
ing, we use one female and one male characters and animate them
separately with dancing and front kicking motions.

Next, we provide the implementation detail of our networks. As
shown in Fig. 2, after graph construction, the graph features are first
normalized using the mean and variance for each dimension and in-
put into a feature transformation module that contains two hidden
layers with hidden neurons of (64, 32) and applied with batch nor-
malization and tanh nonlinear activation function. Then, the trans-
formed features are forwarded into two branches for the processing
of multi-resolution graphs. To learn the overall structural features,
pooling is implemented so that the number of nodes is reduced
by roughly half to become N*. The size of the feature dimension
remains unchanged. The lower-resolution graph features are then
processed by two GAT blocks. Each GAT block involves a graph-
attention-based aggregation stream with hidden feature size of 16,
multi-head number is 8, and a self-reinforced stream with hidden
feature size of 128. Features will be transformed with tanhshrink
activation function in the last layer of the GAT block. Unpooling
operation, which is the inverse operation of pooling, is conducted
to restore the original graph resolution of N. For the local branch,
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Figure 4: Quantitative evaluation of generalization to new poses.
The test motion “playing golf” with 50 frames is applied with a
character in training set. We show the mean distance error, compar-
ing our method with the input rough deformation of linear-based
deformation, LBS, and DQS.

the parameters setting of GAT block is same as that mentioned for
the global branch. Finally, features from two branches are concate-
nated together and fed into the last feature transformation module
with two hidden layers, where hidden neurons are (256, 64).

Training was implemented on nVIDIA GeForce RTX2080Ti
GPU. During the training, we used the Adam optimization algo-
rithm with an initial learning rate of 0.01 and set the decay factor
with 0.75 to reduce the learning rate when loss stopped decreasing
for eight epochs. To minimize errors between approximated and
ground truth displacements, the mean squared error is used as the
loss function. To ensure stable training, we randomly located a ver-
tex and selected the surrounding 1024 consecutive vertices each
time until traversing the entire meshes. The total training with our
created dataset and with SMPL dataset took roughly one week, and
25 hours respectively.

5. Experiments

This section evaluates our proposed method for nonlinear deforma-
tion approximation both qualitatively and quantitatively. By com-
paring with other state-of-the-art methods, we also demonstrate the
benefits of our proposed graph construction solution and network
structure.

5.1. Quantitative Evaluation

To demonstrate the generalization capabilities of our method to new
poses, we evaluated a character appearing in the training set and an-
imated it with an unseen motion of playing golf. Fig. 4 shows the
per-vertex mean distance error of rough linear based deformation,
LBS method, DQS method and our proposed method in 50 frames.
It can be observed that through our MultiResGNet prediction, the
generated nonlinear shape corrections are relatively average, with
about 0.28cm improvement compared with the input rough linear-
based deformation. For the deformation of LBS and DQS, even
if the skinning weights are manually adjusted, due to the inherent
limitation of the algorithms, the overall mean errors are still rela-
tively large. In contrast, with our graph-learning-based approxima-
tion, the mean error of the deformation reaches to 0.09cm. Based
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Figure 5: Quantitative evaluation of generalization to new char-
acters. Top plot: Per-vertex mean error of a new character shape
deformation with walking motion in 50 frames. Bottom plot: Per-
vertex mean error of a new subject model deformation with running
motion in 50 frames.

on significantly decreased pose training samples, our approxima-
tion with lower errors demonstrates that our proposed network with
novel graph descriptors has a good generalization ability for pre-
dicting nonlinear deformation with new poses.

To evaluate the generalization ability of our method to new char-
acters, we first define the new characters as having different shapes
(but the same number of vertices) or different subject models (dif-
ferent mesh geometries) from the characters in training set. For
these two cases, we separately conducted experiments with walking
and running motions to evaluate our trained networks. As shown
in Fig. 5, the per-vertex distance error of the new shape case is
about 0.06cm and of the new subject case is about 0.11cm on av-
erage. Compared with the input rough linear-based deformations,
our approximations can increase the average accuracies of 0.16cm
and 0.13cm respectively. We found that our approximation has less
errors and higher accuracy improvement for new shape deforma-
tions. It illustrates that our networks have better generalization abil-
ities for new shapes where the geometry structure of meshes is un-
changed from the character in the training set. When approximating
for new subject models, the trained networks also have certain in-
ference although the mesh geometry is completely new.

