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Abstract
We introduce the curve complexity heuristic (CCH), a KD-tree construction strategy for 3D curves, which enables interactive
exploration of neighborhoods in dense and large line datasets. It can be applied to searches of k-nearest curves (KNC) as well as
radius-nearest curves (RNC). The CCH KD-tree construction consists of two steps: (i) 3D curve decomposition that takes into
account curve complexity and (ii) KD-tree construction, which involves a novel splitting and early termination strategy. The
obtained KD-tree allows us to improve the speed of existing neighborhood search approaches by at least an order of magnitude
(i. e., 28× for KNC and 12× for RNC with 98% accuracy) by considering local curve complexity. We validate this performance
with a quantitative evaluation of the quality of search results and computation time. Also, we demonstrate the usefulness of our
approach for supporting various applications such as interactive line queries, line opacity optimization, and line abstraction.

CCS Concepts
• Human-centered computing → Scientific visualization; • Theory of computation → Nearest neighbor algorithms;

1. Introduction

Line data consisting of dense curves arises in many applications.†

Streamlines [MLP∗10] derived from flow data by trajectory compu-
tation, e. g., convey the structure of the underlying vector fields, fiber
tracts traced from DTI-MRI data (e. g., [HS15]) reveal the brain’s
white matter structure in medical imaging, and trajectories summa-
rized as trails or bundles (e. g., [ZCL08a, LHT17]) of graph edges
describe object motion. As our computational capabilities increase,
so do the sizes of the line datasets generated by simulations [Sar09]
and sensing [BMZA12]; e. g., many DTI datasets contain several
thousands of fiber tracts or more, comprising millions of point sam-
ples overall. Large line datasets often cover the entire 2D or 3D
domain densely, a direct visualization thus not only leads to occlu-
sion and clutter but also often obscures important structures. Only
displaying a few curves, however, may let researchers or practition-
ers miss structures of interest. To solve these problems, we need
efficient exploration techniques for massive line data.

Several visual simplification methods [MVVW05, YWSC12,

† The corresponding author
† We interchangeably use the word “line” and “curve” in our discussion.
Wherever we mean a straight line we explicitly say so.

Ise15] have been proposed for the effective visualization of dense
curves. We can roughly group them into curve selection and curve
abstraction approaches. Curve selection carefully picks representa-
tive curves using local importance measures per curve [MCHM10,
GRT13], or clustering all curves with different line similarity met-
rics [YWSC12, OLK∗14]. However, almost all existing methods
do not allow users to interactively query curves based on spatial
proximity. Yet a substantial demand exists for such interactive line
data exploration, e. g., for showing streamlines around user-specified
vortex cores [VB96, Sca11, CLSW14]. We thus need means to use
local neighborhoods in interactive curve selection.

Unlike curve selection, curve abstraction [BCP∗12, Ise15, VI18]
directly works with nearest neighbors. Everts et al. [EBB∗15], e. g.,
iteratively displaced curve samples based on nearby curves, such that
the resulting curve abstraction highlights the overall structure with
minimal deformation. This approach needs the nearest neighbors of
a curve within a given radius, which they found by brute force with a
time complexity of O(m2n2) for m curves (n is the average number
of samples per curve). This kind of complexity hinders interactive
exploration of such abstracted line data—especially for data sets
with millions of samples.

These issues motivated us to explore efficient data structures for
nearest neighbor searches for line data to facilitate interactive curve
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Figure 1: Neighborhood-based exploration of 3D line data. (a) Selecting nearest lines with a radius r around two query points (white boxes in
(a)). For the top query point, the nearest lines are shown in blue, for the bottom query point in green. Lines in violet are close to both query
points; (b) varying opacity for the line segments is specified by using a measure based on the nearest line segments as importance. This allows
us to better display large-scale vortex structures than a measure based only on local curvature, as shown in (c); and (d) abstraction of DTI
fiber tracts at the scale of 5 mm based on our neighborhood search, only major paths are shown.

selection and abstraction. We characterize the search of nearest
neighbors from given curves as the problem of nearest curve (NC)
search. It can be solved with two straightforward solutions using
KD-trees, which have been widely used for nearest point searches
in 2D or 3D space [WH06, ZHWG08, SBMN16]. That is, either
we sample many points of each curve and use a KD-tree to find
the nearest points from distinct lines, or we build a KD-tree for
all curve segments between every pair of adjacent points and then
find the nearest curve segment(s) for the query point based on the
point-to-line distance. The former strategy is faster but might not
be able to find the accurate nearest curves, while the latter finds
the correct nearest curves, but might be slower. Since they do not
consider the curve complexity, it is unknown if they are fast enough
for NC search in a large line field.

Inspired by the strategy of using the surface area heuristic for
constructing KD-trees in ray tracing [GS87, WH06, ZHWG08], we
approach this problem using a carefully-designed KD-tree, namely a
CCH KD-tree, with the curve complexity heuristic (CCH). Our CCH
KD-tree is constructed in two steps. First, we approximate each input
3D curve individually by a set of straight-line segments constructed
based on the curve complexity. Second, we construct an efficient
KD-tree by adopting the CCH to determine the split plane and to
compute the node split cost. Integrated with an early termination
strategy, our CCH KD-tree can be constructed in less than a few
seconds for data with 10K curves and a million point samples on
average. For DTI fiber data of such size, we demonstrate that our
method runs in an order of magnitude faster than the straightforward
solutions, while recall and precision (i. e., search accuracy) are both
higher than 98%. Our method supports the radius-nearest curve
(RNC) search (i. e., to find all curves located within a given radius r
from the query point, and to also find the associated nearest point
samples on each output curve) as well as the k-nearest curve (KNC)
search (i. e., to find the k nearest curves from the given query point).
Specifically, we achieve a 20× speed-up for KNC and a 15× speed-
up for RNC in general with 98.5% curve recall/precision.

With our fast approximate approach, we can thus now tackle
various neighborhood analysis tasks on massive line data sets that
were previously outside of our reach. Our RNC search allows users
to explore lines around critical points and vortex cores, facilitating an
interactive identification of patterns of interest. The fast KNN graph

enables us to interactively abstract large line datasets to identify
higher-level structures [EBB∗15] (cf. Fig. 1(c)). In summary, our
main contributions are:

• we characterize the problem of nearest curve search for exploring
line data (Sec. 3) and propose a new strategy for constructing an
efficient KD-tree (Sec. 5), which we call CCH KD-tree,

• we quantitatively evaluate the quality and performance of CCH
KD-tree and show that it significantly improves the curve search
performance while maintaining the search accuracy (Sec. 6), and

• we introduce a neighborhood-based analysis of line data and
demonstrate it in various applications, including interactive line
queries, opacity optimization, and line abstraction.

2. Related Work

We begin by reviewing previous work related to curve selection,
abstraction, segmentation, and nearest neighbor search problems.

2.1. Curve Selection

Given a large set of curves, which densely cover a domain, the goal
of curve selection is to choose a few representatives that convey the
main features of the data [SBGC20]. In general, there are two classes
of methods: importance-based and clustering-based selection.

Importance-based selection pre-computes local properties of all
given curves, then selects new curves based on their relation to the
already selected curves, often in a greedy manner. Marchesin et
al. [MCHM10] looked at the screen-space footprint of the already
selected lines, and used local properties such as linear and angular
entropy to convey the respective amount of velocity and angular
variation along the streamlines. Günther et al. [GBWT11] measured
the screen coverage of each curve to select curves with a higher
screen area. Since a single view might not sufficiently show the
characteristics of every curve, Lee et al. [LMSC11] further computed
the screen-space entropy of each line to select curves and viewpoints.
Tao et al. [TMWS13] suggested to simultaneously select curves
and viewpoints with their proposed streamline information, which
indicates the dependence between the streamlines and views.

