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Figure 1: We present Walk2Map. Starting from only a walk trajectory signal in an unknown room, we pose the question: Can one infer the
floor plan in terms of room boundary, door locations, and furniture regions? The scan on the right shows the actual reference scene.

Abstract
Recent years have seen a proliferation of new digital products for the efficient management of indoor spaces, with important ap-
plications like emergency management, virtual property showcasing and interior design. While highly innovative and effective,
these products rely on accurate 3D models of the environments considered, including information on both architectural and
non-permanent elements. These models must be created from measured data such as RGB-D images or 3D point clouds, whose
capture and consolidation involves lengthy data workflows. This strongly limits the rate at which 3D models can be produced,
preventing the adoption of many digital services for indoor space management.
We provide a radical alternative to such data-intensive procedures by presenting Walk2Map, a data-driven approach to generate
floor plans only from trajectories of a person walking inside the rooms. Thanks to recent advances in data-driven inertial
odometry, such minimalistic input data can be acquired from the IMU readings of consumer-level smartphones, which allows
for an effortless and scalable mapping of real-world indoor spaces. Our work is based on learning the latent relation between
an indoor walk trajectory and the information represented in a floor plan: interior space footprint, portals, and furniture.
We distinguish between recovering area-related (interior footprint, furniture) and wall-related (doors) information and use
two different neural architectures for the two tasks: an image-based Encoder-Decoder and a Graph Convolutional Network,
respectively. We train our networks using scanned 3D indoor models and apply them in a cascaded fashion on an indoor walk
trajectory at inference time.
We perform a qualitative and quantitative evaluation using both trajectories simulated from scanned models of interiors and
measured, real-world trajectories, and compare against a baseline method for image-to-image translation. The experiments
confirm that our technique is viable and allows recovering reliable floor plans from minimal walk trajectory data.

CCS Concepts
• Computing methodologies → Reconstruction; Object detection; Scene understanding; Machine learning;

1. Introduction

The way we organize and interact with indoor environments has
a profound influence on many aspects of human activity, from the
economic success of large companies to the effectiveness of every-
one’s daily routine. For this reason, significant efforts have been
devoted to exploit the latest digital technologies for the optimiza-
tion of real-world workflows focused on building interiors, such

as virtual property showcasing, interior design, indoor space opti-
mization and emergency management. A number of innovative ser-
vices and online platforms have been built around these use cases,
including Matterport [Mat20] and Google Indoor Maps [Goo20],
which promise to revolutionize the way we manage and experience
indoor spaces. Such products rely on the availability of informative
representations that encode the elementary geometric and semantic

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.142640

https://diglib.eg.orghttps://www.eg.org



C. Mura et al. / Walk2Map: Extracting Floor Plans from Indoor Walk Trajectories

layout of building interiors, i.e., bounding walls, floors and ceil-
ings, as well as the presence of portals like doors and the location
of furniture. This information allows, among other tasks, to pro-
vide an informative visualization of the environment, organize its
space and plan (respectively, simulate) the navigation of humans or
robots inside it.

The described architectural layout is often summarized into as-
built 2D or 3D floor plans, which describe an environment in a
structured, yet compact form. Being based on existing real-world
geometry, as-built plans must be derived from measured data.
Practitioners in architecture and engineering often resort to labor-
intensive and tedious manual pipelines, in which an artist manually
creates the desired model using interactive modeling tools (e.g.,
Trimble SketchUp [Tri20]), guided by a combination of measured
dimensions, point clouds and pictures. To increase the efficiency
of this process, researchers have investigated the problem of ex-
tracting structured models of interiors automatically from acquired
data [PMG∗20]. The proposed approaches can greatly speed up the
process of generating indoor models; still, they rely on rich 3D
or 2D input data whose acquisition is time-consuming and logis-
tically complex, requiring extended data capture sessions by expe-
rienced users or even trained personnel, using costly devices like
laser scanners. This is certainly true for laser-scanned 3D point
clouds, but also for RGB(-D) videos [LWF18] or sets of overlap-
ping panoramic images [BFFFS14, CF14, PGJG19] that are used
in a number of recent pipelines. Clearly, the high requirements in
terms of data acquisition hinder the large-scale creation of mod-
els of existing interiors, which in turn creates a bottleneck for the
adoption of new, disruptive workflows for their management.

This bottleneck forms the starting point of our work. We explore
the potential role of a much more modest data source that can be
captured effortlessly, namely the walk trajectory of a person inside
the space. Thanks to recent advances in data-driven inertial naviga-
tion [YSF18,YHF19,CLW∗19], such trajectories can conveniently
be recovered from the sensor readings of a consumer-level smart-
phone carried in a bag or pocket while walking, and without the
need to actively operate the device (e.g., to take pictures). Using
trajectories potentially turns every person into a passive citizen sen-
sor that gathers data for the extraction of floor plans, and can pave
the way to systematically mapping the world’s interior spaces.

At first glance, deriving semantically enriched 2D floor plans
from simple walk trajectories may seem an impossible and outra-
geous endeavour. Indeed, such minimalistic input makes the task
challenging and fundamentally ill-posed: a trajectory only pro-
vides incomplete evidence of which locations are not occupied by
walls or furniture, but gives no direct evidence for their locations.
However, we argue that interiors are designed and furnished to
meet specific functional requirements connected to the way people
live and work, and therefore also to their way of moving through
them [Gib79,MGC∗19]. Consequently, it may be possible to lever-
age modern (deep) machine learning technology to uncover the la-
tent relation between peoples’ movement patterns and the locations
of architectural elements relevant for constructing a floor plan.

To achieve this goal,we propose a multi-stage pipeline, in which
each stage extracts one of the three fundamental elements of a (se-
mantically annotated) floor plan: (i) the 2D footprint of the interior

space; (ii) the location of portals (i.e., doors) in the wall boundary;
(iii) the space of the interior footprint occupied by furniture. Each
step is cast as a machine learning task and solved with an appro-
priate model specifically tailored for it. The benefit of splitting the
computation into individual steps is twofold: on the one hand, it re-
flects the fact that the extraction of some elements of the floor plan
depends on the knowledge of others (e.g., detecting openings re-
lies on knowing the locations of walls); on the other hand, it allows
one to keep the complexity of the neural architectures low, such
that they can be trained with limited amounts of annotated data.
Underlying to the entire pipeline is a unified representation of the
elements that compose a floor plan (i.e., walls, doors, furniture) as
a 2D grid of cells and edges. Depending on the specific task, this
representation can readily be converted into a top-down (i.e., birds-
eye) raster image (e.g., to predict occupancy information such as
the space taken by furniture) or into a graph structure (e.g., to lo-
calize opening in closed wall boundary loops).

