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Abstract
In this paper, we propose a two-step temporal interpolation network using forward advection to generate smoke simulation
efficiently. By converting a low frame rate smoke simulation computed with a large time step into a high frame rate smoke
simulation through inference of temporal interpolation networks, the proposed method can efficiently generate smoke simulation
with a high frame rate and low computational costs. The first step of the proposed method is optical flow-based temporal
interpolation using deep neural networks (DNNs) for two given smoke animation frames. In the next step, we compute temporary
smoke frames with forward advection, a physical computation with a low computational cost. We then interpolate between the
results of the forward advection and those of the first step to generate more accurate and enhanced interpolated results. We
performed quantitative analyses of the results generated by the proposed method and previous temporal interpolation methods.
Furthermore, we experimentally compared the performance of the proposed method with previous methods using DNNs for
smoke simulation. We found that the results generated by the proposed method are more accurate and closer to the ground truth
smoke simulation than those generated by the previous temporal interpolation methods. We also confirmed that the proposed
method generates smoke simulation results more efficiently with lower computational costs than previous smoke simulation
methods using DNNs.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Physics-based simulation is an essential research topic for realis-
tic computer graphics content, and many studies have attempted to
achieve accurate physics-based simulation results with low com-
putational costs. As recent computer graphics content is frequently
executed in environments in which real-time interaction between
users and objects is key, efficient physics-based simulation technol-
ogy has become increasingly important. In particular, in the field of
flow simulation, which aims to compute the motion of smoke and
liquids, studies have been proposed to reduce the high computa-
tional costs and increase the accuracy.

Specifically, various studies have been proposed to improve
the simulation algorithm [SG11, GNS∗12, ATW15, YJL∗16] or to
use pre-computed examples to generate flow simulations for new
environmental conditions [Thu16, SDN18, RKEW19]. Recently,
efficient flow simulation methods using deep neural networks
(DNNs) have been introduced. These include accelerated simula-
tion methods using DNNs [TSSP17,UHT18,WBT19,KAT∗19] and
example-based simulation methods using DNNs [CT17, PBT18].
Moreover, super-resolution methods for flow [XFCT18,WXCT19]
and the flow upsampling method [BLDL20] have been proposed
to convert low-resolution smoke simulations into high-resolution

ones. Nevertheless, since previous efficient smoke simulation
methods have focused on reducing the cost of computing one frame
in a smoke simulation, it is necessary to repeat the simulation and
DNN inference for every frame in order to generate a flow simu-
lation result with a high frame rate. Therefore, unlike in previous
methods, we propose a method to efficiently generate a high frame
rate simulation via temporal interpolation of smoke simulation re-
sults computed with large time steps.

Research on temporal interpolation in computer vision for use
in general videos has been actively conducted [Che02, ESH06,
RRBW12], and various temporal interpolation methods using
DNNs have been proposed. For example, there are methods of gen-
erating interpolation results by warping the input frames using the
optical flow estimated from a DNN [LYT∗17, JSJ∗18, GWC∗19].
However, challenges arise when applying previous temporal inter-
polation methods directly to smoke frames. Unlike real objects in
general videos, as the contours of the smoke flow are frequently
deformed even in small time steps, we cannot easily predict the ex-
act optical flow between given input frames via DNNs. In addition,
translucent smoke is limited in the use of additional features, such
as depth information. Therefore, when applying previous temporal
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Figure 1: Example of a temporally interpolated smoke frame gen-
erated by the optical flow-based temporal interpolations method.
Compared to the ground truth (red), inaccurate and blurry smoke
frames (green) are generated.

interpolation methods directly to smoke simulations, the interpola-
tion results can be inaccurate and blurry (see Figure 1).

In this paper, we propose a two-step temporal interpolation net-
work using forward advection for efficient smoke simulation. Since
the proposed method converts a low frame rate smoke simulation
computed with large time steps into a high frame rate smoke sim-
ulation through the inference of a temporal interpolation network,
it is able to efficiently generate a high frame rate smoke simulation
with a lower computational cost than the conventional simulation
method. The first step of the proposed network is to perform opti-
cal flow-based temporal interpolation for two input smoke frames.
In the second step, to reduce the inaccurate and blurry artifacts that
arise in the first step, we compute temporary smoke frames between
the two input smoke frames by forward advection, a low-cost phys-
ical computation. Finally, we interpolate between the results of for-
ward advection and those of the first step. The temporary frames
computed with forward advection are inaccurate with respect to the
ground truth, so we cannot use them directly as temporal interpo-
lation results. However, since blurry artifacts are not generated by
forward advection, the interpolation step between the results of the
forward advection and those of the first step corrects for first step
artifacts and generates enhanced temporal interpolation results.