Rather than selecting a subset of curves for visualization, Günther
et al. [GRT13] proposed a global curve selection approach by means
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of opacity optimization. By rendering curves with optimal opacity
per segment, this approach aims at showing curves with high impor-
tance, without omitting those with low importance. Later, Günther
et al. [GTG17] provided an analytic solution to opacity optimiza-
tion, enabling interactive exploration of large line data. Though the
method allows users to define application-specific importance mea-
sures, the importance is often defined using local properties such as
curvature or curve length, which might not faithfully characterize
the global structures.

So far, however, existing methods select curves based mainly on
local curve properties. Their shortcoming is that without considering
the spatial relationship between neighboring curves, these methods
might miss interesting structures in the data (see the vortex struc-
tures in Fig. 1(b),(c)). In contrast, our nearest curve search selects
curves according to the spatial proximity, and enables us to define
local properties in the neighborhood range, such that we can better
characterize structural information in the line data.

Clustering-based selection picks representative curves from curve
clusters found in the data. This approach is commonly used for DTI
data exploration [MVVW05], where individual fibers are grouped
into relevant bundles. Based on the spatial proximity between every
pair of curves, Zhang et al. [ZCL08a] applied hierarchical cluster-
ing to produce fiber bundles for interactive exploration. Moberts et
al. [MVVW05] evaluated different hierarchical clustering methods
and distance measures for the problem, and found that combin-
ing single-link hierarchical clustering using mean closest-point dis-
tances produces the best results. Later, Yu et al. [YWSC12] applied
this finding to streamlines, and created a hierarchy of streamline
bundles. Oeltze et al. [OLK∗14] discussed different clusterings and
different metrics for clustering streamlines of blood flow data. Re-
cently, Kanzler et al. [KFW16] constructed a fully balanced line
hierarchy based on a variant of hierarchal line clustering and then
used this hierarchy to guide the representative line selection. Kern
and Westermann [KW19] discussed the clustering of complex line
geometry and used the bounding volume hierarchies (BVHs) to com-
pute the vectors to the closest point volumes of lines on a regular
grid. While these methods reveal interesting patterns, they might not
show patterns related to specific geometric properties of line seg-
ments of multiples curves, e. g., the ring structure in magnetic field
lines (see Fig. 12). We, in contrast, advocate the clustering of curve
samples to efficiently group curve segments of similar patterns.

2.2. Curve Abstraction & Segmentation

Curve abstraction [EBB∗15] creates a visually abstracted [VI18,
VCI20] representation of large DTI fiber sets without generating
explicit fiber bundles. After finding the nearest neighbors within a
given radius of a query point, the method iteratively contracts the
fiber segments by drawing fiber samples closer to the similar ones.
This way, the method produces a visual abstraction [VI18] of the
fibers to facilitate a better understanding of structures in the white
matter of the brain. However, finding the exact nearest neighbors for
all samples is expensive, e. g., it takes approx. 15 minutes for 70K
tracts on four Intel Xeon X7350 processors [EBB∗15] using four
threads, this limits the applicability of the method for exploring large
data sets. Moreover, finding exact nearest neighbors is not needed
for such an application as long as the approximation is of high

quality. Our CCH KD-tree does precisely that—we find the nearest
neighbors for the same data set with millions of point samples with
our probabilistic method in around 5s on a single thread of a similar
machine, and thus enable interactive data exploration.

Curve segmentation divides the curves in line data into short seg-
ments, and is often taken as a pre-processing step for curve selec-
tion [GRT13] and abstraction [EBB∗15]. Using segment-based local
properties such as curvature histograms and total curvature, Lu et
al. [LCL∗13] and Wang et al. [WESW14] decomposed streamlines
into segments of different lengths to facilitate search for similar
streamlines or similar streamline segments. We also base our CCH
KD-tree on line segments that we pre-generate using a variant of the
Ramer-Douglas-Peucker algorithm [Ram72, DP73, VW90], which
decomposes and approximates a curve by fewer line segments.

2.3. Nearest Neighbor Search

A few algorithms [HS92, EMSN12] have been proposed to accel-
erate (approximate) nearest neighbor search in 3D space, where
KD-trees [AMN∗98] and their variants are still the leading approach.
By partitioning the data points recursively over different planes, a
KD-tree can efficiently perform a nearest neighbor search in logarith-
mic time and linear space. Due to these computational advantages,
it has been widely used for accelerating many graphics algorithms
and applications, such as ray casting [ZSL∗18], isosurface render-
ing [WWW∗18], and particle tracing [ZGH∗17].

To improve the query performance, numerous efforts have been
made to optimize the KD-tree structure. A classic example is the sur-
face area heuristic (SAH) [GS87] for splitting the KD-tree, which is
widely used in ray tracing. Rather than naively selecting split planes
using the spatial median along one axis, an SAH KD-tree deter-
mines proper split by estimating the node split cost in terms of the
surface area (see Sec. 4.2 for details). By doing so, the amount of ray
intersection tests can be greatly reduced, and thus this heuristic has
become the basis for many fast ray-tracing methods. Likewise, CCH
KD-tree explores the curve complexity to choose proper split planes
for 3D curves to accelerate nearest neighbor queries. Nonetheless,
nearest neighbor search for line data is very different from ray trac-
ing, e. g., the node split cost in our case has to consider also the cost
of backtracking [HS12], which helps explore nearby nodes, since
the true nearest neighbor may not lie in the query cell.

3. Problem Definition

To explore the spatial relations in a line data set we have to find the
closest curves to a query point in a potentially large set. To formalize
this task, we first define the notation we use in this paper:

• C = {C1,C2 · · · ,Cm} denotes a large set of m curves, which is
the input data to the problem; these 2D or 3D curves could be
straight lines or bended curves;

• Pi = {pi,1, · · · ,pi,ni} denotes the set of ni point samples along Ci;
• P = ∪iPi denotes the set of all point samples in C;
• n = ∑i ni denotes the total number of point samples in P, so the

average number of point samples in each curve is n/m;
• q denotes a query point located in the same space as C; and
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• G = {g1, · · · ,gk} denotes the set of curves in C that are the k
nearest to q, so G is the query solution.

Problem. Given query point q, our goal is to efficiently find G.
Representing each curve (Ci) as a set of points {Pi}, we define the
(shortest) distance from q to Ci as

D(q,Ci) = min
x∈Ci

d(q,x) , (1)

where d(q,x) denotes the Euclidean distance from q to point x on
Ci. Since d(q,x) is the distance to the segments, x might not be any
point sample pi, j. Hence, the nearest curve (NC) problem can be
defined as

NC(q,C) = argmin
i∈[1,m], i 6=iq

D(q,Ci) ,

where iq is the index of the curve to which q belongs, i.e., if q is a
point sample of a certain curve in C, say Ciq ; otherwise, iq is null.

Often, we want to find a set of nearest curves rather than just a
single one. Hence, we extend the NC problem in two ways:

(i) Radius Nearest Curve (RNC) search, to find all the nearest curves
within a distance of r from query point q, and

(ii) K-nearest Curve (KNC) search, to find the k nearest curves to q.

