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Figure 1: Screenshots of the four scenes used for our experiments and rasterized bounds for occlusion culling. Unlike the previous Raster
Occlusion Culling (ROC), our Hierarchical ROC (HROC) rasterizes coarser bounds of occludee groups, and casts per-pixel rays for fine-
grained occlusion tests. This two-phase culling approach attains higher performance and efficiency than the previous techniques.

Abstract
This paper presents a scalable online occlusion culling algorithm, which significantly improves the previous raster occlusion
culling using object-level bounding volume hierarchy. Given occluders found with temporal coherence, we find and rasterize
coarse groups of potential occludees in the hierarchy. Within the rasterized bounds, per-pixel ray casting tests fine-grained
visibilities of every individual occludees. We further propose acceleration techniques including the read-back of counters for
tightly-packed multidrawing and occluder filtering. Our solution requires only constant draw calls for batch occlusion tests,
while avoiding costly iteration for hierarchy traversal. Our experiments prove our solution outperforms the existing solutions in
terms of scalability, culling efficiency, and occlusion-query performance.

CCS Concepts
• Computing methodologies → Rasterization; Visibility;

1. Introduction

Occlusion culling (OC) bypasses rendering of occludees hid-
den by visible occluders, which is crucial in accelerating ge-
ometry rendering without sacrificing quality. Online OC tech-
niques typically test the screen-space bounds of potential occludees
against the depth buffer values occluders produce. Classical tech-
niques use axis-aligned screen-space bounds, often with downsam-
pling [ZMHHI97, CT97, Gre96] or reprojection [SKS11, LKE18]
of the depth buffer. Their per-bound tests incur nearly constant over-
head and scale well. However, efficiency is low due to generally
wider bounds. Also, decoupling occluders and occludees is difficult.

An alternative approach is the rasterization of per-object bounds,
where individual fragment depths are tested with the depth buffer

† Corresponding author. e-mail: sungkil@skku.edu

values. The bounds are tighter, and occluders can be found based on
temporal coherence. Efficient techniques rely on Graphics Process-
ing Units (GPUs). Hardware occlusion query (HOQ) is a standard
choice, but incurs non-trivial stalls [Sek04]. Hierarchical structures
with temporal coherence [CT99, BWPP04, MBW08] largely sup-
press redundant queries, but require hierarchical iteration based on
the last queries. This causes latency from query-and-readbacks for
complex scenes. Raster OC (ROC) [KT14, BK15] made a success
in completely eliminating stalls owing to early-Z, random access
to GPU buffers, and indirect multidraw capability. Though, its per-
object iteration becomes costly for complex scenes.

In this paper, we present a GPU-based Hierarchical ROC (HROC)
algorithm, which improves the previous ROC using object-level
Bounding Volume Hierarchy (BVH) for higher scalability. Unlike
the ROC, we do not immediately test the visibilities of individual
occludee bounds during their rasterization. Instead, our algorithm
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Figure 2: Overview of the four stages of our online rendering pipeline performed for every frame.

first finds the coarse groups of potential occludees (interior nodes in
the hierarchy), and rasterizes their bounds. The visibilities of indi-
vidual objects are batch-tested using per-pixel ray casting, where
the hierarchy is implicitly traversed within fragment processing.
This two-phase approach better utilizes the fragment processors,
and avoids costly iteration over the hierarchy at the host. We also
intensively utilize multidraw capabilities for a stall-free pipeline,
similarly to the ROC. We further accelerate our pipeline with the
read-backs of draw counters for packed multidraw and occluder fil-
tering for better temporal coherence. As a consequence, our solution
attains higher scalability (from small-scale to gigantic scenes) and
culling efficiency than the existing solutions.

Precisely, our major contributions can be summarized as:

• a hierarchical raster occlusion culling algorithm;
• a hybrid culling scheme using both rasterization and ray casting.

2. Related Work

Modern GPUs support early depth test (early-Z) or Hierarchical-
Z (Hi-Z) [GKM93] for fragment culling. They can reject hidden
fragments early, and reduce fragment processing. However, draw
calls still require triggering for primitives. Hence, previous online
OC solutions typically aim to operate on a per-object basis.