As a result of our experiment, we found that the results gener-
ated by the proposed method are more accurate and closer to the
ground truth smoke simulation than those generated by previous
temporal interpolation methods. We also confirmed that the pro-
posed method generates smoke simulation results more efficiently,
with lower computational costs, than previous smoke simulation
methods using DNNs.

2. Related work

Efficient flow simulation using DNNs. As physics-based simulation
methods play an important role in generating high-quality com-
puter graphics content, efficient physics-based simulation research
has been conducted for a long time [SG11, GNS∗12, ATW15,

YJL∗16]. For efficient flow simulations in particular, various meth-
ods that generate accurate results with low computational costs and
efficient flow simulation methods based on machine learning and
DNNs have been proposed. Ladický et al. [LJS∗15] proposed a
fluid simulation method using Regression Forests and handcrafted
features. Tomshon et al. [TSSP17] and Xiao et al. [XYY18] pro-
posed DNN models that replace the pressure projection, which
is a simulation stage with a high computational cost. Methods
that generate visually enhanced flow simulations using DNNs
have also been proposed. For example, Chu and Thuerey [CT17]
proposed a convolutional neural network(CNN) model that com-
putes the similarity between low-resolution and high-resolution
flow patches to synthesize a pre-computed high-resolution simu-
lation into a low-resolution simulation. Prantl et al. [PBT18] de-
veloped a deformation-aware DNN model to generate simulation
results for new conditions using a pre-computed simulation set. A
generative model applying a FLIP simulation has been proposed
to improve the details of liquid splashing [UHT18], and genera-
tive models for super-resolution have been developed to convert
low-resolution flow simulation results into high-resolution results
[XFCT18, WXCT19]. Bai et al. [BLDL20] proposed a multiscale
neural network that can upsample a coarse animation into a high-
resolution smoke animation via dictionary-based learning. More-
over, DNN models that encode a flow simulation as a simplified
representation and simulation methods using the simplified repre-
sentation have also been advanced. Kim et al. [KAT∗19] devel-
oped an auto-encoder model that encodes a flow simulation as a
latent variable and then restores it to a velocity field; they also pro-
posed an integration model to advance the latent variable. Wiewel
et al. [WBT19, WKA∗20] presented an LSTM-based DNN model
to generate a stable and controllable temporal evolution of a fluid
simulation from a latent variable space. Whereas most previous
studies have focused on reducing the computational cost of one
frame, the proposed method generates a high frame rate flow simu-
lation by temporal interpolation of a low frame rate simulation. In
addition, since the proposed method uses a low frame rate flow sim-
ulation that is computed by a physics-based simulation, it is possi-
ble to generate a stable high frame rate flow simulation without the
cumulative errors caused by iterative DNN inference.

Video frame interpolation. Temporal interpolation for video is
a long-standing research topic in the computer vision field, and
various studies have been conducted on accurate interpolation
[CHKK07, JKJS05, HN08, MWZ∗15]. Recently, with the devel-
opment of machine learning and DNN technology, many studies
based on DNNs have appeared. Long et al. [LKA∗16] developed a
CNN model that directly generates an in-between frame for two
input frames, while Liu et al. [LYT∗17] proposed Deep Voxel
Flow, which predicts the 3D optical flow with a DNN and then
warps the input frames according to the optical flow. In the Ada-
Conv [NML17a] and SepConv [LYT∗17] studies, spatial kernel-
based interpolation methods that synthesize neighboring pixels to
generate interpolation results were presented. Bao et al. [BLZ∗19]
developed MEMC-NET, which utilizes both an optical flow-based
method and a spatial kernel-based interpolation method. To im-
prove the quality of the temporal interpolation results, the use of
additional features of the input frames in DNN-based methods has
also been proposed. For example, SuperSloMo [JSJ∗18] interpo-
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Figure 2: Overview of the proposed method. The proposed tempo-
ral interpolation network consists of two interpolation networks: S1
interpolates between two consecutive smoke frames using an opti-
cal flow-based temporal interpolation network. In order to improve
the results of the first step, S2 interpolates between those results
and the results of forward advection.