5.2. Qualitative Evaluation

To illustrate Fig. 4 in a more intuitive way, we show the qualita-
tive deformation results under the animation of playing golf in Fig.
6. We focused on the representative frames which have the largest
distance error (frm9) and the average error (frm39) of all frames.
In the 9th frame, the largest errors tend to occur in the armpits
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Figure 6: Evaluation of generalization to new poses. We show de-
formations of the motions of a character playing golf in the 9th
and 39th frames, and side-by-side compare the ground truth (a),
rough linear-based deformation (b), LBS with weight refinements
(c), DQS with weight refinements (d), our prediction (e) and our
approximation colormap (f). The vertices of the approximated mesh
are colored to indicate the per-vertex distance error in centimetres.
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Figure 7: Evaluation of generalization to new shapes. Test thin-
ner characters in walking poses. Colormaps depict the per-vertex
distance error of the predicted deformation.

and shoulders due to bending and substantial stretches. Since the
skinning weight are automatically generated without modification,
rough linear-based deformation has the significant artefacts in the
right armpit. The deformations of LBS and DQS have improved
this problem to a certain extent due to the manual refinements, but
the visible volume loss and joint bulging (in the shoulder area) still
exist in the results of LBS and DQS respectively which cause the
mean errors of the entire body to be still large in Fig. 4. Our de-

>1
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o

“Ground truth Linear-based Our prediction Distance error

Figure 8: Evaluation of generalization to new subjects. Test new
subject in a running pose. Based on the rough linear-based defor-
mation, our method corrects each vertex with a displacement so
that the deformation becomes nonlinear, and no noticeable errors
are found in the right colormap.

formation tends to produce the result that is most similar to the
ground truth. The overall approximation error of upper body is
higher than other body parts, this is because the large movements
are concentrated on this area. However, these errors are relatively
small compared to the whole body and barely noticeable during the
animation. In the 39th frame, we provide the detail of deformation
results when the elbow is bent. Visually, the approximation with
our method can nicely mimic the desired elbow bending behav-
ior around the joint and give the best deformation effect than other
methods. Also, the whole character can be deformed well so that is
hardly distinguishable from the ground truth.

Fig. 7 shows the sample frames of walking motion for two test
characters with new body shapes. For the character in the lower
row, the error colormap on the mesh demonstrates the outstanding
generalization ability of our trained network where the approxi-
mated deformation closely matches the ground truth. The numeri-
cal error of each frame corresponds to the Fig. 5 - generalization to
new shapes. In the upper row of Fig. 7, because of the change in
the body shape and the lower edge of the camisole does not fit the
body, the biggest deformation error occurs when the character takes
a step. In addition, the inaccurate deformation in the right armpit
area is approximated because mesh vertices in this region are af-
fected by multiple joints and the region is also the edge of camisole
that is adjacent to the body, thus tending to be problematic.

Additionally, in Fig. 8, we visually evaluated the quality of our
proposed approach on generalization to new subject models, where
we compared the deformations between ground truth, linear-based
method, and our approximations. The test character model is a new
subject that its mesh geometries are completely different from char-
acters in training set. As shown in the figure, the overall deforma-
tion is successfully predicted using our MultiResGNet, with better
performance than the linear-based deformation. Detailed improve-
ments are achieved especially in the area where the pants and belly
contact. The prediction error distribution of the whole body is very
small and relatively average, for the reason that the clothing is fitted
and the running motion is a whole-body movement. Here, the hair
part was not approximated by our network, so it remained the same
as linear-based results.

Finally, we further demonstrate the generalization ability of our

© 2021 The Author(s)
Computer Graphics Forum (©) 2021 The Eurographics Association and John Wiley & Sons Ltd.



T. Li, R. Shi & T. Kanai / MultiResGNet: Approximating Nonlinear Deformation via Multi-Resolution Graphs 545

FERERE
944494

Ground truth Linear-based

Our prediction

Error of linear-based

Error of our prediction

Figure 9: Evaluation of generalization to new characters with new poses. The dancing motion is used for testing for two new characters. We
show ground truth, linear-based deformation(as input), our approximation result and colormaps of per-vertex error.

(b)

Figure 10: Deformation results with vertex position features (a)
and with our relative skinning features (b).

network to approximate nonlinear deformations for new characters
with new poses. As shown in Fig. 9, we selected two test charac-
ters, and animated them with dancing motions. As expected, plausi-
ble and realism deformations can be produced without particularly
noticeable artefacts. The areas with large errors are concentrated in
the armpits and crotch, and near the joints which are controlled by
multiple bones. As our network is only trained with a small num-
ber of representative character models and poses, they are still able
to produce visually plausible deformation effects that can meet the
animation production needs.