The depth buffer of occluders is often represented hierarchically
(mipmapping [ZMHHI97, HW99, CT97] or N-Buffers [Déc05]).
Identifying effective occluders often relies on heuristics, meta-
data, and occluder fusion [LG95, KS00, WWS00], which is dif-
ficult for complex scenes. This can be improved with warping
or reprojection of the depth buffer generated for the previous
frame [SKS11, HA15, LKE18]. However, depth disocclusions de-
grade the culling efficiency, and two-pass culling might be necessary
not to miss false negatives [HA15].

For the screen-space depth bounds of potential occludees, clas-
sical culling techniques typically use axis-aligned bounds. They
scale well, but the axis-aligned bounds are often too conservative,
resulting in lower culling efficiency. An alternative is rasterizing
individual object bounds (e.g., boxes or k-DOPs [BKS05]) for per-
fragment tests on a per-object basis. The tighter object bounds lead
to higher culling efficiency, but individual bounds require rasteriz-
ing. Temporal coherence regards visible objects in the last frame
as still visible [NL12]. A fundamental building block for the per-
fragment test is HOQ [BMH98, CCG∗01], which counts drawn
fragments. The query itself is fast, but query results require read-
ing back to the host to steer object rendering, unless conditional

rendering is used. Also, per-object iteration can cause stalls for a
complex scene [Sek04]. Software rasterization can eliminate stalls,
but is feasible only for low resolutions [CMK∗13, HAAM16].

A hierarchy of objects (e.g., BVH) can greatly reduce the amount
of queries [BWPP04, WB05, GBK06, MBW08]. Temporal coher-
ence is a key to reduce redundant queries by maintaining cuts in
the hierarchy [CT99, BH01]. While generally efficient, the queries
require iterating over the hierarchy on a per-object basis, resulting
in still too many queries and read-backs for complex scenes. In con-
trast, ours does not maintain coherent cuts in the hierarchy, enabling
a batch test. The use of coherence and hierarchy has been extended
for ray tracing in CHC+RT [MBJ∗15], which generalizes HOQ with
ray-bound intersections. We also use GPU-based ray casting, but the
difference is that ours is used to cull sets of objects, but CHC+RT
culls sets of rays. Also, we use object indices at the intersections,
while CHC+RT simply counts the number of intersections.

Recently, the ROC [KT14, BK15] greatly improves GPU culling
without read-back stalls. The depth buffer of temporally coherent
occluders is first rendered, and occludee bounds are tested. At the
visible fragments passing early-Z, their object indices are set in the
command buffer, and are multi-drawn finally. However, every object
bound requires rasterizing, not scaling well with large scenes. Also,
many fragments do redundant work; this has been recently improved
with NV_representative_fragment_test.

The efficiency of the ROC is shared with our technique. A key dis-
tinction from the ROC is the use of a hierarchy for coarser queries,
where the rasterization initiates fine-grained queries using ray cast-
ing for individual objects. This better utilization of parallel fragment
processing avoids iterating for all the potential occludees, making
ours less sensitive to a scene complexity. A simpler hierarchy-based
approach [LL20] has been explored, but needs non-trivial iteration
for read-backs, and the hierarchy is traversed only partially.

3. Algorithms

The overview of our online rendering pipeline is illustrated in Fig-
ure 2. For an input to our algorithm, an object-level BVH requires
generating offline, which is constructed only for objects, not primi-
tives. Every frame starts with the rendering of potential occluders
to generate a depth buffer (occlusion map). Given the occluders,
we find the groups of potential occludees. Then, the bounds of the
occludee groups are drawn without depth writing, which is equiv-
alent to the ROC on the host side. While the simple ROC directly
marks the visibility flags of objects, we cast rays, and find bounding
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Algorithm 1 Occludee Group Extraction

Input: T: hierarchy with root r, O: occluder indices
Output: G: occludee groups

procedure TRAVERSE(n)
while n.state 6= visible and n 6= r do

n.state← visible; n.sibling.state← unknown
n← n.parent

procedure EXTRACTOCCLUDEES(O)
if O = ∅ then APPEND(G,r) return
for each n ∈ T do n.state← nil
for each o ∈O do n← FINDNODE(o); TRAVERSE(n)
for each n ∈ T do

if n.state = unknown then APPEND(G,n)

volumes intersecting with rays. The indices of the intersected leaf
nodes drive the rendering of the corresponding objects. We describe
the details of each stage in what follows.