In the case of KNC, we should obtain exactly k distinct nearest
curves, i. e., |G|= k, and the query solution G should satisfy

∀gi ∈G, l ∈ C\G, D(q,gi)≤ D(q, l). (2)

In the case of RNC, |G|= k is not needed but we require G to satisfy
the following condition for parameter r:

∀gi ∈G , D(q,gi)≤ r . (3)

Fig. 2 illustrates RNC and KNC searches using query points q1
and q2, respectively. In particular, point samples associated with the
nearest curves for RNC and KNC must lie on distinct data lines. This
requirement fundamentally differs from RNN and KNN [AMN∗98,
ML09]: we have to consider the curves associated with the nearest
point samples, and we cannot simply look for the nearest point
samples in the whole sample point set. Some of the nearest points
from q may likely come from the same data line.

4. Analyzing Existing Approaches

Before presenting our full method in Sec. 5, we briefly describe how
existing nearest neighbor search techniques such as KD-trees can be
adopted for NC search, review the SAH KD-tree, and discuss how
it can be applied to curves.

4.1. Approaches for Neighbor Curve Search

We now describe three general approaches for nearest curve search,
given query point q and curve set C, and analyze their time com-
plexity.

A brute-force approach. We may exhaustively compute the mini-
mum distance from q to every curve in C, and select the k nearest
curves accordingly. Since k� n, the time complexity is O(n) by
using a heap to keep the k distinct nearest lines, where n is the total

Figure 2: A 2D illustration of k-nearest curve (KNC) and radius
nearest curve (RNC) search problems with a set of uniformly-
sampled points along streamlines. For a query point q1 using KNC
we find the three nearest curves shown above subject to a count
threshold k = 3, while for query point q2 using RNC, we find the
four nearest curves shown above subject to a distance threshold r.
Note that there are three instead of four curves for q1, since we do
not report the curve that q1 belongs to.

(a) (b)

Figure 3: Nearest curve search for query point q using two variants
of KD-trees. (a) A point-based KD-tree finds the nearest point sam-
ple p3,1 and returns C3 as the nearest curve. (b) A segment-based
KD-tree finds the nearest point v2 on C2 and returns the correct
nearest curve C2.

number of point samples in the data (Sec. 3). However, since n is in
the order of millions for most DTI fibers and streamlines, such an
approach could take more than an hour, thus inhibiting an interactive
data exploration (e. g., [EBB∗15]).

Point-based nearest curve (NC) search. To accelerate the search,
we could also collect all point samples in C and use an advanced
nearest neighbor search (NNS) such as a KD-tree, FLANN [ML09],
or libnabo [EMSN12] to keep the k nearest points using a heap. With
a hash table, we can avoid points from the same curve, and keep
adding nearest points to the heap until we obtain k nearest points
from the distinct curves.

Suppose a KD-tree is used and k� n, the overall time complexity
is O(logn) for a KNC search. Similarly, we can achieve an RNC
search by taking a distance threshold r from q as a pruning condition
when traversing the KD-tree, so the time complexity is bounded by
O(n2/3) [BF79]. Regardless of the NNS method being used, this
approach might not always find the correct nearest curve, because
representing each curve as a set of discrete point samples ignores
their geometric continuity. Fig. 3(a) shows an example, where the
nearest point sample found by the point-based KD-tree was located
on curve C3 but the nearest point is located on curve C2 instead.
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We can also build a point-based KD-tree for each curve in the
data and perform the query for each curve. Obviously, the query
time of this scheme is proportional to the number of curves and the
overall time complexity is O(m logn/m) for a KNC search. Thus,
this method is much slower than the point-based KD-tree.

Segment-based KD-tree. For each curve, say Ci, we collect ni−1
curve segments between pairs of adjacent point samples. Now we
can build a segment-based KD-tree (see Fig. 3(b)) by recursively
subdividing the space with so-called “spatial median” splitting
planes [WH06]. During the subdivision, a segment might be di-
vided into two parts by the splitting plane. To ensure segment com-
pleteness, we duplicate this segment into two sub-nodes. To avoid
excessive subdivision, we stop the splitting of nodes with N seg-
ments, if one of the resulting sub-nodes also contains no less than N
segments; otherwise, the search efficiency would be lower than just
linear search with N segments. By doing so, the problem of nearest
curve search converts into a nearest line segment search, in which
the point-to-point distances required for nearest neighbor search are
replaced by the point-to-line distances.

Since the number of segments is close to the number of point
samples n, the search complexities of KNC and RNC become the
same as the ones for point-based KD-trees (see Fig. 3(b)). Unlike
point-based KD-trees, segment-based KD-trees always return cor-
rect results (since all segments are straight lines). Hence, we will
use them to find the ground truths for evaluating our CCH KD-tree.
However, such KD-trees do not take curve complexity into account
and divide nearly straight curves into many small segments, causing
poor performance for NC queries; see our quantitative comparison
results in Sec. 6.

4.2. Background: SAH KD-tree

A KD-tree is often used for ray-triangle intersection tests in
ray tracing of static scenes. To minimize the time for KD-tree
traversal and ray intersection steps, the surface area heuristic
(SAH) [GS87,WH06] is often used for building an efficient KD-tree.
This heuristic tries to divide the scene in a way that a cost function
is minimized. Given a static scene S, an SAH KD-tree is built by
recursive subdivision. That is, we recursively subdivide S into two
sub-scenes at a time by measuring the SAH costs of all potential
split planes and applying the one with the lowest cost. To model the
SAH cost, rays are typically assumed to be uniformly distributed in
space. Hence, given a random ray that passes through scene S, the
probability for the ray to pass through sub-scene Ssub ⊂ S is

P(Ssub|S) =
SA(Ssub)

SA(S)
, (4)

where SA(S) denotes the total surface area of scene S.

Given a potential split plane h, which subdivides S into sub-scenes
Sl and Sr , the expected time cost C of intersecting a random ray with
the tree resulted by plane h is given by

C(h) = Ttraverse +P(Sl |S) Tintersect(Sl)+P(Sr|S) Tintersect(Sr) (5)

where Ttraverse is the time to traverse the internal node associated
with h, while Tintersect(Sl) and Tintersect(Sr) are the times to per-
form intersection tests for Sl and Sr, respectively. Since Tintersect(Sl)

and Tintersect(Sr) can only be measured after the whole tree is built,
finding a global optimal tree is intractable. So, a local greedy approx-
imation is often used to approximate C(h) by assuming the resulting
children are leaves:

C(h) = Ttraverse +
[SA(Sl)

SA(S)
Nl +

SA(Sr)

SA(S)
Nr
]
tintersect (6)

where Nl and Nr are the number of triangles in Sl and Sr, tintersect is
the time to perform an intersection test with a single triangle. Since
both Sl and Sr are likely to be further subdivided, this approximated
solution is not globally optimal, but works well in practice.

As discussed in Sec. 4.1, a KD-tree can be used for accelerating
NC search. To build the best tree with the minimal traversal cost, we
can design curve-based heuristics as an SAH KD-tree. Unlike ray
tracing surfaces with SAH, our nearest curve search method works
within the whole volume of related KD-tree nodes instead of the
surface area in SAH.