lates multiple in-between frames via optical flow-based interpo-
lation and enhances the results with an occlusion mask predicted
by a DNN. Moreover, Niklaus et al. [NL18] proposed a contex-
tual extractor network to enhance the optical flow-based interpo-
lation results, and DAIN [BLM∗19] was proposed to warp input
frames based on the optical flow, context features, and depth maps.
CyclicGen [LLLC19] improved the interpolation result through a
two-stage training model that performs temporal interpolation once
more using the predicted result from the interpolation network. Our
proposed temporal interpolation method deals with smoke simu-
lation result data differently from previous temporal interpolation
studies, which target general video. We propose a two-step inter-
polation method that uses forward advection to correct the inaccu-
rate and blurry parts of interpolated smoke frames that occur when
smoke frames are interpolated with a large time step using previous
methods.

3. Proposed method

The proposed two-step temporal interpolation network converts a
low frame rate smoke simulation with a large time step into a high
frame rate smoke simulation. Unlike previous optical flow-based
interpolation methods using one DNN model, the proposed method
uses a two-step interpolation network to generate more accurate
and less blurry interpolation results.

Figure 2 is an overview of the proposed method, which gener-
ates an interpolated smoke frame between two input smoke frames.
The first temporal interpolation network S1 receives two consecu-
tive smoke frames ρ̄0 and ρ̄1, where ρ̄(∈ RH×W×D) is a density
field frame from the ground truth simulation with height H, width
W , and depth D (D = 1 for 2D smoke). S1 generates a temporally
interpolated smoke frame ρ

s1
t at arbitrary time t ∈ (0,1) by conven-

tional optical flow-based temporal interpolation. The second inter-
polation network S2 then interpolates between the results of the
first step and temporary smoke frames ρ

A
t , which are computed

with the forward advection at arbitrary time t ∈ (0,1) using ρ̄0 and

(a) First temporal interpolation network S1.

(b) Second interpolation network S2.

Figure 3: Overview of the structure of the two-step interpolation
network.

v̄0, where v̄ ∈ RH×W×D×3 (v̄ ∈ RH×W×D×2 for 2D smoke) is a
velocity vector field in the ground truth simulation.

3.1. First step: temporal interpolation between two given
smoke density grids

In the first step, we use SuperSloMo [JSJ∗18], which is an opti-
cal flow-based temporal interpolation method that uses a DNN to
generate ρ

S1
t between two input smoke frames. As suggested for

SuperSloMo, the first temporal interpolation network S1 consists of
two U-Net [RFB15] structures, a flow computation network, and an
arbitrary-time flow estimation network. The flow computation net-
work generates the forward flow O0→1 and backward flow O1→0,
where O ∈ RH×W×D×3, between the two input smoke frames ρ̄0
and ρ̄1. The arbitrary-time flow estimation network generates back-
ward flow Ot→0 and forward flow Ot→1. Ot→0 and Ot→1 refer to
flows from an arbitrary smoke frame ρ

S1
t to ρ̄0 and to ρ̄1, respec-

tively. In addition, the arbitrary-time flow estimation network gen-
erates visibility maps V t←0 and V t←1, where V ∈ [0,1]H×W×D.
V t←0 (V t←1) indicates whether the smoke density in ρ̄0 (ρ̄1) re-
mains visible in smoke frame ρt (0 denotes full occlusion). If the
smoke in one voxel in ρ̄0 is not in the same voxel in ρ̄1, the corre-
sponding voxel in ρ

S1
t of these two frames may not include smoke.

Thus, the V t←1 becomes 0, preventing the warping result of ρ̄1
from appearing in the corresponding voxel at ρ

S1
t . The first tempo-

rally interpolated smoke frame ρ
S1
t is computed as

ρ
S1
t =

1
ZS1

⊗
(
(1− t)V t←0 ⊗W(ρ̄0,O

t→0)

+tV t←1 ⊗W(ρ̄1,O
t→1)

)
,

(1)
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where ZS1 = (1− t)V t→0 + tV t→1 is a normalization factor, W is
a backward warping function, and ⊗ denotes element-wise multi-
plication.

The loss function LS1 for training the first temporal interpolation
network includes with three loss terms:

LS1 = λRLS1
R+λWLS1

W +λSLS1
S , (2)

where LS1
R is the reconstruction loss, LS1

W is the warping loss, and
LS1
S is the smoothness loss. λR, λW , and λS are the weights of

the three loss terms. The reconstruction loss LS1
R quantifies the

difference between the temporally interpolated smoke frame and
the ground truth smoke frame. When we generate N-interpolated

frames
{

ρ
S1
ti

}N

i=1
at arbitrary time ti ∈ (0,1), the reconstruction loss

is

LS1
R =

1
N ∑

N

∥∥∥ρ
S1
ti − ρ̄ti

∥∥∥
1
, (3)

where ρ̄ti is the ground truth smoke frame corresponding to ρ
S1
ti .