3.1. Occlusion Map Rendering

Similarly to ROC [KT14, BK15], we also exploit temporal coher-
ence to select a set of initial potential occluders V, which have been
drawn in the previous frame; the first frame considers all the objects
as visible. The occluders are directly rendered into the framebuffer.
Their depth buffer, which is a byproduct of the rendering, is used as
an occlusion map for depth tests in the occlusion test stage.

While ROC tests all the objects as occludees, we exclude drawn
occluders in occlusion tests. Since not all occluders in V are likely to
be visible as the view may change, we select only effective occluders
O, and send their indices to the next stage. To this end, our occluder
rendering uses early-Z unlike ROC. For further accelerations, we
present how to reduce false positives in V (Sec. 4.2).

3.2. Extraction of Occludee Groups

We find a set of the groups of potential occludees, G, in the hierarchy
for batch query; we construct a BVH hierarchy only for object
bounds. Our key idea to extract G is based on an observation that all
the ancestors of a visible leaf node (occluder) are also visible, and
the visibility of remaining nodes are undetermined. A bottom-up
traversal from each occluder can find the visible ancestors, and the
others are left as visibility-unknown.

Algorithm 1 shows the pseudocode of the occludee group extrac-
tion. Given occluders O, we traverse the hierarchy T (see Figure 3
for example). When O is empty, all the objects are considered poten-
tial occludees. Otherwise, we find a leaf node n ∈ T corresponding
to each occluder o ∈O; their pairwise mapping is built offline. For
every n, we traverse bottom up, until we meet an already visited
node v or the root node r. n and its all the ancestors are marked as
visible, meaning nodes within a path from r to n are visible. On the
other hand, the sibling nodes u of n and v are marked as unknown,
which require testing occlusion. After traversing for all the occlud-
ers, we collect nodes with the unknown state and add them in G; we
also perform view-frustum culling (VFC) in the end of the stage.

0 g n n n g n

g v v v

v v

r

n

v

g

potential occluders

visible nodes (ancestors of occluder)

visibility-unknown nodes

potential occludee groups

r root node

Figure 3: An example of the bottom-up traversal for extracting oc-
cludee groups (g; visibility-unknown nodes), which are the siblings
of every ancestor (v) of potential occluders (n).
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Figure 4: Within the rasterized bound of a coarse occludee group,
rays are cast to test fine-grained visibilities of individual occludees.

3.3. Batch Occlusion Test

We perform occlusion tests in two phases, one in the fixed-function
GPU rasterization and the other in fragment processing through our
custom shader. As already alluded to, we rasterize the bounds not
of individual objects but of the occludee groups. Depth writing is
disabled and early-Z is enabled.

The previous ROC marks a visibility flag for each bound, but we
instead cast rays (Figure 4) when the bound does not correspond
to a leaf node. A primary ray is cast at each fragment that passed
early-Z; fully hidden groups are implicitly culled. Its intersections
are found against T. The traversal for intersections starts from the
interior node that triggers the rasterization. Objects at intersections
are added to the set of potentially visible occludees U, which are
drawn in the final stage. For efficiency, we avoid repeated tests
for already visited nodes. Precisely, we check the sibling of every
intersected node is visited, and if so, we tag their parent as visited.
We repeat the process until reaching a non-visited sibling or the root.
We note the ray casting should be conservative. In other words, ray
casting should not stop at the nearest intersection as usual, because
rays blocked by the conservative bounds are not necessarily blocked
by real object geometries.