5. CCH KD-tree for 3D Curves

Our key idea is to fit each curve in the data with a small number of
straight-line segments and build a line-segment-based KD-tree for
fast and as accurate as possible NC search. However, it is inefficient
to build and search within a tree, in which each grid cell contains
only a single segment defined by two adjacent point samples. Hence,
we propose curve complexity heuristic (CCH) KD-trees that are
generated by exploiting curve complexity to optimize KD-trees for
NC search. Fig. 4 shows the pipeline of our method, which consists
of two stages: offline preprocessing and online query.

Offline preprocessing. Each curve in a given dataset consists of
an ordered list of densely and uniformly sampled points. At the
beginning, we divide each curve into a set of segments, such that
each segment is not excessively bent (see Fig. 4(a)). Then, we
construct the CCH KD-tree using these segments (see Fig. 4(b)) and
represent each curve segment by a set of straight lines (see Fig. 4(c)).
Each leaf node in the KD-tree stores the start and end points, and
the curve index of the corresponding line segment; each internal
node stores the split dimension and split plane.

Online query. Once a CCH KD-tree is built, we can perform an NC
search similar to a nearest point search with a traditional KD-tree
for a given query point. The major difference is that we compute
the distances from the query point to the line segments stored in the
leaf nodes instead of simply using point to point distances.

We now detail the three steps of the offline pre-processing: curve
partitioning, CCH KD-tree construction, and curve fitting, before
we discuss the efficiency of our approach in Sec. 6.

5.1. Curve Partitioning

Although existing curve segmentation methods that are based on lo-
cal properties (e. g., total curvature) can preserve important features
to a certain extent, they do not aim to approximate curves by straight
line segments with small errors. Rather than using expensive opti-
mizations [Sto61, HC94], we employ the Ramer-Douglas-Peucker
algorithm [VW90] to iteratively divide each given curve into seg-
ments. Since each curve segment might be further divided during
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Figure 4: Overview of our two-stage method—offline pre-processing (a–c) and online query (d–g): (a) set of input curves with point samples
(white) and split points (orange); (b) the CCH KD-treebuilt for the input curves with the removed split points (green) and the newly added split
points (yellow), the split axes’ (blue) thickness indicates the level, where the thicker the lines are the higher levels of the KD-tree; (c) the curve
segment in each grid cell is approximated by a straight-line segment; (d,e,f) three steps in retrieving the two nearest curves k = 2 for the given
query point q, where the related split axes are highlighted in purple; (d) the first nearest curve C3 with the nearest sample v1 is found from the
leaf node; (e) backtracking to the upper level and finding the two nearest samples v2 and v3, which are from the same curve as v1, continued
backtracking gives us a new nearest sample v4 from curve C4; (f) further backtracking to find the nearest samples in the circle with radius from
q to v4. A closer sample v6 is found, resulting in the fact that v4 and v5 (in red) are rejected; (g) the nearest curves are C2 and C3 and the
corresponding nearest samples are v1 and v6 for query point q.

the construction of the KD-tree, we do not explicitly segment the
curves but just record the split points in this step.

Each input curve Ci with point samples {pi, j} ( j = 1, ...,ni), is
divided into a set of segments using the following procedure:

(i) construct a straight line l from pi,1 to pi,ni ;
(ii) find the point sample pi,c furthest away from l, the distance

being larger than the threshold θ ∗ ls, use it as a split point; and

(iii) divide Ci into segments using the found split point and repeat
the above steps for each divided curve segment.

Here, ls denotes the averaged sample interval distance: ls =

∑
m
i=1 len(Ci)/(n−m), where len(Ci) is the length of curve Ci. Fig. 5

shows a running example to illustrate the procedure.

5.2. CCH KD-tree Construction

Next, we build our CCH KD-tree by recursively subdividing the
axis-aligned bounding box (AABB) of the input curves. Inspired
by SAH, the CCH KD-tree takes into account the traversal cost
for tree construction and also positions the split plane with the
spatial median [WH06]. For each non-leaf (internal) node, the space
subdivision proceeds as follows:

(i) compute the cost of all three split planes in three dimensions
and pick the one with the lowest cost;

(ii) split the node into two child nodes and divide the corresponding
curves; and

(a) (b) (c)

Figure 5: Curve segmentation step: Given the curve in (a), we find
the point sample with maximum distance from l1 (p1 to p18), i. e.,
p5; the distance value is larger than threshold θ , so we treat it as a
split point; (b) after splitting the curve using p5, we further find a
split point p10 and produce the curve segments shown in (c); when
no more split points can be found we stop the partitioning.

(iii) duplicate the curve segments divided by the split plane into
two sub-trees and update the associated split points.

Assuming that the x-dimension is selected for a split, we position
the split plane by using the spatial median so as to evenly divide
the point samples among the two children. In the following, we will
detail two essential components in our procedure: split plane cost,
and curve segment adjustment.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

466



Lu et al. / Curve Complexity Heuristic KD-trees for Neighborhood-based Exploration of 3D Curves

5.2.1. Split Plane Cost

Using the aforementioned split plane, the input curves can be split
until each sub-grid cell contains only a single curve segment. How-
ever, searching in such a KD-tree may be inefficient compared to
a brute-force search. The additional segments introduced by the
node splits may introduce higher costs for traversing the sub-trees
and also increase the backtracking cost as the tree depth increases.
For producing an efficient KD-tree, we thus measure the cost of
the split plane following Eq. 6. If the cost is larger than the one
for a brute-force search, we stop the split of the current node. For
searching KNC with k > 1 and RNC, we further provide an early
termination criterion to determine if the split of the current node
needs early termination before evaluating the cost of the split plane.
Next, we provide details about the traversal and backtracking costs
as well as the early termination criterion.

Traversal Cost. Suppose a node has n curve segments, and the split
plane divides them into l segments in the left sub-tree and r segments
in the right sub-tree. Since segments that cut through the split plane
have to be further divided, we might have l + r ≥ n. Assuming
that candidates of nearest neighbors are uniformly distributed in
space [San04], the probability P of searching the left sub-tree Tl of
tree T is

P(Tl |T ) =
Vol(Tl)

Vol(T )
. (7)

where Vol(T ) is the volume of the AABB of the curve segments
associated with tree T . Note that, in NC search, we derive the prob-
ability with the AABB volume of the KD-tree node T , instead of
the surface area in SAH for ray tracing. Due to the axis-aligned split
plane, the probability for the right sub-tree Tr is thus 1−P(Tl |T ).

Computing the global optimal traversing cost is infeasible without
completely building the entire tree. We thus follow the SAH KD-tree
to estimate the cost with a locally greedy approximation. We assume
all nodes in Tl and Tr to be leaves, so we define the cost as

Ctraversal(T ) = Ttraverse +
[
P(Tl |T )l +P(Tr|T )r

]
Tdist, (8)

where Tdist is the cost of distance comparison in a leaf node. We
empirically found that Ttraverse is about 20% of Tdist. Thus, we set
Ttraverse = 0.2 and Tdist = 1.

Backtracking Cost. During the nearest neighbor search, backtrack-
ing is often required as shown in Fig. 4. The number of nodes to
be visited during backtracking is usually proportional to the tree
depth. The backtracking cost is thus proportional to the depth of the
sub-tree [RD95].

Given again a current node with n segments (l segments for the
left child and r segments for the right). Without loss of generality,
we assume l ≥ r. Let ρ = l

n and τ = r
n to be the split ratio of the

segments for the left and right nodes of the current sub-tree and all
its subsequent sub-trees. We can then estimate the maximum depth
of this sub-tree as log 1

ρ

(n), while the minimum depth of the other

sub-tree is log 1
τ

(n). Thus, the average cost of the possible maximum
and minimum depths of the sub-tree is

Cbacktrack(T ) = λ (log 1
ρ

(n)+ log 1
τ

(n))/2 , (9)

(a) (b)

Figure 6: Termination criteria for query point q using KNC: (a)
grid cells generated by decomposing the space covered by the input
curves with the KD-tree in (b), where each node except the root
stores the indices of all contained curves.