The warping loss LS1
W denotes the difference between the backward

warping results using predicted optical flows and the ground truth
smoke frame; it is defined by

LS1
W =

∥∥∥W(ρ̄1,O
0→1)− ρ̄0

∥∥∥
1
+
∥∥∥W(ρ̄0,O

1→0)− ρ̄1

∥∥∥
1

+
1
N ∑

N

(∥∥∥W(ρ̄0,O
ti→0)− ρ̄ti

∥∥∥
1
+
∥∥∥W(ρ̄1,O

ti→1)− ρ̄ti

∥∥∥
1

)
.

(4)

The goal of the smoothness loss LS1
S is to encourage neighboring

grids to have similar optical flow values; it is defined as

LS1
S =

∥∥∥∇O0→1
∥∥∥

1
+
∥∥∥∇O1→0

∥∥∥
1
, (5)

where ∇ denotes the gradient operation.

3.2. Second step: interpolation between the results of the first
interpolation and the forward advection results

The optical flow-based temporal interpolation of the first step
trained based on a large number of smoke simulation scenes can
generate accurate smoke frame results when the time step between
the two input smoke frames is relatively small. This is because the
range of expected in-between smoke states is small and limited if
the time step between the two input smoke frames is small. There-
fore, the temporal interpolation network can more easily and ac-
curately estimate in-between smoke frames. However, as the time
step between the two input smoke frames increases, the range of
expected in-between smoke states also increases. Therefore, it be-
comes difficult for the temporal interpolation network to handle all
possible in-between smoke states, resulting in inaccurate and blurry
interpolation results (see Figure 1 and the first row of the left col-
umn of Figure 4). The proposed method proceeds with the second
interpolation step to compensate for artifacts generated by the first
interpolation.

The second interpolation network S2 interpolates between the
results of the first step and the temporary smoke frame ρ

A
t . ρ

A
t is

computed with the forward advection function A using ρ̄0, v̄0, and

Figure 4: Example results of the second interpolation step. With
the arbitrary-state α interpolation, the results of the second step
(orange) can be adaptively interpolated between the results of the
first step (green) and the forward advection (blue).

arbitrary time t (ρAt = A(ρ̄0, v̄0, t)). The result of forward advec-
tion ρ

A
t is not appropriate as a temporal interpolation result because

the difference between ρ
A
t and the ground truth increases as the

arbitrary time t increases. However, since all of the forward advec-
tion result frames are generated through physical computation, they
contain no irregular smoke shapes or blurry artifacts. We therefore
use the forward advection results in the second interpolation pro-
cess to correct for the inaccurate smoke shapes and blurry artifacts
that appear after the first interpolation step. The smoke frame in the
second row of Figure 4 shows the result of the second interpola-
tion. We can see that the inaccurate and blurry part (first row of the
left column of Figure 4) in the result of the first step has been re-
placed by the sharp part of the forward advection result (third row
of the left column of Figure 4) after the second interpolation step.
The final interpolation result is thus more accurate and less blurry
compared to the result of the first step.

The second interpolation network S2 is composed of two U-
Nets, like S1. However, since the input to the second step inter-
polation, ρ

S1
t and ρ

A
t , is two smoke frames for the same arbitrary

time t, interpolation for t is not performed. In place of the arbi-
trary time t, an arbitrary-state field α (where α ∈ (0,1)H×W×D)
is generated through the flow computation network of S2. The fi-
nal interpolation result is then generated through the arbitrary-state
flow estimation network using the arbitrary-state field (see Figure
3(b)). OS1→A and OA→S1 are respectively forward and backward
flows between the two input smoke frames ρ

S1
t and ρ

A
t . Oα→S1 and

Oα→A are flows from the arbitrary-state field α to ρ
S1
t and ρ

A
t ,

respectively. V α←S1 and V α←A are visibility maps. The final in-
terpolated smoke frame ρ

S2
t is computed as

ρ
S2
t =

1
ZS2

⊗
(
(1−α)V α←S1 ⊗W(ρS1

t ,Oα→S1)

+αV α←A⊗W(ρAt ,Oα→A)