This strategy greatly reduces the amounts of rasterization, while
testing every single object in parallel. Importantly, the pass for
occlusion tests is not iterated, not following preceding queries. Also,
we can use a single-pass multidraw for all the occludees.

3.4. Occludee Rendering

Finally, we render the actual geometries of the potentially visible
occludees U. We again resort to early-Z for efficiency, and add
objects passing early-Z to the set of drawn objects D. After drawing
all the potential occludees, we merge D with the potential occluders
(O) into the object indices V to initialize the next-frame rendering.
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Table 1: Comparison of culling methods by per-frame timing (ms).

Scene NOC VFC CHC++ ROC WOC IOC REF
HROC

OF CR+OF

FN 4.8 3.9 8.8 1.3 3.3 28.9 0.8 1.2 1.8
FC 25.5 25.7 9.1 3.9 6.3 20.8 0.5 2.2 1.6
RC 44.3 21.0 32.6 5.9 15.0 14.7 0.9 3.3 2.2
RC′ 45.1 20.6 39.6 6.0 13.8 12.7 0.7 3.3 2.4
ST 66.6 37.1 88.1 14.6 15.9 20.7 6.7 11.7 9.2

4. Accelerations

This section presents two acceleration techniques, which revisit and
improve the previous techniques for our purpose.

4.1. Packed Multidraw with Counter Read-Back

Our solution can also work without stalling the pipeline similarly to
the ROC. The stall-free pipeline relies heavily on indirect multidraw
capability of modern GPUs [KT14]. The multidraw processes a
command buffer filled for the entire objects in a single batch, which
greatly reduces the driver overhead of GPUs. For culling, we set
the instance counters for occluded objects to zeros. Unfortunately,
modern GPUs still do not well handle such void objects, resulting
in performance drops for many void objects.

Similarly to [HA15, Wih16], we can tightly pack and ren-
der with the command buffer so that only effective objects
are handled in multidraw with their counters; e.g., we can use
glMultiDrawElementsIndirectCount in OpenGL. It is important
to preserve the rendering order of objects. Otherwise, we may en-
counter frame inconsistency resulting from Z-fighting. Tiny objects
with the same depth may hide each other but in different orders;
note that the ROC is free of this race condition, since it does not
use packing. For the ordered packing, we also use a parallel pre-
fix sum [HSO08, Wih16] for V and U. The counter of the packed
objects is also obtained as a byproduct of the prefix sum.

The stall-free pipeline is already efficient with the packing, but we
still have to provide another counter maxdrawcount that specifies
the maximum number of objects we allow. maxdrawcount needs
to be provided in the host, whereas the draw counter of effective
objects to draw can be dereferenced in GPU. A standard usage is
providing the total number of objects, but may cause inefficiency to
a large extent; the counters of all the objects and BVH nodes require
to be provided. To cope with this problem again, we read back the
counters to the host, and use them for maxdrawcount. In our case,
the counters of V, G, and U (Figure 2) can be read. Whereas this
stalls the pipeline, it completely removes redundancy in multidraw,
and achieves higher performance for complex scenes.

4.2. Occluder Filtering for Better Temporal Coherence

In our basic algorithm (Sec. 3), the early-Z selects occluders for
temporal coherence. However, the early-Z inherently includes non-
trivial false positives. Invisible objects rendered earlier than their
blockers can be classified as falsely visible by the incomplete

Table 2: Comparison of ROC and HROC in 4096×2160 resolution.

Scene FN FC RC ST

ROC 2.42 4.50 6.78 15.85
HROC (OF) 2.56 3.43 4.76 13.77
HROC (CR+OF) 3.23 3.35 4.10 11.54

depth buffer. To filter out these false positives, sorting might mat-
ter [HA15], but be costly and difficult for complex scenes.