(a) (b)

Figure 7: Curve segment adjustment and fitting. (a) Adjusting and
distributing curve segments resulting from a node split: (top) the
split axis (dashed line) divides the input curve into two segments
(blue and green boxes), (bottom) both segments are lengthened to
include an extra point sample and distributed into two sub-nodes;
after that, the orange split point p4 is no longer a split point. (b)
Fitting each curve segment with a purple straight line segment (solid)
using PCA, instead of connecting the two ends to form the green
straight line (dashed).

where λ is a user-specified weight.

The node split should generally make the query more efficient
than a brute-force search. We thus define the split plane’s cost as

C(T ) =Ctraversal(T )+Cbacktrack(T )−nTdist, (10)

where nTdist is the cost of brute-force search. If the costs for all split
planes to be created are larger than zero, we stop T ’s subdivision.

Termination Criterion. For KNC search with a large k, a sub-tree
may not contain sufficient distinct curves, and thus, the query often
needs backtracking to its parent nodes for checking the other sub-
trees. In such cases, further subdivision might bring more costs than
not splitting at all. We thus stop splitting a node if its left or right
child contains less than k/2 distinct curves. As illustrated in Fig. 6
with searching within four NCs, further subdivision of nodes µ2 and
µ3 requires us to check six line segments and traverse five nodes,
whereas without splitting we only need to check five line segments
and traverse a single node.

This process is similar for RNN. Given a search radius r, we
terminate splitting the KD-tree, if the length of either sub-region
with an axis orthogonal to the split plane is less than r/2.
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5.2.2. Curve Segment Adjustment.

If a curve segment is divided into two parts by a split plane, we
distribute each newly-generated segment into the respective child
node. Since the intersection between split plane and curve may
not exactly be at the point samples of the curve, we lengthen each
divided segment by also including the adjacent point sample beyond
the split plane; see Fig. 7(a) for an illustrative example. In addition,
we have to update the distance of the split points in the new segment
and check if it is still larger than the threshold θ ∗ ls as mentioned
in Section 5.1. If not, we remove the split points. For example, the
orange split point p4 in the top of Fig. 7(a) is removed at the bottom
of Fig. 7(a).

5.3. Curve Fitting

Once a CCH KD-tree is built, each grid cell contains one or multiple
curve segments. To fit each segment with a straight line, a straight-
forward method is to connect the adjacent split and end points (see
the green dashed lines in Fig. 7(b)). However, this method might
introduce a large error for fitting the original curves. To address this
issue, we fit each curve segment by projecting 2D point samples to a
1D line with principal component analysis (PCA) [WEG87]. Since
PCA finds the projection axis with minimal reconstruction error,
it leads to better piecewise approximations of the curve segments
than simply connecting the two endpoints as in the Ramer-Douglas-
Peucker algorithm. In doing so, we fit each segment by the line
along the principal direction and determine the two ends of this line
by projecting the starting and ending samples to it. Fig. 7(b) shows
two examples, where the curves are fitted by the purple solid lines.

6. Evaluation

We implemented our CCH-KD-tree and a segment-based KD-tree
and point-based KD-tree in C++. The implementation of our point-
based KD-tree is based on the optimized state-of-the-art implemen-
tation, FLANN [ML09]. We used the single KD-tree option for the
computation in the FLANN method; the other options (e. g., ran-
domized KD-tree forest) might work well for high-dimensional data
but are unsuitable for our low-dimensional data. We tested and com-
pared these methods on a PC with an Intel Core™ i7-6700HQ CPU
@ 2.6GHz and 8 GB memory. The data sets used for the evaluation
is shown in Table 1.

6.1. Quantitative Measures

Ideally, the KNC/RNC search should achieve high accuracy (i. e.,
search results close to those obtained using a brute-force nearest
neighbor search), and with faster computation. Therefore, we mea-
sure the speed of an approach in terms of query time and assess the
search accuracy in terms of curve recall and curve precision, which
together assess the accuracy of a search algorithm.

To investigate KNC/RNC, we let the set of curves retrieved with
a specific search approach for query point q be A(q) and the set
returned by the brute-force approach (i. e., the ground truth) be I(q).

Curve recall measures the amount of ground-truth of nearest

Table 1: Datasets used for the comparison.

Data Domain # Curves # Samples
aneurysm Medical 531 364005

combustion Physics 3000 768545
borromean Chemistry 3930 1489125

laminar Fluid dynamics 1000 552340
cylinder Fluid dynamics 944 540051

heli_flight Aerodynamics 1001 567678
heli_descent Aerodynamics 1031 901402

rings Synthesized 446 243476
Square Cylinder Fluid dynamics 3112 3545135

tornado Fluid dynamics 3000 856720

curves I(q) that a given method correctly identifies in A(q). A value
close to 1 means that most ground-truth nearest curves are found.

curve recall(CR) =
|A(q)∩ I(q)|
|I(q)|

. (11)

Curve precision measures the amount of correctly-found curves in
the retrieved results A(q). A value close to 1 indicates that most
nearest curves found by the current method are true nearest curves.

curve precision(CP) =
|A(q)∩ I(q)|
|A(q)|

. (12)

6.2. Parameter Analysis
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Figure 8: Heatmaps with query time (a,c) and F1 scores (b,d) of
grid search, for parameters θ and λ in KNC (k = 25) and RNC
(r = 0.02) searches.

Next, we analyze two parameters in our CCH KD-tree: parti-
tioning curve threshold θ and backtracking cost parameter λ . The
parameter θ determines whether a curve should be subdivided at a
candidate split point. A larger θ leads to coarser partitioning, yield-
ing fewer line segments, which reduces not only the search time but
also the accuracy. The parameter λ affects the depth of the obtained
KD-tree. Larger λ values lead to an earlier termination of KD-tree
splitting, smaller λ values lead to more splits during the construction
of the KD-tree. Thus, we need to find optimal parameter values to
optimize both query accuracy and query time.
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We performed a grid search over the parameters θ and λ in the
ranges of [0.25,2.25] and [0.75,10], respectively. Since we want to
maximize both recall and precision, we measure the query accuracy
by using F1 score [Bis06]:

F1 = 2
CR∗CP
CR+CP

, (13)

which ranges from 0 to 1. For each data set listed in Table 1 and each
value pair of (θ , λ ), we randomly sample 50K data points to perform
KNC (k=25) and RNC (r=0.02) search and then average the query
time and F1 score of all data sets. The heatmaps in Fig. 8 summarize
the results of KNC and RNC search. To find the optimal parameter
values resulting in less query time and high query accuracy, we
combine these two aspects together by calculating Time/F12 for
each value pair, where the squared F1 score is used for the more
emphasis in query accuracy. In doing so, the optimal (θ , λ ) are
(2.25, 3) and (2.25, 2.0) for KNC and RNC searches for all data sets,
respectively.