)
,

(6)

where ZS2 = (1−α)V α←S1 +αV α←A is a normalization factor.
The final result ρ

S2
t is generated by adaptive interpolation in the

direction between ρ
S1
t and ρ

A
t that is closer to the ground truth.
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As shown in the left column of Figure 4, the result of ρ
A
t (blue)

is more accurate and less blurry than the result of ρ
S1
t (green). The

final result ρ
S2
t is produced closer to ρ

A
t , and it can be confirmed

that ρ
S2
t is closest to the ground truth. On the other hand, in the

right column of Figure 4, the result of ρ
S1
t (green) is more accurate

and less blurry than the result of ρ
A
t (blue), so that the final result

ρ
S2
t is produced closer to ρ

S1
t . The loss function LS2 for training the

second interpolation network is defined as

LS2 = λRLS2
R+λWLS2

W +λSLS2
S +λT LS2

T , (7)

where LS2
R, LS2

W , and LS2
S are defined as follows:

LS2
R =

1
N ∑

N

∥∥∥ρ
S2
ti − ρ̄ti

∥∥∥
1
, (8)

LS2
W =

1
N ∑

N

(∥∥∥W(ρAti ,O
Si→A
ti )−ρ

S1
ti

∥∥∥
1

+
∥∥∥W(ρS1

ti ,O
A→Si
ti )−ρ

A
ti

∥∥∥
1

+
∥∥∥W(ρAti ,O

α→A
ti )− ρ̄ti

∥∥∥
1

+
∥∥∥W(ρS1

ti ,O
α→Si
ti )− ρ̄ti

∥∥∥
1

)
,

(9)

LS2
S =

∥∥∥∇OS1→A
∥∥∥

1
+
∥∥∥∇OA→S1

∥∥∥
1
, (10)

where LS2
T is a loss function for temporal coherence of consecu-

tive frames, and λT is a weight for the temporal coherence loss.
As presented in [KAT∗19], simply minimizing the reconstruction
loss LS2

R using the L1 distance does not guarantee that the tempo-
ral coherence matches the ground truth. We therefore include LS2

T
to encourage temporal coherence between the generated temporal
interpolation results and the input ground truth smoke frames, ρ̄0
and ρ̄1. LS2

T is defined as

LS2
T =

1
N ∑

N

(∥∥∥∥ d
dt

C(ρ̄0,ρ
S2
ti , ρ̄1)−

d
dt

C(ρ̄0, ρ̄ti , ρ̄1)

∥∥∥∥
1

)
, (11)

where C is a function that concatenates the three given smoke
frames along the time t axis.

3.3. Implementation details

Training and test data preparation. We prepared ground truth
smoke simulations via a physics-based simulation method for use
in the training phase of the proposed method. We used MantaFlow
[TP18], an open-source flow simulation library, to compute an ac-
curate smoke simulation. The second through fifth columns in Ta-
ble 1 list the simulation grid size, the number of smoke simulations
used in the training phase, the number of frames for each simula-
tion, and the average computation time for one frame of the smoke
simulation. Each smoke simulation in the training data was gener-
ated with a small time step by randomly setting the smoke source
location and the initial conditions of the velocity field. We com-
puted each smoke simulation for the training data by setting the
time step parameter in the MantaFlow simulator to 0.5. Addition-
ally, we prepared test scenes for each smoke scenario by setting the

Figure 5: A visual illustration of the training and test phases of the
proposed method. The first interpolation (green dotted line) gener-
ates in-between smoke frames from two given smoke frames in the
same manner in the training and test phases. However, the com-
putation manners of the forward advection in the training and test
phases (blue solid and dotted line) are different due to the differ-
ence in the velocity fields, v̄ST

0 and v̄LT
0 .

time step parameter in the MantaFlow simulator to 4.0. Each train-
ing batch for temporal interpolation consisted of 17 frames of the
smoke simulation. In other words, when we used the first and 17th
simulation frames as the input to the proposed temporal interpo-
lation network, 15 temporal interpolation frames (from the second
to 16th frames) were generated by the proposed method. We used
an Intel i5-8400K CPU at 2.80 GHz with 32 GB of memory to
compute the physics-based simulation. The DNN models for the
interpolation were trained on a GTX 1080 Ti GPU with 11 GB of
memory.