We exploit a simpler yet effective strategy to reduce the false
positives in temporal coherence. In our basic scheme, occluders
V in frame t are the union of O and D in frame t− 1, including
false positives. To select pure true positives, we use the item-buffer
technique [WHG84, KS01]. While rendering real geometries for O
and D, we write their indices in another render target, I (i.e., the
item buffer). Then, we collect the indices of objects that pass the
regular depth test and mark them as visible in the command buffer
just before the packing of V for frame t (Sec. 4.1); hence, we do not
read the item buffer back to the host, unlike [KS01]. Thereby, less
potential occluders (V) are selected for frame t, and more potential
occludees (including the false positives) can be disoccluded, tested,
and culled; nonetheless, this does not lower the culling efficiency.

5. Results

This section reports our experimental results and comparisons with
existing methods, assessed in terms of performance and efficiency.

5.1. Method

We implemented and experimented our algorithm on an Intel Core
i7-7800X 3.6GHz machine with NVIDIA GeForce GTX 2080 Ti,
using OpenGL API in Windows 10. Unless noted, all the tests were
performed at 1920×1080 (full-HD) resolution.

Four scenes and their BVHs (generated offline) are used for the
experiments (Figure 1). The Fantasy scene (FN) is simple with
a small number of complex objects. The Factory scene (FC) is a
widespread medium-scale scene with detailed objects. The Radial
City scene (RC) has many low-polygon objects. The Satellites scene
(ST) is challenging in terms both of geometric details and the number
of objects. Each scene defines an animated sequence of the duration
of 10 s; RC defines another sequence RC′ (for the same scene) to
evaluate faster rotations and backward camera walking. Frame time
measurements are averaged for the sequences; the first four frames
are excluded not to reflect the lazy initialization of OpenGL.

HROC is parameter-less, and requires no particular per-scene
parameters, except for the BVH generation. Our experiments always
use the packed command buffer, and optionally use the Counter
Read-back (CR; Sec. 4.1) and Occluder Filtering (OF; Sec. 4.2);
CR+OF indicates both CR and OF are used.

We compare our solution with NO-Cull rendering (NOC), VFC,
and an ideal REFerence rendering (REF). REF pre-records all the
visible objects offline for the animated sequences, and multidraws
them in a batch. We also implemented and compared four existing
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Figure 5: Per-frame time variations of our solution (CR+OF) along the frames of animated camera sequences (FC and RC).

Table 3: Effects (timings measured in ms) of the Counter Read-
back (CR) and Occluder Filtering (OF) against No-Acceleration
rendering (NA). The numbers in parentheses are speedup factors
with respect to NA.

Scene NA CR OF CR+OF

FN 1.37 2.21 (0.62) 1.17 (1.17) 1.83 (0.75)
FC 2.25 1.86 (1.21) 2.17 (1.04) 1.63 (1.38)
RC 3.35 2.37 (1.41) 3.27 (1.02) 2.20 (1.52)
ST 14.00 11.74 (1.19) 11.66 (1.20) 9.22 (1.52)

solutions, including CHC++ [MBW08] (the state-of-the-art hierar-
chical culling), the original ROC [BK15] (the state-of-the-art raster
culling), Warping-based Occlusion Culling (WOC) [LKE18] (the
state-of-the-art culling using axis-aligned bounds), and a recent It-
erative ROC [LL20] (IOC); we excluded techniques that manually
select occluder/occludee sets in our choice. Our implementation of
CHC++ uses the same BVHs that we use for HROC, and includes
batch, randomization, tighter bounds of inner nodes, and multi-
queries with the following parameters: nav=10, b=4000, dmax=4,
and smax=1.4 [MBW08]; we note that b and dmax are optimized for
our scenes. WOC uses a single-layer warping with conservative
holes; only WOC uses a deferred pipeline to perform its depth warp-
ing. IOC uses the same BVHs, and its BVH depth ranges are [6,8],
[11,13], [9,11], and [14,17], for FN, FC, RC, and ST, respectively,
which are manually tuned for optimal performance.