5.3. Comparisons

As we were interested in the effectiveness of our two key con-
tributions: the representation of graph attributes and the network
structure handling multi-resolution graphs. In this subsection, we
conducted experiments with two types dataset, i.e., our created hu-
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manoid characters with different customizations and the SMPL re-
alistic human bodies, to measure the generalization ability of our
proposed deformation method.

Comparison on our created dataset. First, to verify the effec-
tiveness of our proposed graph features, we performed an ablation
study to compare deformations between common position features
and our newly proposed relative skinning features. The graphs con-
taining these two different features were respectively input into the
same MultiResGNet, following the training settings mentioned in
Sec. 4. We used the inverted pose for testing, and its position is not
at the origin. In Fig. 10, the approximated deformation with our fea-
tures is more natural than with position features, especially in the
areas of knees, wrists, and inner thighs. Specifically, the mean error
of (a) and (b) is about 0.26cm and 0.15cm respectively. Because of
the translation-invariance of ours, the local predicted offsets remain
unchanged even though the global position changes significantly.
In this way, the trained network can learn a variety of deformations
through a small number of training poses (250 poses per character),
and is effective for all spatial positions.

Next, we compared our approach with other learning-based
methods. In addition, to further evaluate the generalization abil-
ity of our proposed method, we also compared the performance of
the different network structure and the different number of train-
ing samples, where the global branch used in our method was
removed and the amount of training characters was decreased to
25 and 50. As listed in Tab. 2, we respectively compared with
MLP (with hidden neurons of (256, 512, 512, 128), batch normal-
ization and tanh activation function), NeuroSkinning [LZT*19],
DenseGAT's [LSK20], our network without the global branch (with
single-resolution graphs), and our network trained with 25 and 50
samples. Since the network of NeuroSkinning also uses GAT, here
we compared with its structure and predict our output (instead
of the weights in its original paper). For the NeuroSkinning and
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Figure 11: Comparison among different learning-based methods. Colormap shows the distance error to ground truth.

DenseGATSs, we adopted the same features in their original work
and trained the networks with 75 characters and 8500 poses per
character. For the training of MLP, we utilized our proposed fea-
tures and also trained it with 75 characters and 8500 poses per
character. To evaluate the generalization ability of our proposed
method, we respectively trained our network with 75 characters
(original training data setting), 50 characters, and 25 characters,
and each of the character was animated with 250 poses. To ver-
ify the effectiveness of the multi-resolution strategy, we removed
the global branch from the original structure and used the same
training amount with 75 characters and 250 poses. The qualitative
results are shown in Fig. 11. As observed, the greatest approxima-
tion errors are generated by the MLP network, which shows that
the pure fully connected network cannot achieve large amounts of
complicated approximations of nonlinear offsets and hardly apply
the prior skinning knowledge to new character models. As graph-
learning-based methods, NeuroSkinning and DenseGAT's success-
fully predict the overall vertex displacements for characters whose
translation does not change dramatically. Also, there are still unde-
sirable effects on the areas near the armpits and belly. For our net-
work without the global branch, since the graph resolution through-
out the network is constant that equals to N, it can produce convinc-
ing effects in most mesh areas but also causes some obvious errors.
With less training data, the approximation accuracy of our method
could maintain to some degree, but deformation errors near joints
are also produced. We found that setting the number of training
characters to 75 allows the deformation predicted by the network
achieve a visually plausible effects that errors of mesh vertex devi-
ations are within a small range. Thanks to the representative graph
features and multi-resolution graph operation, our method enable
easier generalization to new characters with new poses based on
knowledge which is learned from existing deformations.

Comparison on the SMPL dataset. Since DenseGATs [LSK20]
and our approach both approximate deformations by estimating the
nonlinear residuals based on rough deformations, and DenseGATs
achieved the good result in the previous experiment, next we will
apply the SMPL dataset to conduct further comparison.

In Fig. 12, we demonstrate the generalization capabilities to a
new SMPL character body. In particular, we followed the training

Table 2: Evaluation of predicted distance errors (cm) using differ-
ent learning-based methods.