In summary, this paper makes two main contributions. At the
conceptual level we show for the first time that the a priori ex-
pectations about building interiors are indeed sufficient to derive
surprisingly rich and accurate 2D floor plans only from sparse ob-
servations of empty locations. At the technical level, we develop a
practical, data-driven system to recover the main architectural ele-
ments from a walk trajectory traversing the free space.

2. Related Work

To the best of our knowledge, the extraction of floor plans from
walk trajectories has not been studied before. Here, we analyze ex-
isting works about floor plan extraction, inertial odometry and deep
learning for indoor scenes that are most closely related to our ap-
proach in terms of goals and technical formulations.

Floor plan extraction from 2D/3D inputs. The automatic ex-
traction of interior models from scanned data has been studied
in different fields of research over the last decades. The com-
mon goal of existing techniques is to compute a structured out-
put model [IYF15, PMG∗20] that describes the geometry of the
main permanent entities while at the same time encoding the overall
structure of the environment and the location of smaller elements
(e.g., portals, furniture, fixtures). In most pipelines, such a model
takes the form of a 2D floor plan, a top-down view that encodes
the 2D footprint of the interior space bounded by walls, and often
also the location of the main objects in it. In some cases the 2D
representation is extended into a fully-fledged 3D model.

Despite their different traits, existing approaches can be catego-
rized [PMG∗20] based on whether they start from 3D geometric
observations (such as 3D point clouds), 2D visual data (e.g., RGB
images or videos) or a mixture of the two.

Methods based on high-quality 3D inputs with little noise (e.g.,
laser-scanned point clouds) typically aim at modeling the geome-
try of walls and other permanent structures with the highest pos-
sible accuracy. In most cases, the 3D input is projected onto the
2D ground plane and partitioned into a set of convex 2D poly-
gons, either by triangulation [TZ12] or by fitting 2D lines and in-
tersecting them [OLA14, MMJV∗14, OVWK16]. Floor plans are
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Figure 2: Overview of our pipeline. Given an input walk trajectory, we project it onto the 2D domain of the floor plan and feed this
representation in a cascaded manner to three neural networks. These extract, in order: the 2D footprint of the interior space; the location of
doors on the wall boundary; the space occupied by furniture.

then computed as the union of polygons that fall inside the walls,
using techniques like binary min-cut [OLA14], k-medoids clus-
tering [MMJV∗14, IYF15] or multi-label optimization [OVWK16,
MMP16]. More recently, researchers have proposed using neural
networks to extract the 2D coarse room shapes and converting these
into vectorized floor plans by solving a sequence of shortest path
problems [CLWF19]. Several methods go one step further and ei-
ther lift the floor plans to 3D by extruding them along the vertical
axis [MMJV∗14,OVWK16], or perform the space partitioning with
3D polyhedra rather than 2D polygons [OLA14,MMP16,OVK19].
Reconstruction from dense scan data is fairly robust and mature.
The price to pay is that the approach does not scale well, due to
the need to cover the scene (almost) completely with high-quality
scans via complex data capture workflows, often with expensive
equipment operated by trained personnel.

A second category of approaches avoids the need for 3D scans
and instead uses RGB or black and white images, which can be
acquired with consumer cameras. Multi-View Stereo (MVS) has
often been used in this context, for instance using the assumption
of mutually orthogonal walls (i.e., Manhattan-World) [FCSS09] or
geometric reasoning [CF14, PGP∗18] to cope with the lack of tex-
ture typical of indoor scenes. A major disadvantage of these ap-
proaches is that they require a high number of input images with
high overlap for MVS to yield sufficient 3D evidence. Other re-
searchers have therefore focused on reducing the number of in-
put images needed. Under very strong assumptions about the scene
(e.g., a box-like layout [HHF09] or lack of clutter [LHK09]), even a
single image with limited field-of-view can be used. More recently,
single-image approaches [ZSTX14, YZ16, XSKT17], including
some based on deep learning [SHSC19, YWP∗19, NHG∗20], han-
dle more general scenes and achieve better robustness using single
images with large field of view – often panoramas. Compared to
dense 3D inputs, 2D images can be captured by less trained people
and with consumer devices. However, single images with limited
field of view are in practice not enough to capture realistic inte-
riors, while panorama photography again requires a planned and
dedicated recording effort.

Similar limitations affect hybrid methods that rely on streams of
RGB-D data as input [LWF18]: although fairly reliable reconstruc-
tion algorithms are available [ZSG∗18], capturing the raw RGB-D
data in a way that enables a complete reconstruction of the environ-
ment is a non-trivial and labor-intensive exercise.

Our work differs in spirit from all mentioned approaches. We ex-
plore to what degree floor-plan reconstruction is still possible from

input data that is much less expressive, but a lot easier to record
– namely a curve describing a walking trajectory through the in-
door space. That data can be obtained with virtually no effort and
without active human engagement, for instance using modern data-
driven inertial odometry. This way, the reconstruction can scale
well to systematic, large-scale mapping of interiors.

Data-driven inertial odometry. Motion tracking in GPS-denied
interiors has been an active research topic in the last decades. If im-
age data captured by a moving camera are available, Visual Odom-
etry [NNB04,SF11] provides a solution, by localizing each camera
pose relative to the previous one(s). This approach, nowadays ma-
ture on its own, can be further improved by Visual-Inertial Odome-
try [LLB∗15], which incorporates rotational velocities and linear
accelerations measured by an Inertial Measurement Unit (IMU)
in the tracking. Despite their robustness, both purely visual and
visual-inertial odometry require a continuously operating camera
during the movement, which is impractical in many scenarios.

In principle, the output of the IMU alone is sufficient to recover
full location information by double-integration. In practice, how-
ever, standard IMUs provide noisy measurements, which rapidly
accumulate during the integration process and make the resulting
positions unusable. IMUs accurate enough for long-term operation
have been available for some time, but are restricted to high-end
scenarios (e.g., avionics) due to their prohibitive cost.

In the last few years, researchers have explored data-driven ap-
proaches to compensate for the drift inherent to double-integration.
The basic idea is to train a model to regress a velocity rela-
tive to the previous position based on a sequence of IMU read-
ings; the resulting velocity can then be used in different ways
to compute actual positions. Yan et al. [YSF18] use the veloc-
ity regressed by using Support Vector Machines (SVM) to model
low-frequency corrections for the raw acceleration values and use
them to adjust the results of double-integration. Chen and col-
leagues [CLW∗19] employ a Recurrent Neural Network (RNN) to
regress displacements that are used directly to compute the new
positions. The recent creation of large-scale datasets for inertial
odometry [YHF19, CZL∗20] has made it possible to refine these
techniques, and further improvements can be expected in the near
future.