5.2. Performance

Table 1 summarizes the overall performance, which compares ours
(HROC) with NOC, VFC, CHC++, ROC, WOC, IOC, and REF. In
all the scenes, HROC performs best, which proves the scalability
of our algorithm. Our solution is less sensitive to the number of
objects owing to the hierarchical approach and per-pixel ray casting.
Specifically, the OF-only rendering (stall-free rendering without CR)
performs best for FN, and CR+OF performs best for the remainder
(FC, RC, RC′, and ST). The speedup factors of ours (OF for FN
and CR+OF for the remainder) against CHC++, ROC, WOC, and
IOC are 7.5/1.4/2.9/24.8×, 5.5/2.4/3.9/12.7×, 14.8/2.7/6.8/6.7×,
and 9.6/1.8/1.7/2.2×, respectively. For RC′, CHC++, ROC, and
HROC perform slightly worse than RC, but the penalty from the
lower temporal coherence is not much. While ours scales well from
small-scale to complex scenes, others manifest themselves in partic-
ular configurations. Up to medium-scale scenes (FN, FC, and RC),

0 1 2 3 4 5 6 7 8 9 10 11 12
time (ms)

ST
RC
FC
FN

Sc
en

e

Default setup
Occlusion map rendering
Extraction of occludee groups
Batch Occlusion test
Occludee rendering
Occluder filtering

Figure 6: Per-stage performance breakdown of HROC (OF).

ROC performs best except ours. WOC performs well for large-scale
scenes (ST). CHC++ performs relatively well up to medium-scale
scenes (FN and FC), but suffers from large-scale scenes (RC and ST).
To our experiences, CHC++ performs very well in highly-occluded
scenes. IOC performs well only for large-scale scenes (RC and ST).

Table 2 compares ROC and HROC in 4096× 2160 resolution.
The tendency is similar to those for the full-HD resolution, but
the speedup here (0.9, 1.3, 1.7, and 1.4× for FN, FC, RC, and ST,
respectively) is slightly lower. This shows HROC is still scalable in
a higher resolution (in particular for per-pixel ray casting).

Table 3 reports the effects of our acceleration techniques (OF and
CR), which are measured against No-Acceleration (NA) in terms
of the average per-frame times (ms). At a glance, NA already per-
forms better than the existing techniques (except for FN), but further
speedups are made with OF and CR. OF improves performance by
culling more occludees, and CR gains speedup for complex scenes
(except FN) by precluding irrelevant (exceeding the draw counter)
objects in the indirect multidraw. The speedups of OF, CR, and
CR+OF against NA become more apparent as the scene complexity
increases; CR+OF reaches up to 1.52 for RC and ST. Based on
the experiments, ours is likely to perform optimally when using
the stall-free pipeline (OF) for small-scale scenes and CR+OF for
medium to large-scale scenes, respectively.

Figure 5 shows timing variations along the camera sequences.
HROC (CR+OF), ROC, and WOC are insensitive to camera move-
ments, where the performance slightly fluctuates without strong
peaks. IOC is slower but also insensitive to camera movements.
CHC++ gradually improves over time, and converges to those of
HROC as objects are occluded more in close-up views.

Figure 6 shows the detailed timings for our solutions, OF and
CR+OF; “default setup” indicates baselines for non-culling cost.
Overall, the occlusion map rendering, occludee rendering, and oc-
clusion test take the majority of the cost. The cost for the extraction
of occludee groups is negligible. HROC is lower in occlusion-test

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

493



G. B. Lee, M. Jung, Y. Seok, & S. Lee / Hierarchical Raster Occlusion Culling

Table 4: Comparison of the average culling efficiency of ours (NA and OF) against VFC, CHC++, ROC, WOC, IOC, and REF. C, N, and R
indicate the numbers of culled objects for each method, the total objects, and the culled objects of REF, respectively.