6.3. Quantitative Comparison

Next, we conducted a comparative evaluation of the three methods
by performing RNC and KNC searches using M randomly-generated
query points for each data set. Here, we set M as 50000 and tested dif-
ferent k values, i.e., {5,10,15, · · · ,50}, for the KNC search. For the
RNC search, we tested different r values, i.e., {0.01,0.02, · · · ,0.1}
since the dataset values have been normalized. For a comprehensive
evaluation, we collected ten 3D line fields from a wide variety of
application domains and structures (see Table 1). We took the results
returned by the segment-based KD-tree as our ground truth, since
they always return the correct results (see Sec. 4.1).

Result analysis. To quantitatively assess the three methods, we com-
puted the averaged CP, CR, and query time over the searches with
M query points for each dataset. The boxplots shown in Fig. 9(a,b,c)
summarize the three measures for the three methods to perform
KNC (k = 25) and RNC (r = 0.02) searches. The results show that
our CCH KD-tree achieves an accuracy of 98.5% in terms of CP
and CR, while the point-based KD-tree results in 0.1%–0.5% higher
accuracies than our CCH KD-tree. In terms of the performance, the
CCH KD-tree achieves a 529% speedup for the KNC search, while
achieving a 232.8% speedup for the RNC search. Compared to the
segment-based KD-tree, it is around 28× for KNC search and 12×
faster for RNC search. CR and CP are equal for all three methods
for KNC search, as the cardinalities of A(q) and I(q) both are k.

For both searches, the query time of CCH KD-tree is less than
50 µs, facilitating interactive neighborhood-based curve exploration.
CR and CP increase with an increasing k for KNC search, and
increase with an increasing radius r for RNC search, which remains
above 98% in most cases.

Fig. 10 shows a comparison of the methods for different search
parameters k and r on the aneurysm data, where the query time in
Fig. 10(c,d) is shown in log scale. For both KNC and RNC, our
CCH KD-tree achieves 100%–500% speedup over the point-based
KD-tree and is 8–15 × faster than the segment-based KD-tree, while
maintaining a CR between 0.95 and 1.0. For both searches, the
speedup of our CCH KD-tree over the segment-based KD-tree in-
creases with increasing k or r. After carefully checking, we observed

Figure 9: Boxplots summarizing curve recall (a,b) and precision
(c,d), query time (e,f) and memory consumption ratio (g,h) for KNC
search (k=25) (a,c,e,g) and RNC search (r=0.02) (b,d,f,h) on all
datasets using the three methods. Since the results retrieved by
segment-based KD-trees are ground truth, we did not show them in
(a,b,c,d).

that many curves intersect in the data and thus the retrieved curves
are almost the same for RNC search with different rs. Note that the
curve recall of the point-based KD-tree in RNC search is 1.0, which
is consistent with the results in Fig. 9(b).

The boxplots in Fig. 9(d) summarize the memory consumption
ratio of each method, which is defined as the memory consumption
to the original data size. We can see that each method performs
similarly in KNC and RNC search, while our CCH KD-tree requires
the least memory, followed by the point-based KD-tree, while the
segment-based KD-tree is the worst. The corresponding median
consumption ratios of the three methods (our CCH KD-tree, point-
based KD-tree, and segment-based KD-tree) are 2.14, 4.81, and
12.92, respectively. Note that the outlier in each of the three methods
is the tornado data, which consists of many intertwined curves and
is hard to be segmented and fit with straight lines.
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Figure 10: Comparing curve recall (downward triangles), curve
precision (upward triangles), and query time (circle marks) of the
three methods for performing KNC searches (a,b) and RNC searches
(c,d) within the aneurysm dataset. Note that the lines of curve recall
and curve precision overlap together in KNC search (a), while they
might not overlap in RNC search (b).

In our experiment, we found that PCA-based curve fitting
(Sec. 5.3) does improve the precision and recall of the KNC ac-
curacy both from 98.79% to 99.20%, RNC precision from 98.91%
to 99.23%, and RNC recall from 98.76% to 99.49%, respectively.

7. Selected Application Examples

We now discuss potential applications in which a fast curve search
facilitates interactive data analysis techniques that have been out of
reach in the past. Nonetheless, these examples only represent tasks
in curve-based data exploration, other applications may exist.

7.1. Structure-aware line Selection

Most 3D user interfaces select a subset of curves in 3D line data by
encircling curves with a lasso [ZCL08b], 3D brushing [JCK12], or
checking the co-linearity [JLS∗13]. With our fast curve search we
can now support interactive, structure-aware line selection, related
to approaches for particle clouds and volumes [YEII12, YEII16].
In contrast to those techniques whose challenge is how to find a
meaningful 3D subvolume based on the 2D input and the data’s
3D structure, our key challenge for 3D line data is how to select
meaningful subsets of lines in 3D space based on a selected point or
a center line, with a given k or radius r. Our CCH KD-tree facilitates
efficient search queries: a single KNC search takes only around
20 µs and only 40 µs for an RNC search within real data (see Fig. 9).

By using Our CCH KD-tree for NC search, we provide two
modes: point-based mode and line-based mode for users to perform
structure-aware line selection. The former finds a set of nearest
curves returned from an NC search based on q, while the latter first
finds the nearest curve gq from q then performs an RNC search for

all the samples along curve gq and returns the union of all the search
results. Once the search is done, the output curves can be highlighted,
while the remained curves are shown with transparency. To facilitate
the exploration of dense line fields, users can combine the query
results from the two modes using various set operators [WS06]:
intersection, union, and difference as we demonstrate in Fig. 11.

Our CCH KD-tree also facilitates line selections using feature
points in data, e. g., critical points in a vector field, from which the
line data was originally extracted. A common requirement in vector
field visualization is to explore streamlines around some critical
points, which can be readily fulfilled by our CCH KD-tree. Fig. 1(a)
shows an example of streamlines around two critical points in red.
Hence, the user can promptly identify interesting flow structures.

7.2. Structure-aware Opacity Specification

The usually heavy occlusions in 3D make specifying proper opacity
values crucial for revealing important structures in 3D line fields.
Günther et al. [GRT13, GTG17] formulated opacity specification as
an optimization problem, which strives to balance occlusion avoid-
ance and information presentation. By showing that a pixel-based
formulation can lead to analytical solutions [GTG17], the varying
opacity for each line segment can be automatically obtained to high-
light important structures. For more detail about that optimization
refer to Günther et al.’s [GTG17] discussion.

The importance of each point sample can be defined by various
properties, such as line length, point curvature, linear entropy [FI08],
angular entropy [MCHM10], and domain-specific attributes. Gün-
ther et al. [GRT13] showed that using both length and curvature
reveals major structures in data. These two properties, however, are
line-based, i. e., they cannot capture larger-scale structures. We thus
propose the use of point saliency by exploiting our CCH KD-tree
approach to better characterize major structures in 3D line fields.

Point saliency. Image saliency has been extensively studied
in computer vision [Sze10]. Among them, patch-based meth-
ods [CMH∗15, GZMT12, LYS∗11] characterize global image struc-
tures by estimating the saliency based on the similarity between
image patches. Benefits have been demonstrated for many applica-
tions, including image retargeting, summarization, and segmenta-
tion. Similar to this approach, we define the point saliency based
on its surrounding line segments, rather than based on individual
surrounding point samples.

Given a query point q, we first find the k nearest curves (denoted
as gi) from q, then compute the segment-based similarity between
q and each gi using the point-to-streamline distance proposed by
Chen et al. [CCK07] (denoted as dsim(q,gi)), and finally, aggregate
the similarities to define the point saliency in a range of [0,1]:

sq = 1− exp

(
−1

k ∑
i

dsim(q,gi)

)
. (14)

If the line segment through q has more dissimilar segments with the
nearest lines, q would have a larger point saliency; and vice versa.