In our work, the trajectories generated with data-driven inertial
odometry represent input data, from which we extract semantically
rich 2D floor plans.
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Deep learning for indoor scene synthesis. Given a description of
the architecture of an indoor space, a recurring question in interior
design is how to find a furniture layout that satisfies the physical
constraints of the space while being semantically practical (in the
case of real spaces) or plausible (in the case of virtual spaces).

The placement of furniture objects has been traditionally done
using various hand-crafted priors [MSL∗11, YYW∗12, YYT∗11].
More recently, a number of data-driven approaches have been pro-
posed [FRS∗12, MLZ∗16, SCH∗16, FCW∗17, QZH∗18, WSCR18,
LPX∗19,RWL19]. In general, these techniques can be divided into
two main groups [WLW∗19]: object-oriented methods [FRS∗12,
QZH∗18, LPX∗19], which explicitly model the objects in the
scene and their properties (e.g., type, relative position), and space-
oriented approaches [WSCR18, RWL19], which instead adopt a
representation of the scene as a set of discrete spatial regions (i.e.,
a regular grid) and determine which objects fall in which region.
The latter approaches work by predicting top-down view images
of the scene and are thus largely based on Convolutional Neural
Networks (CNNs). The two strategies are combined by Wang et
al. [WLW∗19] in their recent work, in which the scene layout is
planned with an object-oriented, graph-based generative network,
while the instantiation of objects relies on an image-based network.

These approaches differ conceptually from our work, as we aim
to reconstruct existing scenes rather than synthesize new ones.
Nevertheless, we borrow a number of technical ideas from scene
synthesis, including the representation of the spatial domain as a
top-down image [WSCR18] and the use of convolutions on suit-
ably constructed graphs [WLW∗19] to locate openings in the wall
boundary of the scene.

3. Method and data overview

Our goal is to map a walk trajectory through an indoor space to
a map of its walls, doors and furniture objects – the elements
most commonly included in architectural floor plans [LWKF17].
We specifically target single-room, Manhattan World environments
(i.e., with mutually orthogonal walls, floor and ceiling), as these
represent the large majority of real-world cases.

We use three staged neural networks (see Fig. 2) to extract the
three types of elements. By splitting the mapping task into sub-
tasks, we can adapt the complexity of the networks to the specific
learning problems: we use convolutional networks over a regular
floor plan grid to learn occupancy information, that is, the footprint
of the room (Sec. 4.1) and the location of furniture (Sec. 4.3), and
a graph convolutional architecture to detect portals (Sec. 4.2) in
walls. Such a multi-stage pipeline also reflects the fact that each
step depends on the previous one: locating openings in the wall
boundary requires a notion of where the walls that delimit the room
are, and furniture placement is influenced by the location of doors
(e.g., furniture should not be placed in front of a door).

Each step is trained separately, with suitably adapted versions of
the training data. At inference time, we apply the networks as a cas-
cade, where the first step maps the input trajectory to a room foot-
print, the second step is fed both the trajectory and the footprint and
detects the doors, and the third step receives the trajectory, footprint

and doors as input and predicts the furniture. A post-processing step
is applied after each step to regularize the raw predictions.

3.1. Discrete floor plan representation

A floor plan can naturally be represented as a grid of discrete
and uniformly-sized area units that cover the ground plane, i.e.,
a top-down (i.e., birds-eye) view with discrete “pixels”. Treating
the floor plan as an image is convenient for space-oriented tasks
that involve determining the occupancy of different locations; in
particular, it makes the problem amenable to discrete 2D convolu-
tion [WSCR18, WLW∗19].

We argue that some elements of an indoor scene – specifically,
walls, openings and wall-mounted flat objects – can be better cap-
tured by a boundary-oriented representation. For this purpose, the
thin, area-less interfaces between area units should be modeled ex-
plicitly, either densely as pixels of another image, or sparsely as
nodes of a graph.

To efficiently switch between these alternative representations
we internally store each floor plan as a mesh-based grid structure
(see Fig. 3), denoted as discrete floor plan grid or DFPG through-
out the paper.

We explicitly model the set of cells C = {c1, . . . ,cnc} and the
set of line segments at the cell boundaries, distinguishing be-
tween horizontal segments Sh = {sh

1, . . . ,s
h
nh} and vertical seg-

ments Sv = {sv
1, . . . ,s

v
nv}. The cells C are arranged in a square grid

of size n× n = nc, forming an image IC . Similar considerations
hold for the sets Sh and Sv, whose elements can be represented,
respectively, as two images ISh , ISv of size (n+ 1)× n = nh and
n× (n+1) = nv.

Both cells and segments carry labels that define their seman-
tic attributes. The label li of a cell ci can take on the values
{out, in, furn}, which indicate that ci is outside, inside or occu-
pied by furniture, respectively. A horizontal or vertical segment is

Scanned room model

Discrete Floor Plan Grid
(DFPG)

Image-based view
(area-oriented)

Graph-based view
(boundary-oriented)

Interior space 
extraction

Furniture 
extraction

Doors detection

IC GB

Figure 3: The two complementary views of an indoor model in our
pipeline. An indoor space is represented as a Discrete Floor Plan
Grid (DFPG), from which one can obtain an image-based repre-
sentation IC (for area-oriented learning tasks) as well as a graph-
based representation GB (for boundary-oriented portal detection).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

378



C. Mura et al. / Walk2Map: Extracting Floor Plans from Indoor Walk Trajectories

associated to one of the label values {door,wall,none}, based on
whether the segment is part of a door, a “plain” wall section or does
not lie at the border between interior and outer space. We denote by
Isem
C , Isem

Sh , Isem
Sv the semantic maps (label images) associated to C,

Sh and Sv. Finally, we define three more maps for C: I in
C , a map of

the interior space, obtained from Isem
C by replacing label furn with

in; Ifree
C , a map of the free interior space obtained by replacing

furn with out; Iwalk
C , the raster representation of the input where

each pixel stores the inverse distance to the walk trajectory.

3.2. Training and test data

Since our model is based on machine learning, data is a crucial
aspect of our work. We describe the datasets used for the different
steps in the following, also providing an overview in Tab. 1.