Scene
VFC CHC++ ROC WOC IOC REF HROC (NA) HROC (OF)

C/N C/R C/N C/R C/N C/R C/N C/R C/N C/R C/N C/R C/N C/R C/N C/R

FN 0.59 0.65 0.88 0.97 0.88 0.97 0.87 0.96 0.63 0.69 0.91 1.00 0.75 0.83 0.88 0.97
FC 0.41 0.41 0.99 1.00 0.99 1.00 0.99 1.00 0.89 0.90 0.99 1.00 0.91 0.92 0.99 1.00
RC 0.83 0.85 0.96 0.99 0.96 0.99 0.95 0.98 0.90 0.92 0.97 1.00 0.96 0.98 0.97 0.99
RC′ 0.82 0.86 0.94 0.98 0.94 0.98 0.92 0.97 0.86 0.90 0.95 1.00 0.94 0.98 0.94 0.99
ST 0.77 0.81 0.93 0.98 0.94 0.98 0.92 0.97 0.92 0.96 0.96 1.00 0.92 0.96 0.94 0.98

Figure 7: Comparison of overdrawing of ROC (second), HROC (third) and REF (fourth), and the difference between ROC and HROC (fifth).

overhead than ROC. The pure OC-only overhead of HROC (for
occludee group extraction, occlusion test, and occluder filtering) are
0.23, 0.76, 1.16, and 2.0 ms for FN, FC, RC, and ST, respectively,
while those of ROC are 0.25, 1.22, 1.97, and 3.3 ms.

Our technique consumes additional GPU memory mainly for
BVHs and item buffer. The memory consumption of BVHs is in-
significant (0.5–7.8 MB; Figure 1), and those of the item buffer are
8 and 32 MB for the full-HD and 4K resolutions, respectively.

We report further statistics for the per-pixel ray casting as follows.
The maximum BVH depths are given as 19, 20, 22, and 25 for
FN, FC, RC, and ST, respectively. The traversals from the occludee
group (interior) nodes start at the depths of 12.1, 12.3, 14.3, and
16.3 on average. The average heights from the group nodes to the
leaf nodes are 1.2, 4.1, 4.5, and 2.5, visiting 4–6 nodes on average.

5.3. Culling Efficiency

Table 4 compares culling efficiencies, which are measured in terms
of relative fractions with respect to the total number of objects (N)
and the number of culled objects in REF (R). HROC (OF) achieves
the highest efficiencies close to those of REF by removing most of
the false positives included in the occluders of HROC (NA); unlike
ROC, HROC occlusion-tests only potential occludees. CHC++ and
ROC are similar to HROC (OF). WOC gains further lower efficiency,
resulting from its axis-aligned bounds with depth holes. IOC has
consistently lower efficiencies due to its limited hierarchy traversal.
RC′ identifies that temporally less coherent motions result in slightly
degradation. Obviously, VFC has the lowest efficiency, since it does
not deal with occlusions. Figure 7 compares ROC and HROC (OF)
in ST in terms of overdrawing. The overdrawing is very low for both
ROC and HROC, which is close to that of REF.

6. Conclusion and Discussions

We presented a scalable online hierarchical raster occlusion culling
algorithm, which improves the previous raster occlusion culling in

terms of scalability and culling efficiency. Our algorithm rasterizes
coarser groups of occludees, while casting rays for fine-grained
occlusion tests for individual objects. Our solution outperforms
most of the state-of-the-art culling techniques.

One of the inherent limitations of our algorithm, which is shared
with other hierarchy-based solutions, is that we assume a static
hierarchy and dynamic objects require handling independently. A
potential solution is a hybrid culling solution that uses the HROC
and ROC for static and dynamic objects, respectively. Dynamic
potential occludees can be directly fed into our batch occlusion
test as they are individual occludee groups, and their visibilities are
tagged without ray casting as ROC does. This would work because
the number of dynamic objects is likely to be less than static objects
in many cases and ROC can work well for dynamic objects.

The counter read-back could be infeasible for practical rendering
pipelines. A viable alternative to get rid of the CPU-GPU interops
is an approximation of the counters with a reasonable margin. Also,
our in-house ray casting with OpenGL and hierarchy construction
can be improved with the recent RTX extension in Vulkan.

Another performance penalty rarely occurs in case that a camera
lies inside the bound of a large occludee group. In such a case, our
algorithm may cast rays for the entire screen, which is excessive. A
potential solution can be an adaptive grouping, which subdivides
the box down to its children to avoid testing against the large bound.
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