Opacity specification. By taking point saliency as importance, the
opacity optimization framework [GTG17] can automatically find
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(a) (b) (c)

Figure 11: Selecting lines by combining point-based and line-based mode. (a) The nearest curves (green, denoted as Sa) selected by the red
query point; (b) the nearest curves (blue, denoted as Sb) selected in line-based mode, using the red curve (through the red point) as the query
curve; and (c) the difference between the two line sets (Sb−Sa), showing the curves that are near the query curve but not near the query point.

(a) (b) (c)

Figure 12: Opacity optimization results for different importance notions: (a) curvature; (b) linear entropy; and (c) point saliency.

(a) (b) (c)

5 mm

0 mm
Figure 13: DTI fiber tract contraction results at the scale of 5 mm by using (a) segment-based KD-tree and (b) our CCH KD-tree. (c) The
color coding of the 3D position difference between the two results in (a,b), and the result in (a) is taken as the ground truth as Fig. 9.

proper opacities for the input 3D lines, while emphasizing the large-
scale structures. Fig. 12 compares the results generated by using
curvature, line entropy, and our point saliency. We can see that our
measure captures large-scale vortex structures to a better extent (see
Fig. 12(c)), whereas the other methods mainly show small-scale
features (a) or loose major structures (b). Moreover, the intertwined

structures are clearly shown in Fig. 12(c), whereas only the interior
ring structures are shown in Fig. 12(b).

Although our CCH KD-tree does not directly affect the rendering
results shown in Fig. 12(c), its identified nearest curves are an in-
dispensable ingredient of the point saliency computation. As shown
in Sec. 6, it is faster than other methods in NC search while pre-
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Table 2: Computing times of the DTI contraction for a dataset
consisting of 77,389 tracts with a total of 1,944,700 vertices at all
the five-scale levels between the original implementation [EBB∗15]
and our three different nearest curve search techniques.

Method Phase 1 (min.) Phase 2 (min.) Total (min.)
Everts et al.’s [EBB∗15] 39.45 2.09 41.54

Segment KD-tree 4.79 2.05 6.85
Point KD-tree 1.69 2.06 3.75
CCH KD-tree 0.58 1.43 2.01

serving the accuracy and thus we believe that it is a cornerstone of
structure-aware opacity specification.

7.3. Fast Multi-scale Fiber Tract Contraction

The third application is to use RNC search to compute the fiber tract
contraction introduced by Everts et al. [EBB∗15]. The whole compu-
tation has two phases: (i) neighborhood graph construction and (ii)
iterative contraction. Both phases are very time-consuming; as indi-
cated by the computational complexity, interactive fiber contraction
was considered as not possible at that time.

We compare Everts et al.’s [EBB∗15] implementation to our
method using the segment-based KD-tree, point-based KD-tree,
and CCH KD-tree on the same machine (Intel(R) Core(TM) i7-
8700K CPU @ 3.70GHz, 6 cores) for the same dataset with five
levels (1 mm–5 mm). Table 2 shows the computing time of four
implementations for the two phases, we observe an 8.2 × speedup
from the segment-based KD-tree in phase 1 and 3.4 × speedup in
total and a 3 × speedup from the deterministic point-based KD-tree
in phase 1 and 1.8 × speedup in total. Compared to Everts et al.’s
method, our CCH KD-tree has a 20 × speedup. Although such a
performance still cannot allow for an interactive line contraction, our
CCH KD-tree tremendously reduces the running time and greatly
improve the efficiency of DTI abstraction. Note that the almost 1.8 ×
speedup of the CCH KD-tree compared to the point-based KD-tree
can mainly be attributed to the high sparsity of this dataset (i. e., a
few regions with low data densities).

Fig. 13 compares fiber tract contraction results from the segment-
based KD-tree and from using our CCH KD-tree, at a scale level
of 5 mm. The contraction results are virtually identical, only at
higher contraction distances, we can see some differences for single
tracts. The overall shape of the major pathways, however, does not
change. To improve the overall contraction performance, we added
a linear weight to the vertices during contraction. It allows us to
assign a value of 1 to points at the search center and a weight of
0 to points at the edge of the search radius. Our visual and timing
results demonstrate that we are now also able to further explore
our technique for the interactive exploration of abstracted fiber tract
data, as envisioned by Everts et al.’s [EBB∗15].

8. Conclusion

In this paper, we presented the problem of nearest curve (NC) search,
including the radius-nearest curve (RNC) search and k-nearest curve
(KNC) search for 3D line data. To address this problem, we pro-
posed a technique that uses a curve complexity heuristic for a KD-
tree and utilizes curve complexity to customize KD-trees for NC

search. We conducted a comprehensive evaluation using various 3D
line datasets, and quantitatively demonstrated that our technique can
largely improve NC search performance with only small potential er-
rors. The speed-up we achieved allows certain NC-search-based ap-
plications, such as structure-aware selection and contraction, which
used to be computationally unfeasible, to now be used interactively.
It also allows us to perform interactive NC queries to augment
various visualizations with less effort, e. g., opacity specification.

There are still some limitations, which we will address in fu-
ture work. First, our method requires considerable memory to
store the point samples and the KD-trees and thus we will de-
velop an out-of-core version to handle data with more than 200K
curves. Second, inspired by the GPU construction algorithm for
SAH KD-tree [ZHWG08] and GPU-based spatial data visualiza-
tion [EGG∗15], we will explore a GPU version of our CCH KD-tree
as a potential avenue for future research. Last, we will explore more
neighborhood-based visualization applications. The nearest sam-
ples of different lines, for instance, might be grouped into the same
cluster, and we will thus investigate neighborhood-based spectral
clustering for exploring flow data.
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[Sar09] SARITAŞ E. U.: High-resolution Diffusion MRI of Targeted
Regions. PhD thesis, Stanford University, USA, 2009. URL: https:
//searchworks.stanford.edu/view/12303425. 1

[SBGC20] SANE S., BUJACK R., GARTH C., CHILDS H.: A survey of
seed placement and streamline selection techniques. Computer Graphics
Forum 39, 3 (June 2020), 785–809. doi:10.1111/cgf.14036. 2

[SBMN16] SCHAUER J., BEDKOWSKI J., MAJEK K., NÜCHTER A.: Per-
formance comparison between state-of-the-art point-cloud based collision
detection approaches on the CPU and GPU. IFAC–PapersOnLine 49, 30
(Nov. 2016), 54–59. doi:10.1016/j.ifacol.2016.11.125. 2

[Sca11] SCAGLIARINI A.: Geometric properties of particle trajectories in
turbulent flows. Journal of Turbulence 12 (June 2011), Article N25, 11
pages. doi:10.1080/14685248.2011.571261. 1

[Sto61] STONE H.: Approximation of curves by line segments. Mathemat-
ics of Computation 15, 73 (Jan. 1961), 40–47. doi:10.2307/2003089.
5

[Sze10] SZELISKI R.: Computer Vision: Algorithms and Applications.
Springer, London, 2010. doi:10.1007/978-1-84882-935-0. 10

[TMWS13] TAO J., MA J., WANG C., SHENE C.-K.: A unified approach
to streamline selection and viewpoint selection for 3D flow visualization.
IEEE Transactions on Visualization and Computer Graphics 19, 3 (Mar.
2013), 393–406. doi:10.1109/TVCG.2012.143. 2