Synthetic data. To date, there exists no open research dataset of
real, measured indoor walk trajectories paired with ground-truth
floor plans of the corresponding interiors. Hence, we created syn-
thetic training examples from the Matterport3D dataset [CDF∗17],
which consists of annotated scanned models of 90 real indoor en-
vironments. We used the given annotations as well as newly gen-
erated ones to convert each valid room of each environment into
a DFPG with semantic labels; details are given in Sec. 5. Of the
DFPGs generated, we selected all those that include at least one
door and one furniture element, and split them into mutually exclu-
sive sets for training (80% of the data), validation (10%) and testing
(10%). We created separate versions of the training, validation and
test sets for each step of the pipeline (see Tab. 1), in image or graph
representation as needed and using only the labels relevant for the
respective steps.

For each DFPG generated we simulated a walk trajectory
traversing the free interior space (the ground truth map Ifree

C ), fol-
lowing recent work on indoor scene navigation [KGK∗19]. The de-
tails of the simulation scheme are explained in Sec. 5. To better
match the trajectories to our scene representation we convert them
to raster images with the inverse distance transform, with a cut-off
value of 0.5m.

The interiors extracted from Matterport3D exhibit a variety of
footprints and non-trivial arrangements of furniture and wall open-
ings, but are limited in number (≈ 500 samples). To extend the
training set for the footprint extraction network (stage 1), we gener-
ated additional training samples (50K) from the LIFULL HOME’S
dataset [Kiy18] of residential interiors, rasterized with the method
of [LWKF17]. This allowed us to adopt a curriculum learning strat-
egy [BLCW09], as explained in Sec. 4.1.

Real-world data. In addition to the synthetic data derived from
Matterport3D, we acquired a smaller test set composed of 20 real-
world trajectories through offices and private homes. To this pur-
pose, we used the app developed by Yan et al. [YSF18] for Google
Tango [ME16], which was used in their inertial odometry work
to acquire the ground truth data. To generate the corresponding
ground truth floor plans we acquired 3D scanned models (using
either a laser scanner or a Tango-enabled device) of the same en-
vironments in which the trajectories were acquired and annotated
them manually.

4. Learning to extract floor plan elements

This section details and discusses the neural architectures used in
our pipeline. Implementation details are collected in Sec. 5.

4.1. Interior space footprint from walk trajectory

The most basic part of a floor plan, and the first recovered in our
pipeline, is the 2D footprint of the interior space as enclosed by the
bounding walls, that is, a binary segmentation of the 2D top-down
view IC in which each raster cell is labeled as 0 (outside the wall
boundary) or 1 (inside). This information is recovered using as only
input the inverse distance transform of the input trajectory, Iwalk

C .
Note that, since input and output are images over the same spatial
domain, this process can be interpreted as an image-to-image trans-
lation [IZZE17]. In our case, with limited training data, we abstain
from using recently popular GANs and instead employ a conven-
tional Encoder-Decoder network based on U-Net [RFB15]. This
fully-convolutional architecture consists of a contraction path com-
posed of several levels of convolution and pooling, and a symmet-
ric expansion path with up-sampling (“transposed convolution")
and regular convolutions. The contracting path progressively ag-
gregates low-level features into more abstract ones over larger re-
ceptive fields, while the expanding path super-resolves those fea-
tures back to the pixel level, providing a dense segmentation at the
original resolution.

Since only the footprint is relevant in this step, we use all avail-
able training samples from Matterport3D, including those that do
not contain doors or furniture, and used 50K additional samples
extracted from LIFULL to support the training. Since these have
rather simplistic room shapes and generally lower variability, we
inject them via curriculum learning [BLCW09]: we first “pre-train”
the network weights with the simpler, yet more abundant LIFULL
samples; then, we complete the training with the more informative
Matterport3D samples.

The predicted 2D segmentation maps I in
C are integrated into the

DFPG and explicit wall boundaries are extracted at the label transi-
tions. As the labeling does not guarantee a closed, connected wall
loop, gaps are repaired with a simple optimization scheme (Sec. 5).

4.2. Locating doors on wall boundaries

Finding the location of doors in the walls is again formulated as a
labeling problem, this time over the line segments Sh and Sv of the
DFPG. In principle one could use a 2D fully-convolutional network
as in Sec. 4.1, stacking the two channels ISh for the horizontal and
ISv for the vertical edges and translating them to a two-channel
segmentation map. However, this leads to an unnecessarily com-
plex network over all line segments, including those not on walls.

Instead, we exploit the fact that the wall boundary of an inte-
rior forms a closed, orientable loop SB = {sB

1 , . . . ,s
B
nB}, where each

segment sB
i has exactly one predecessor prev(sB

i ) and one successor
next(sB

i ). Without loss of generality, we orient SB in clock-wise or-
der, so that the interior space is on the right side of a segment. The
boundary loop forms an undirected graph, with a node per line seg-
ment and an edge between adjacent segments. With a slight abuse
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Source Avg. area Avg. diag.
N. samples

Stage 1 Stage 2 Stage 3 Full pipeline
train valid. test train valid. test train valid. test test

Matterport3D 14.2m2 6.1m 706 78 51 412 45 51 412 45 51 51
LIFULL 9.5m2 4.3m 47500 2500 - - - - - - - -

Real-world 21.3m2 8.2m - - - - - - - - - 20

Table 1: Statistics on the datasets used. For each data source we show the average area and diagonal of the environments and the size of the
training/validation/test sets available at each stage of the pipeline, as well as the size of the test set used to evaluate the full pipeline. Note
that LIFULL is used only to train the first network (see Sec. 4.1) and that the real-world data is used only for end-to-end testing.

of notation we refer to the j-th node via the corresponding line seg-
ment sB

j . Additionally, we connect each node to the line segment
opposite to it in the wall boundary loop, as in PlanIT [WLW∗19],
to provide each node with more context of the room geometry. In
fact our graph is equivalent to the initial room representation of
PlanIT; however, in that work the room graph is expanded at infer-
ence time with new nodes for synthesized openings and furniture,
whereas we keep the set of nodes fixed and classify them as either
a door or a plain wall section.

To inject global as well as local information about the environ-
ment, each node is associated with a feature vector obtained by
concatenating the following attributes:

• the distance along the loop to the closest corner;
• the orientation (horizontal/vertical) of the wall segment;
• the inverse distance to the input trajectory for the k = 10 cells of
IC that lie to the right of the node;
• the 2D coordinates of the line segment in the DFPG.

This information is combined and propagated based on the graph
connectivity using a Graph Convolutional Network (GCN) to ob-
tain a binary labeling of the nodes as either a door (door) or a plain
wall section with no opening (wall).