Training strategy for the second interpolation network. Unlike
the first interpolation network that generates in-between smoke
frames from two given smoke frames in the same manner in the
training and test phases, the training and test phases of the second
interpolation network were different in terms of the computation
manner of the forward advection. Figure 5 is a visualization of the
training and test phases of the proposed method. As shown in the
test phase of Figure 5, the proposed method only has a physics-
based simulation result computed with a large time step to convert
to a high frame rate simulation, at which time the only velocity field
available for the forward advection is v̄LT

0 . Therefore, as described
in Section 3.2, the forward advection in the second interpolation
is computed using ρ̄0, v̄LT

0 , and arbitrary time t. However, if the
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Scenes
Simulation # of # of Frames Simulation Training Inference
Grid Size Simulations per Simulation Time (s) Time (h) Time( s)

Smoke2D & Fixed Circles 256×256 300 140 0.081 24 0.010
Smoke3D Plumes 80×80×80 100 120 0.266 25 0.159
Smoke3D & Fixed Bunny 128×192×128 50 160 6.909 46 0.584
Smoke3D & Moving Sphere 128×192×128 45 240 15.880 46 0.584
Smoke3D Plumes Bigger-res 240×320×240 - - 67.168 - 9.483

Table 1: Statistics on the quantity of training data used for each scenario in the experiment, the training time for the two-step interpolation
network model, and the inference time needed for the proposed network to interpolate one frame of a smoke simulation.

Figure 6: Detail of the U-Net structure.

forward advection of the training phase is computed in the same
way as in the test phase, the forward advection results are consid-
erably different from the corresponding ground truth smoke as the
arbitrary time t increases. This is because v̄ST

0 , which is computed
with a small time step, is different from the velocity field v̄LT

0 in
the test step (see the training phase of Figure 5). When the for-
ward advection results computed in the same way as the test step
are considerably different from the ground truth smoke frames, it is
difficult to train the second interpolation network and it generates
worse interpolation results than those of the first step. Therefore,
the forward advection results in the training phase are computed
by using ρ̄0; the ground truth velocity fields computed with a small
time step (v̄ST

0 , v̄ST
0.25, and v̄ST

0.5); and a fixed arbitrary time t (t = 0.25
in case of Figure 5).

Network structure and hyperparameters. The proposed two-step
temporal interpolation network uses U-Net [RFB15], which has
been widely used as a base neural network model in image and
video processing research. The encoder part of U-Net consists of
5 consecutively connected encoder blocks, a convolutional layer,
and the leaky ReLU activation function. The encoder block con-
sists of a convolutional layer, the leaky-ReLU activation function,
and a max-pooling layer. The decoder part of U-Net consists of 5
consecutively connected decoder blocks, a convolutional layer, and
the leaky-ReLU activation function. The decoder block consists of
an up-sampling layer, a convolutional layer, and the leaky-ReLU
activation function. Figure 6 shows the detailed network struc-
ture of U-Net. The proposed network models were implemented
in Python with TensorFlow [AAB∗15]. The Adam optimization
method [KB15] was used for backward propagation with β1 = 0.9

Figure 7: Temporal interpolation result of the 3D smoke scenario.
The in-between smoke frames (orange) are generated by interpolat-
ing between the two given smoke frames (red) using the proposed
method.

and a learning rate of 0.0001. The batch size of one epoch was 8
for 2D smoke and 2 for 3D smoke, with 30,000 and 10,000 epochs
for 2D smoke and 3D smoke, respectively. The weighting of the
loss terms λR, λW , λS , and λG were empirically set to 0.1, 1.0,
100.0, and 100.0 when we trained the proposed method to generate
the experimental results.

4. Experiments

The sixth and seventh columns of Table 1 show the training time
of the proposed method for each smoke scene and the inference
time required to generate one smoke frame with the proposed
method. The temporal interpolation results of the Smoke3D Plumes
Bigger-res scene were generated by applying the temporal inter-
polation model trained using Smoke3D Plumes simulation data.
Therefore, columns related to the training data and training time of
the Smoke3D Plumes Bigger-res are not presented in Table 1. The
proposed method can generate smoke frames more efficiently than
the physics-based simulation method. Figure 7 shows the results of
the temporal interpolation of 3D smoke scenes. As can be seen in
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Method
MSE(↓)

SSIM(↑)
LPIPS(↓) tLP(↓)

×1000 ×10 ×10000
Butterflow 3.973 0.805 0.634 0.224
Sepconv 0.578 0.953 0.191 0.121
SuperSloMo 1.440 0.906 0.290 0.290
CycleGen 0.748 0.945 0.137 0.137
DAIN 1.275 0.927 0.255 0.135
Ours⊖ 0.203 0.969 0.127 0.117
Ours 0.190 0.970 0.120 0.089

Table 2: Statistics for comparison of the interpolation quality of
our method with previous temporal interpolation methods. Ours⊖
denotes the proposed method without the temporal coherence loss,
LS2
G .