[VB96] VASSILICOS J., BRASSEUR J. G.: Self-similar spiral flow struc-
ture in low Reynolds number isotropic and decaying turbulence. Physical
Review E 54, 1 (July 1996), 467–485. doi:10.1103/PhysRevE.54.467.
1

[VCI20] VIOLA I., CHEN M., ISENBERG T.: Visual abstraction. In
Foundations of Data Visualization, Chen M., Hauser H., Rheingans P.,
Scheuermann G., (Eds.). Springer, Berlin/Heidelberg, 2020, ch. 2, pp. 15–
37. doi:10.1007/978-3-030-34444-3_2. 3

[VI18] VIOLA I., ISENBERG T.: Pondering the concept of abstraction
in (illustrative) visualization. IEEE Transactions on Visualization and
Computer Graphics 24, 9 (Sept. 2018), 2573–2588. doi:10.1109/TVCG.
2017.2747545. 1, 3

[VW90] VISVALINGAM M., WHYATT J. D.: The Douglas-Peucker algo-
rithm for line simplification: Re-evaluation through visualization. Com-
puter Graphics Forum 9, 3 (Sept. 1990), 213–225. doi:10.1111/j.
1467-8659.1990.tb00398.x. 3, 5

[WEG87] WOLD S., ESBENSEN K., GELADI P.: Principal component
analysis. Chemometrics and Intelligent Laboratory Systems 2, 1–3 (Aug.
1987), 37–52. doi:10.1016/0169-7439(87)80084-9. 8

[WESW14] WANG Z., ESTURO J. M., SEIDEL H.-P., WEINKAUF T.:
Pattern search in flows based on similarity of stream line segments. In
Proc. VMV (2014), The Eurographics Association, Goslar, Germany,
pp. 23–30. doi:10.2312/vmv.20141272. 3

[WH06] WALD I., HAVRAN V.: On building fast kd-trees for ray tracing,
and on doing that in O(N log N). In Proc. Symposium on Interactive
Ray Tracing (2006), IEEE Computer Society, Los Alamitos, pp. 61–69.
doi:10.1109/RT.2006.280216. 2, 5, 6

[WS06] WOODRING J., SHEN H.-W.: Multi-variate, time varying, and
comparative visualization with contextual cues. IEEE Transactions on
Visualization and Computer Graphics 12, 5 (Sept./Oct. 2006), 909–916.
doi:10.1109/TVCG.2006.164. 10

[WWW∗18] WANG F., WALD I., WU Q., USHER W., JOHNSON C. R.:
CPU isosurface ray tracing of adaptive mesh refinement data. IEEE
Transactions on Visualization and Computer Graphics 25, 1 (Jan. 2018),
1142–1151. doi:10.1109/TVCG.2018.2864850. 3

[YEII12] YU L., EFSTATHIOU K., ISENBERG P., ISENBERG T.: Efficient
structure-aware selection techniques for 3D point cloud visualizations
with 2DOF input. IEEE Transactions on Visualization and Computer

Graphics 18, 12 (Dec. 2012), 2245–2254. doi:10.1109/TVCG.2012.
217. 10

[YEII16] YU L., EFSTATHIOU K., ISENBERG P., ISENBERG T.: CAST:
Effective and efficient user interaction for context-aware selection in 3D
particle clouds. IEEE Transactions on Visualization and Computer Graph-
ics 22, 1 (Jan. 2016), 886–895. doi:10.1109/TVCG.2015.2467202. 10

[YWSC12] YU H., WANG C., SHENE C.-K., CHEN J. H.: Hierarchical
streamline bundles. IEEE Transactions on Visualization and Computer
Graphics 18, 8 (Aug. 2012), 1353–1367. doi:10.1109/TVCG.2011.
155. 1, 3

[ZCL08a] ZHANG S., CORREIA S., LAIDLAW D. H.: Identifying white-
matter fiber bundles in DTI data using an automated proximity-based
fiber-clustering method. IEEE Transactions on Visualization and Com-
puter Graphics 14, 5 (Sept./Oct. 2008), 1044–1053. doi:10.1109/TVCG.
2008.52. 1, 3

[ZCL08b] ZHOU W., CORREIA S., LAIDLAW D. H.: Haptics-assisted
3D lasso drawing for tracts-of-interest selection in DTI visualization. In
Posters of IEEE Visualization (2008). URL: http://vis.cs.brown.
edu/docs/pdf/g/Zhou-2008-HAL.pdf.html. 10

[ZGH∗17] ZHANG J., GUO H., HONG F., YUAN X., PETERKA T.: Dy-
namic load balancing based on constrained K-D tree decomposition for
parallel particle tracing. IEEE Transactions on Visualization and Com-
puter Graphics 24, 1 (Jan. 2017), 954–963. doi:10.1109/TVCG.2017.
2744059. 3

[ZHWG08] ZHOU K., HOU Q., WANG R., GUO B.: Real-time KD-tree
construction on graphics hardware. ACM Transactions on Graphics 27, 5
(Dec. 2008), Article 126, 11 pages. doi:10.1145/1409060.1409079.
2, 12

[ZSL∗18] ZELLMANN S., SCHULZE J. P., LANG U., CHILDS H., CUC-
CHIETTI F.: Rapid k-d tree construction for sparse volume data. In
Proc. EGPGV (2018), The Eurographics Association, Goslar, Germany,
pp. 69–77. doi:10.2312/pgv.20181097. 3

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

474

https://doi.org/10.1017/CBO9780511617331
https://doi.org/10.1017/CBO9780511617331
https://searchworks.stanford.edu/view/12303425
https://searchworks.stanford.edu/view/12303425
https://doi.org/10.1111/cgf.14036
https://doi.org/10.1016/j.ifacol.2016.11.125
https://doi.org/10.1080/14685248.2011.571261
https://doi.org/10.2307/2003089
https://doi.org/10.1007/978-1-84882-935-0
https://doi.org/10.1109/TVCG.2012.143
https://doi.org/10.1103/PhysRevE.54.467
https://doi.org/10.1007/978-3-030-34444-3_2
https://doi.org/10.1109/TVCG.2017.2747545
https://doi.org/10.1109/TVCG.2017.2747545
https://doi.org/10.1111/j.1467-8659.1990.tb00398.x
https://doi.org/10.1111/j.1467-8659.1990.tb00398.x
https://doi.org/10.1016/0169-7439(87)80084-9
https://doi.org/10.2312/vmv.20141272
https://doi.org/10.1109/RT.2006.280216
https://doi.org/10.1109/TVCG.2006.164
https://doi.org/10.1109/TVCG.2018.2864850
https://doi.org/10.1109/TVCG.2012.217
https://doi.org/10.1109/TVCG.2012.217
https://doi.org/10.1109/TVCG.2015.2467202
https://doi.org/10.1109/TVCG.2011.155
https://doi.org/10.1109/TVCG.2011.155
https://doi.org/10.1109/TVCG.2008.52
https://doi.org/10.1109/TVCG.2008.52
http://vis.cs.brown.edu/docs/pdf/g/Zhou-2008-HAL.pdf.html
http://vis.cs.brown.edu/docs/pdf/g/Zhou-2008-HAL.pdf.html
https://doi.org/10.1109/TVCG.2017.2744059
https://doi.org/10.1109/TVCG.2017.2744059
https://doi.org/10.1145/1409060.1409079
https://doi.org/10.2312/pgv.20181097