A number of different models have been proposed to adapt tra-
ditional learning approaches to graph-structured data [HYL17].
We base our architecture on the Dynamic Edge-Conditioned GCN
(DECGCN) by Simonovsky and Komodakis [SK17]. In that model,
the features of adjacent nodes are combined with dynamic weights
that are generated based on input edge features by trained filter-
generating networks. To this end we define the following two edge
features:

• the orientation dissimilarity (1− sB
i · sB

j ) between the the two
adjacent nodes (i.e., line segments);
• the L1 distance |sB

i − sB
j |1 between them in the DFPG.

In preliminary experiments comparing to the GCN architecture
of [KW17], we found edge-conditioned convolutions to be crucial
for obtaining good classification results: with GCN without edge
conditioning, there was a strong bias towards symmetric doors on
opposite walls, whereas simply dropping the additional edges be-
tween opposite walls led to significantly lower classification per-
formance.

After classification the node labels of the graph are again trans-
ferred to corresponding segment labels in the DFPG, where each
segment is now assigned a label wall, door or none.

4.3. Computing furniture location

The location of doors has a major influence on the furniture place-
ment in indoor spaces, as furniture should not obstruct natural pas-
sages. This is the intuition behind the separate detection of furniture
as a last step. Like the extraction of the interior space (Sec. 4.1), this
is a space-oriented, binary classification task, where the raster cells
of the DFPG that lie inside the walls are labeled as either occupied
by furniture (furn) or part of the free space (in).

We employ the same architecture as in Sec. 4.1, with two small,
but important differences. First, we mask the (known) cells outside
the walls (i.e., labeled out in the first step) and do not consider them
in the loss function. Second, we extend the input features: besides
the inverse distance Iwalk

C to the walk trajectory we also include
the binary map of the interior space, as well as the location of the
doors in the form of the two segment label maps Isem

Sh and Isem
Sv .

The input maps are arranged into a single four-channel image and
fed to the network, which outputs a single-channel binary map with
labels furn or in.

5. Implementation details

Neural network architectures. The encoder-decoder networks
used to find footprints (Sec. 4.1) and furniture (Sec. 4.3) are
based on the same U-Net architecture described in the original
paper [RFB15], with 3 levels and skip connections between cor-
responding levels of the contracting and expanding paths; com-
pared to the original configuration, we increased the number
of features (activation maps) in the first convolution layer from
64 to 128. We used the cross-entropy loss and trained the net-
works with ADAM [KB14]. The networks are implemented in Py-
Torch [PGM∗19].

As mentioned in Sec. 4.1, we first train the footprint network on
the LIFULL dataset for 50 epochs with a base learning rate of 0.005
and decay rates β1 = 0.5, β2 = 0.999, switch to Matterport3D and
train for another 200 epochs, with a learning rate of 0.0001 and the
same values of β1 and β2. As final model we retain the epoch with
the highest validation accuracy. Only for Matterport3D we employ
data augmentation by random rotations as well as horizontal and
vertical flipping.

For the furniture network, we set a base learning rate of 0.001
with decay rates β1 = 0.5 β2 = 0.999, and trained for 200 epochs,
again selecting the model with the highest validation accuracy.

The door detection network consists of 5 blocks, each com-
posed of a convolutional layer with Dynamic Edge-Conditioned
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Filters [SK17], followed by Batch Normalization and a ReLU non-
linearity. The convolution layers of the 5 blocks have, respectively,
output depth 64, 128, 128, 64 and 2 (for binary classification); each
of them employs a Feature Generation Network consisting of 3
fully connected layers interleaved by ReLUs, with the first 2 layers
having an output size of 16 and 32, respectively. The graph network
is implemented in PyTorch Geometric [FL19].

All networks were trained on a single NVIDIA RTX 2080 Ti.
The training time for one epoch was between 1 and 3 seconds for
the graph-based network, as well as for the U-Net when training
on Matterport3D (< 1K samples). On LIFULL (50K samples) one
epoch took about 190 seconds.

Extraction of DFPG representations. We created a DFPG for
each room of the Matterport3D and LIFULL (after vectorization)
datasets, discarding rooms with non-axis-aligned wall segments as
well as overly small ones for which the smallest side of the bound-
ing box is < 3.0m for LIFULL, respectively < 1.0m for Matter-
port3D (so as not to discard too many samples). The 2D polygon
of each valid room was rasterized into a DFPG grid with a cell size
of 0.25m. For simplicity we limit the floor plan size to 64x64 and
discard the few rooms that do not fit that size.

For the Matterport3D samples, we used both the given annota-
tions and newly generated ones to assignn the semantic labels (see
Sec. 3). We manually re-annotated all doors as they are rather in-
accurate in the original data. To determine furniture occupancy, we
projected 3D primitives with the following labels onto the DFPG
grid: bed, chair, sofa, stool, table, cabinet, chest_of_drawers, fur-
niture, cushion, plant, sink, tv_monitor, bathtub, shower, counter,
gym_equipment, seating. Cells intersected by at least one of these
primitives were labeled as furn.

Simulation of walking trajectories. Our simulation follows the
ideas of DISCOMAN [KGK∗19]: a set of positions sampled in the
free space are ordered by solving a Traveling Salesman Problem
(TSP) and turned into a path by connecting subsequent positions
with shortest paths through the free space. For path sampling we
shrink the free space by a buffer of 1 cell (= 0.25m) along the walls,
since people tend to avoid walking so close to a wall. We sample
locations in the empty space by stratified sampling: we divide the
domain of the empty space in cells of size 2m× 2m and draw a
sample in each cell with a probability proportional to the distance
to the occupied space (i.e., furniture and walls).

To obtain more informative trajectories, we augment this basic
strategy in two ways. First, we generate a path loop around each
connected region of furniture cells by connecting 4 points sampled
in the empty space around its bounding box. We simply drop path
loops for which a sampled point lies in occupied/outer space, which
adds some randomness to the process. These loops account for the
fact that, while moving in tight indoor spaces for extended peri-
ods, people inevitably tend to move along the few possible paths
around large obstacles, leading to circular trajectories around large
objects. Second, we connect the trajectory to each door by short-
est paths, accounting for the movement of people in and out of the
room. These paths are computed on the whole empty space Ifree

C ,
including the cells next to walls, accounting for the fact that exiting
a room through a door must always be possible.

Figure 4: Interiors footprint regularization. An energy-based opti-
mization is applied to regularize the raw output (left) of the interior
space prediction network, resulting in smoother boundaries that do
not deviate from the predicted shape (right).