Structure mean error | max error | min error
Ours 0.1121 0.5795 0.0038
MLP 0.3962 13.0968 0.0017
NeuroSkinning 0.2377 1.3316 0.0104
DenseGATs 0.1887 1.0324 0.0099
Ours single res 0.1610 1.2328 0.0101
Ours train 25 samples 0.2594 1.4826 0.0101
Ours train 50 samples 0.1728 1.3570 0.0103

DenseGATs Ours

Ground truth

Figure 12: Generalization to a new SMPL character body:
DenseGATs [LSK20] and ours.

setting mentioned in Sec. 4 and then test the trained network us-
ing one female character (height: 169cm) with new body mass per-
forming the dancing motion sequence. Since this task is not com-
plicated, both two methods have achieved satisfactory results with
a very low average error (DenseGATs: 0.15cm; ours: 0.08cm) rel-
ative to the ground truth. In contrast, our approach generated more
nature deformations in the areas of base of the thigh and the chest
near the upper arm that is clamped.

Furthermore, with the SMPL data, we also quantitatively demon-
strate the generalization capacities to the new character body and
poses. Specifically, we used the trained network to predict defor-
mations for a male subject (height: 177cm) with the front kick-
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Figure 13: Generalization to a new SMPL character body with
new front kicking poses: DenseGATs [LSK20] and ours.

ing motion, while both the character and the motion are unseen in
the training set. As shown in Fig. 13, the deformation results of
DenseGATs tend to generate large approximation errors in regions
near joints. Unlike DenseGATs, the relative skinning descriptor of
ours includes rich pose knowledge which can be used to approx-
imate new complicated poses. To this end, our proposed method
could make full use of prior feature knowledge and outperforms
DenseGATs for unseen cases. Numerically, the average and maxi-
mum errors of the results using our method are (0.14cm, 1.32cm),
which are also better than theirs (0.23cm, 1.80cm).

5.4. Memory and Performance

We have implemented our network on the GPU for evaluation.
Once the network is trained, the network weight size is about 8.0
MB. We tested both SMPL characters (6890 vertices) and our cre-
ated characters (15000~20000 vertices), the average run-time of
deformation approximation for one character is about 26ms. Due to
the GPU memory limitation, up to 70 characters can be run at the
same time. Since data preprocessing will increase time-consuming,
the run-time for 70 characters is about 45ms.

6. Conclusions and Future Work

This paper presents MultiResGNet, a graph-learning-based method
for automatically approximating nonlinear deformations. The ad-
vantage of our approach is that the proposed network has better
generalization ability, which makes use of available artist-designed
skinning mesh features for unseen animated characters deforma-
tion. The designed feature descriptors can represent graph mesh
attributes along with poses in a more efficient way, which make the
training process simpler with fewer pose samples. Furthermore, by
using our proposed novel expressive graph features, we are able to
model nonlinear offsets as a function of mesh graphs, with the help
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of multi-resolution graph network. We conducted experiments to
evaluate our method and the results demonstrate that the general-
ization abilities to new poses and new character models outperform
existing methods. Our approach provides an end-to-end deforma-
tion approximation system, which allows application to film pro-
duction when a large collection of characters need to be accurately
deformed. Artists can directly produce complicated deformation ef-
fects through the trained network, thus avoiding troublesome man-
ual processing.

Although our presented network has a strong generalization abil-
ity and yields high accuracy prediction results, it also has a few
drawbacks. First, the learned network is dependent on the setting of
linear-based deformation, such as the skinning method, the number
of bone influences, the binding distance, etc. Thus, when generating
the nonlinear deformation for a new character, its setting of linear-
based deformation should be modified to keep it consistent with
the training data. Secondly, in some cases where characters wear
tight clothing, the produced deformation results may have collision
artefacts between the body and clothing. In the future, investigat-
ing an end-to-end method that can constrain collision conditions
would be an interesting research direction. Thirdly, the training
samples we used mostly follow the body closely. For extremely
loose clothing and other garment types like skirts, the deformation
would largely depend on the diversity of training samples. In the
future, we would like to increase the diversity of garments and add
situations where characters fit differently with garments in training
samples, and then verify the effectiveness of our method. Addition-
ally, we currently focus on the deformation for humanoid charac-
ters which have the same standard skeleton, and the dimension of
input graph features is dependent on the number of skeletal joints.
In the future, if the deformed objects have various number of joints,
a union of joints can be defined to represent all the conditions in the
dataset, so as to keep the feature dimension of each object the same.
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