Figure 7, the proposed method was able to generate high-quality
temporal interpolation results from the two input smoke frames.

In order to analyze the accuracy of the temporal interpolation re-
sults of the proposed method compared to that of previous temporal
interpolation methods, we measured the mean square error (MSE),
SSIM, and the LPIPS [ZIE∗18] value. LPIPS is a perceptual simi-
larity measure based on DNNs. In addition, in order to analyze the
temporal coherence of the temporal interpolation results, we mea-
sured the tLP (tLPIPS) [CXM∗20] score, which is the difference
in the perceptual changes between consecutive smoke frames of
the ground truth and consecutive smoke frames of the temporal in-
terpolation results. Lower LPIPS and tLP values indicate that the
temporal interpolation results are close to the ground truth in per-
ceptual similarity and temporal coherency. A lower MSE value and
a higher SSIM value indicate that the temporal interpolation results
are close to the ground truth. In addition to the qualitative analysis
of the proposed temporal interpolation method, we also compared
its efficiency to that of previous smoke generation methods using
DNNs. The efficiency was compared by measuring the computing
time required to generate smoke simulations of the same grid reso-
lution for the same number of frames.

4.1. Comparison with previous temporal interpolation
methods

Since all previous temporal interpolation methods proposed in the
computer vision field deal with general 2D video, it is difficult
to apply them directly to interpolation between 3D smoke den-
sity frames. Therefore, we trained the previous temporal interpo-
lation methods using the Smoke2D example dataset. The tempo-
ral interpolation results of the previous methods were then com-
pared with the results of the proposed method. Among the com-
parison methods, Butterflow [Pha] is an open-source program im-
plemented to increase the frame rate of a flow simulation by ap-
plying a motion-compensated frame interpolation method [LN10]
rather than a DNN. On the other hand, Sepconv [NML17b], Super-
SloMo [JSJ∗18], CyclicGen [LLLC19], and DAIN [BLM∗19] are
methods for frame interpolation of general video using DNNs.

Figure 8 compares the temporal interpolation results of smoke
frames generated by previous methods with the results generated

Method
Simulation Inference Total

time (s) time (s) time (s)
MantaFlow 103.635 - 103.635
TempoGAN 0.240 50.704 50.944
Multi-pass GAN 0.015 16.928 16.943
Ours 6.909 8.760 15.669
MantaFlow 3.990 - 3.990
DeepFluids - 3.632 3.632
Ours 0.266 2.385 2.651

Table 3: Statistics for comparison of the time performance of our
method with that of previous smoke simulation generation methods.

by the proposed method. The proposed and previous methods, ex-
cept for Butterflow, generated appropriate results that are similar to
the ground truth (see the green boxes in the first row and the red
box in the second row of Figure 8). However, some of the temporal
interpolation results generated by the previous methods were not
similar to the ground truth (see the red boxes in the first row of
Figure 8). In the results of Butterflow, CycleGen, and SuperSloMo
it appears that two different smoke shape clouds are overlapping.
In addition, the results of Butterflow and CycleGen exhibited a dif-
ferent smoke texture than the ground truth (see the green boxes in
the second row of Figure 8). In the results of Sepconv and DAIN,
some parts of the smoke disappeared, and the results of Sepconv,
SuperSloMo, and DAIN have a blurry texture when compared to
the ground truth. In contrast, the results generated by the proposed
method are the most similar to ground truth in all areas, and they
contain few artifacts.

Table 2 provides the average MSE, SSIM, LPIPS, and tLP values
of the smoke frames generated by the proposed method and previ-
ous temporal interpolation methods for comparison. The values for
the SuperSloMo method were computed after applying the first step
interpolation S1 of the proposed method. As can be seen from Ta-
ble 2, the SSIM value of the proposed method were found to be the
highest among the methods used for comparison, and the values of
MSE, LPIPS and tLP were the lowest. We also measured the MSE,
SSIM, LPIPS, and tLP values of the proposed method without the
temporal coherence loss LS2

T (Ours⊖ in Table 2). Compared to the
proposed method using the temporal coherence loss, the values of
MSE, SSIM, and LPIPS were not significantly different. However,
we found that the tLP value, which measures perceptual changes
in consecutive frames, improved substantially when the temporal
coherence loss was used.