Postprocessing of raw predictions. While the floor plan priors
learned by the networks are surprisingly expressive, we have ob-
served occasional mistakes with respect to basic low-level smooth-
ness, including jagged boundaries of the interior space and isolated
door or furn labels. We therefore regularize the raw predictions by
binary label swapping, according to simple continuity priors.

For both furniture and door prediction, we detect isolated cells
(w.r.t. their 4-neighborhood, for furniture) or nodes (w.r.t. the pre-
vious and next segment, for doors) that have been classified with
the target label and change their labels to wall, respectively in. We
additionally normalise the output of the doors prediction network
by growing/shrinking them to a width of 4 cells (1 m).

For interior footprints, we apply a more structured smoothing
based on energy minimization, which corresponds to the binary la-
beling of a Markov Random Field associated to the predicted 2D
maps I in

C . This is a well-established technique for image restora-
tion and shape regularization [Li12]. We consider a data term (for
unary potentials) that penalizes swapping the label in with out by a
penalty γ in→out = 4 and the inverse swapping (i.e., assigning label
out to a pixel predicted in) by a penalty γout→in = 1. The data term
is paired with a smoothness term (for binary potentials correspond-
ing to adjacent pixels) based on the Potts model, penalizing by
γborder = 2 the assignment of different labels to adjacent locations.
Note that our choice of the data term (with γ in→out > γout→in) pe-
nalizes shrinking the footprint rather than expanding it. For the sake
of practicality, we minimize the resulting energy function via Inte-
ger Programming, using the GUROBI solver [GO20]. Note, how-
ever, that the global optimum can be obtained more efficiently using
graph cuts [KZ04].

As shown in Fig. 4, this regularization step significantly im-
proves the extracted room boundaries.

6. Results

We present in this section the evaluation of our approach, using
both simulated (Sec. 6.1) and measured (Sec. 6.2) trajectories. We
compare against a baseline derived from image-to-image transla-
tion [IZZE17] in Sec. 6.4.

6.1. Evaluation on simulated trajectories

We use the test set extracted from Matterport3D (see Sec. 3) for a
quantitative as well as qualitative analysis of our approach. Train-
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ing was performed with the same data characteristics, so this eval-
uation provides an assessment of our approach in the presence of a
representative training set, unaffected by the independent issue of
domain shift between the training and test distributions.

Tab. 2 shows our quantitative analysis, which we performed by
running the complete cascade end-to-end from trajectories to full
floor-plans, including the intermediate regularization steps. As an
unavoidable side effect, each step inherits the errors of the previ-
ous one. For each feature of the floor plan (interior space, doors,
furniture), we report precision and recall values averaged over
all test samples and the corresponding F1 score. For both inte-
rior space extraction and furniture detection we consider a ground
truth cell to be predicted correctly if there is at least one predicted
cell with the same label at a distance ≤ 0.25m = 1 cell. Simi-
larly, we define the distance between a true and a predicted door
as the minimum Euclidean distance between any of their consti-
tuting line segments and declare the prediction correct if that dis-
tance is ≤ 0.25m = 1 cell. For comparison, the average diameter
of a room is 6.1m ≈ 24 cells for the Matterport3D samples and
8.2m≈ 33 cells for the real-world ones. This way of evaluating the
results is particularly important for doors, as their ground truth lo-
cations are defined with respect to the ground truth wall boundary,
which will in general differ from the predicted one.

The statistics show that Walk2Map achieves excellent perfor-
mance on the interior space extraction, with precision, recall and
F1 values above 96%. The remaining two steps, i.e. door and fur-
niture prediction, also attain high scores of over 70% and almost
80%, respectively, despite the fact that they suffer from the errors
accumulated in the cascade. It is important to note that both the ex-
traction of the interior space footprint and the prediction of furni-
ture are very ambiguous. The much better performance on the for-
mer can be attributed on one hand to the larger available training set
(by including LIFULL) and on the other hand to the higher degree
of regularity, which constrains the wall layout more tightly, both
implicitly in terms of the network weights and explicitly through
regularisation.

Interestingly, the results in Tab. 2 also show that for the area-
oriented networks (i.e., for interiors and furniture prediction) the
recall values are better than precision, that is, there is a tendency
towards false positives (“overshooting”), whereas for doors the op-
posite is true. We attribute this behavior of the door prediction net-
work to the stark imbalance between the two labels (door and wall)
considered.

The overall effectiveness of Walk2Map is confirmed, and per-
haps better demonstrated, by a visual analysis of the results. A se-
lection of reconstructed floor plans, shown in Fig. 5, confirms that
our pipeline actually succeeds in reconstructing largely correct in-
teriors from the walking trajectory alone. Smaller concavities are
sometimes missed (a, c), partly explaining the drop in precision.
The main shape is in general reconstructed rather well (d).

Doors are also reliably detected, as best seen in the 3D visual-
izations of Fig. 6. Errors do occur, but are nevertheless plausible in
the context of the room and furniture.

The furniture detection network generally manages to success-
fully localize the main blocks of furniture; the relatively lower pre-

Walk2Map pix2pix

Element Prec. Rec. F1 Prec. Rec. F1

Si
m

ul
at

ed Interior .96 .99 .97 .70 .82 .76

Doors .77 .72 .74 .50 .32 .39

Furniture .77 .79 .78 .62 .39 .48

M
ea

su
re

d Interior .96 .97 .96 .74 .71 .72

Doors .62 .48 .54 .18 .20 .19

Furniture .85 .60 .70 .52 .41 .46

Table 2: Quantitative evaluation. For each element of the floor plan
(i.e., interior space, doors, furniture), we show the average preci-
sion (Prec.) and recall values (Rec.) as well as the F1 score (F1).
Rows Simulated refer to the evaluation on simulated trajectories,
rows Measured to the one on real-world, measured trajectories.
We show the results of our method (columns Walk2Map) alongside
those of the baseline (pix2pix) described in Sec. 6.4.

cision and recall compared to the other area-oriented task (interi-
ors prediction) are largely due to inaccurate reconstructions of the
ambiguous block boundaries. It does happen that entire furniture
blocks are missed or incorrectly added when this is plausible given
the trajectory (see Fig. 11). We emphasize that furniture placement
is an extremely difficult task, as the trajectory only provides local
evidence for the absence of furniture, whereas its presence must be
inferred entirely from the prior and long-range context.

Graph-based vs image-based door detection network. We used
the Matterport3D samples to evaluate the performance of a door
detection step based on a CNN architecture as an alternative to our
graph-based model. In particular, we tested the same U-Net archi-
tecture used for interior footprint prediction. The input to this net-
work is a 4-channel image, composed of the two edge maps ISh ,
ISv , of the cells image IC and of the image Iwalk

C with the inverse
distance to the trajectory; the output is a 2-channel image contain-
ing the predicted edge maps encoding the position of the boundary
walls, including the location of doors. Note that, as done for the
furniture detection network (see Sec. 4.3), we masked the pixels
that do not correspond to walls.

The evaluation yielded a high accuracy of 96% but with an unac-
ceptably low recall of 9%: the predicted door locations are gener-
ally correct but the number of actual doors missed by the network
is so high to make its predictions unusable. Moreover, as already
mentioned in Sec. 4.2, this architecture has a much higher number
of parameters compared to its graph-based counterpart (8.5M vs.
1.15M), which makes its training significantly harder. In our tests,
we had to reduce the batch size to 2 to prevent the network from
labeling the whole boundary loop as wall.

6.2. Evaluation on real-world, measured trajectories

We also tested our pipeline – trained on the simulated data – on
a set of 20 real-world indoor trajectories (see Sec. 3). Since these
samples come from a different generation process compared to the
ones used in training, this evaluation is not fully indicative of the
true capabilities of the pipeline; nevertheless, it allows us to conjec-
ture about the effectiveness of Walk2Map in real-world scenarios.
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Figure 5: Qualitative evaluation on simulated trajectories (2D visualization). From top to bottom: inverse distance to the trajectory that
forms the input of our pipeline; predicted interior space footprint; full floor plan with predicted doors and furniture; ground-truth floor plan.
The samples are randomly picked from the Matterport3D test set. See Fig. 6 for 3D visualizations.
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Figure 6: Qualitative evaluation on simulated trajectories (3D visualization). We show the full floor plan models reconstructed with our
method (top) and the corresponding ground truth (bottom). The input inverse distance field is overlaid on the ground plane of the recon-
structed model. The same samples are shown in 2D in Fig. 5.
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Figure 7: Qualitative evaluation on real-world trajectories (2D visualization). The layout follows the one used in Fig. 5 for simulated
trajectories. The samples are a random selection from the test set of real-world trajectories (Sec. 3) and are visualized in 3D in Fig. 8.

Tab. 2 (rows ‘Measured’) shows the quantitative results obtained
by running the real-world trajectories through the whole pipeline
(without retraining). The statistics are computed following the
same procedure presented in Sec. 6.1; since the measured trajectory
is not registered with the 3D scan used to generate the ground-truth,
we align the predicted and the ground-truth floor plans by overlap-
ping the midpoint of their bounding boxes. The statistics are gener-
ally consistent with those obtained for simulated data: the interior
prediction network achieves very good results (both precision and
recall > 96%), whereas door and furniture prediction exhibit lower
performance (with recall values of 48% and 60%, respectively). As
discussed in Sec. 6.1, the lower scores on doors and furniture pre-
diction are partly explained with the error accumulated from the
previous steps. With specific reference to doors, however, we addi-
tionally observed slight and variable delays in the start and stop of
the recordings of the trajectories; since doors typically correspond
to the endpoints of a trajectory, such delays resulted in door signa-
tures that are more irregular compared to the ones in the training
samples, leading to an increased number of false negatives.

Comparing the rows ‘Simulated’ and ‘Measured’ in Tab. 2
clearly shows that the performance on real-world trajectories is
lower than that on simulated data. This can be explained with the
inevitable domain shift between simulated training data and real
test data. Learning to generate realistic synthetic trajectories so as
to avoid this shift is an interesting avenue for future work.

The visual analysis of the results (Figs. 7 and 8) gives a more
intuitive impression of the floor plans predicted from real trajec-

tories. Compared to the simulated case, errors in the localization
of furniture blocks are more common (d, g), and door localization
suffers from more false positives (e, f, g) and false negatives (d).
Nevertheless, the general structure of the environment is correctly
recovered and its elements are arranged in a meaningful way.

Overall, the experiments confirm that reconstruction only from
walk trajectories is surprisingly effective with the proposed data-
driven approach. We also note that at this stage there are still obvi-
ous ways to drastically improve the performance, first and foremost
using a sufficiently large collection of real training data.

6.3. Repeatability with respect to different trajectories

We evaluated the consistency of the reconstruction with respect to
variations in the input trajectory. To this end, we selected a sample
from the Matterport3D test set (model (d) in Figs. 5, 6) with several
furniture blocks and some degree of irregularity in the footprint,
thus being likely to result in non-trivial trajectories. We generated
multiple walk trajectories for this sample by running the random-
ized trajectory simulation with different seeds, and processed the
resulting trajectories with our pipeline. As shown in Fig. 9, the re-
sults obtained are generally consistent, with only slight differences
in the room footprint and in the shape of the furniture blocks.

Note that, if several trajectories from different people are avail-
able for the same floor plan, the current approach can be adapted
to exploit this redundancy, e.g. by converting each trajectory into
a separate inverse distance map Iwalk

C and stacking the resulting
maps into a single one, to be used as input to the pipeline.
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Figure 8: Qualitative evaluation on real-world trajectories (3D visualization). From top to bottom: full floor plan models reconstructed with
our method; 3D scans of the corresponding environment; ground-truth floor plan models, obtained by manually annotating the scans. The
same samples are shown in a 2D top-down view in Fig. 7.

Figure 9: Reconstruction repeatability with respect to different tra-
jectories. The same floor plan is reconstructed from 4 different sim-
ulated trajectories, leading to fairly consistent results.

6.4. Comparison with pix2pix baseline

To the best of our knowledge, there exists no other method to
generate floor plan models from walk trajectories; hence, a di-
rect comparison is not possible. As a baseline, we consider the
mapping from a walking trajectory (in inverse distance repre-
sentation) to a floor plan as a generic image-to-image trans-
lation and apply the well-known pix2pix method [IZZE17]. In
other words, the translation result is a semantic map with labels
out, in, furn,wall,door. We converted the DFPGs generated from
Matterport3D into grayscale images, encoding the five labels with
different gray levels; to ensure that the pix2pix result only contains
valid labels, we quantized the raw outputs to the nearest of those
gray levels. Moreover, to enable the representation of doors in such
a way that pix2pix can handle them, we enlarged the floor plans
to 256×256 pixels (4× the one used for Walk2map) and rendered
walls and doors with a thickness of 4 pixels.

We then performed a quantitative evaluation of pix2pix, simi-
lar to the one described in Secs. 6.1 and 6.2. The pix2pix outputs
are very noisy, including long, thin lines of spurious labels (see
Fig. 10). Therefore, we filter them when extracting doors: we only

consider connected regions whose (axis-aligned) bounding boxes
have a minimum size of 4× 8, that is, whose dimensions are at
least equal to that of a rasterized door; and whose width is at least
equal to 0.5m in metric units. As done for our pipeline, we count a
predicted element (i.e., an interior/furniture cell or a door) as cor-
rectly detected if a corresponding predicted element lies at a dis-
tance ≤ 0.25m; for doors, this distance is defined as the minimum
distance between the constituting line segments.

As shown in Tab. 2 (columns ‘pix2pix’), this baseline approach
performs consistently worse than Walk2Map for all floor plan ele-
ments, both on simulated and on real-world test data. Remarkably,
despite the domain gap between training and test data, the perfor-
mance achieved by Walk2Map on real-world trajectories is clearly
superior to the performance of the baseline trained and tested on
simulated data.

The limits of the baseline are even more evident in a qualitative
visual analysis (Fig. 10). The predicted floor plans exhibit some
structural resemblance with the ground truth, but individual ele-
ments are misplaced and not assembled in a meaningful way. Fur-
niture blocks are generally poorly localized and reconstructed (b,
d), doors are often missing (d), and even the basic footprint often
deviates significantly from the ground truth (c). Moreover, the pre-
dictions are relatively noisy and not straightforward to clean up,
across all labels. The most problematic drawback of naive image-
to-image translation is its complete ignorance of the inherent struc-
tural properties of interiors. For instance, walls do not form closed
loops (all examples) and doors appear outside of walls (b). In con-
trast, Walk2map avoids such problems by breaking up the overall
task into simpler sub-tasks, such that basic structural knowledge
can be hardwired, leading to floor plans that are structurally sound
by construction (e.g., doors can only ever be placed in walls).

6.5. Failure cases

Due to our structured approach, we have not observed any com-
plete failure in our experiments where the predicted floor plan was
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Figure 10: Qualitative examples of the pix2pix baseline for Mat-
terport3D. From left to right: ground truth; pix2pix prediction;
Walk2map output. The bottom row refers to a real-world input.
(Rendered in the image-based representation of pix2pix for visual
comparison, with color-coding)

inconsistent. Nonetheless, deriving the locations of walls and furni-
ture only from the sparse evidence for free space that walk trajecto-
ries provide inevitably encounters some ambiguity. This is the main
source of errors in our predicted floor plans, as shown in Fig. 11.
The trajectory shown to the left contains several loops, one of which
is erroneously interpreted as an indication of furniture; this is also
the case for the smaller loop shown in Figs. 7(f) and 8(f), which in
fact is not caused by the presence of objects. In some cases, walls
are displaced outwards and the resulting extra space is filled with
furniture, as for the real-world trajectory shown in Fig. 11.

Some furniture configurations are inherently ambiguous and
cannot be predicted only from the trajectory. For instance, the large
furniture block shown in Figs. 7(f) and 8(f) corresponds to a group
of desks arranged in a closed loop; the free space in the middle
is not accessible, while obviously there are also furniture blocks
without such a hole. Hence, neither the trajectory evidence nor the
learned prior can distinguish the two cases.

In fact, there are many more such ambiguities: for instance, it
is in our setting a priori impossible to determine the thickness of
a wall-to-wall closet. The fact that relatively correct reconstruction
are possible at all in most cases confirms the fundamental intuition
behind our work: that a trajectory not only proves that the imme-
diate locations it traverses are free space, but carries a lot more in-

In
pu

t t
ra

je
ct

or
y

G
ro

un
d-

tru
th

Re
co

ns
tru

ct
io

n

Simulated Real-world 

Figure 11: Failure cases. The intrinsic ambiguity of the walk tra-
jectories can elicit spurious furniture (left), with the hallucinated
furniture possibly displacing the walls (right). Such failure cases
occur for both simulated (left) and real-world (right) inputs.

formation due to contextual cues like proportions, co-occurrences
etc. We believe that, so far, our system has picked up only a frac-
tion of these subtle correlations, and just showing it on a larger and
more comprehensive training set will further improve the predicted
floor plans quite significantly. While this extension is conceptu-
ally trivial, it is a formidable task to create a large-scale, annotated
dataset of real-world floor plans with associated walk trajectories.
Still, there is a limit to what can be derived only from trajectories.
Fortunately, it seems entirely possible to augment them with other
types of information, including velocities or sparse distances from
a portable range sensor.

7. Conclusions and Future Work

We have explored the possibility to automatically derive 2D floor
plans only from walk trajectories and have presented Walk2Map,
the first computational model for this task. The output floor plans
include three main types of elements, namely the 2D footprint of
the interior space, the location of doors and the furniture layout.
These elements are obtained with dedicated neural networks tai-
lored to the individual tasks, which are assembled sequentially into
a multistage pipeline. Experiments on synthetic and real data con-
firm that Walk2Map can indeed recover valid floor plans that are
surprisingly close to the true layout.

Being – to our knowledge – the first shot at a seriously ill-posed
problem, our current implementation has a number of limitations.
First, due to the limited availability of real-world training data, we
had to train entirely on simulated trajectories. Despite a success-
ful proof-of-concept evaluation on a small real-world test set, a lot
more real data will be needed to employ Walk2Map “in the wild”.
We note that the lack of data also likely affects the current model’s
capacity to represent many more intricate patterns in the data, since
we had to restrict the complexity of the networks to facilitate train-
ing with small datasets.

We see several exciting ways to extend Walk2Map. First of all,
the input walk trajectories could be augmented with additional in-
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formation, including height, velocity and timestamps. This could
potentially enable the extraction of higher-level semantic informa-
tion, such as room type, different categories of furniture, the lo-
cation of windows on wall boundaries, and the segmentation of
multi-room environments. Yet again, these extensions depend on
the availability of a large enough training dataset containing both
trajectories with all desired observations and associated ground
truth floor plans with suitable annotations. Recording such a dataset
stands as an important future endeavor.

Other extensions do not depend on the availability of additional
data. First of all, one can obtain more realistic indoor scenes from
our predicted floor plans by replacing each connected region la-
beled as furniture with a 3D model obtained from a furniture
database, e.g., by selecting the model whose bounding volume best
matches the one of the region. Moreover, it would be interesting to
perform a probabilistic floor plan extraction by exploiting per-cell
confidence values in the reconstruction process.

We find it remarkable how much information about the environ-
ment is apparently contained in the ego-motion of an agent travers-
ing the scene, without any external sensing or mapping. We believe
this opens up an entire new research direction and could play an im-
portant role in future systems for systematic, large-scale mapping
of indoor spaces.
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