To sum up the first comparison experiment, the proposed tem-
poral interpolation method produced interpolation results between
the input smoke frames that were closer to the ground truth than
those generated by the comparison temporal interpolation meth-
ods. In addition, we found that using temporal coherence loss in
the proposed method generated improved results in terms of time
coherency.
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Figure 8: Comparison of the interpolation results generated by the proposed method and those generated by previous temporal interpolation
methods.

4.2. Comparison of the efficiency of the proposed method with
previous smoke generation methods using DNNs

In order to compare the performance of the proposed method
with that of previous smoke generation methods that use DNNs,
we implemented and trained the previous methods to generate a
smoke density field of the same size as the smoke scene used in
the experiment. Among the previous methods used for compari-
son, TempoGAN [XFCT18] and Multi-pass GAN [WXCT19] are
super-resolution methods of smoke simulation that convert a low-
resolution simulation into a high-resolution simulation. DeepFlu-
ids [KAT∗19] is a flow movement generation method that uses
auto-encoder networks without physics-based simulation compu-
tation.

The second to the fifth rows in Table 3 show the computa-
tion time required by MantaFlow, TempoGAN, Multi-pass GAN,
and the proposed method to generate 16 frames of the Smoke3D
& Fixed Bunny scenes. MantaFlow, which computes a physics-
based simulation using a CPU-based solver, took 103.635 sec
to compute 16 frames of the smoke scene. For TempoGAN and
Multi-pass GAN, the computation of low-resolution simulations of
32×48×32 and 16×24×16, respectively, is required to generate
a high-resolution smoke frame of 128×192×128. TempoGAN re-
quired 0.24 sec for the low-resolution simulation computation and
50.704 sec for the network inference. Multi-pass GAN took 0.015
sec for the low-resolution simulation computation and 16.928 sec
for the network inference. For the proposed method, one step of
physics-based simulation computation was required to make two
ground truth smoke frames for the temporal interpolation. The pro-
posed method took 6.909 sec and 8.760 sec for the physics-based
simulation computation and the network inference, respectively.
These results confirm that the computation time required by the

proposed method is smaller than that of the previous smoke gener-
ation methods.

Since the DeepFluids method was limited to training a 128 ×
192× 128 smoke simulation grid using one graphic card, we per-
formed the same experiment on the Smoke3D Plumes smoke scene,
which has a smaller grid. The sixth to the eighth rows of Table
3 show the computation time needed for MantaFlow, DeepFluids,
and the proposed method to generate 16 frames of the Smoke3D
Plumes scene. MantaFlow required 3.990 sec to compute 16 frames
of the smoke scene, and DeepFluids took 3.632 sec for the network
inference. The proposed method took 0.266 sec and 2.385 sec for
physics-based simulation computation and network inference, re-
spectively. To sum up the second comparison experiment, the com-
putation time required by the proposed method is smaller than that
required by the previous smoke generation methods. The results
confirm that the proposed method can more efficiently generate a
smoke simulation than the physics-based simulation method or the
methods using DNNs.

4.3. Comparison with the high frame rate simulation
generated with a small time step

As the proposed method converts a low frame rate simulation com-
puted with a large time step into a high frame rate simulation, its re-
sults are different from those of the physics-based simulation com-
puted with a small time step under the same initial conditions. We
compared a high frame rate simulation generated using the pro-
posed method with a high frame rate simulation computed with a
small time step under the same initial conditions. The first row of
Figure 9 shows smoke frames generated by the proposed method,
and the second row of Figure 9 shows the physics-based simula-
tion results computed with a small time step. As shown in the sec-
ond column of Figure 9, the interpolated frame is not significantly
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Figure 9: Comparison with the high frame rate simulation gener-
ated with a small time step. Temporal interpolation results of the
proposed method (top) are different from the physics-based simu-
lation results computed with a small time step (bottom) due to the
low frame rate simulation computed with a large time step.

different from the corresponding frame computed by the physics-
based simulation with a small time step. However, as can be seen
in the third column of Figure 9, there is a difference between the
simulation frame computed with a large time step and the corre-
sponding frame computed with a small time step; this difference
increases as time t increases (see the fourth and the fifth columns
of Figure 9). As a result, the proposed method has a limitation in
generating high frame rate simulations that are the same as the re-
sults of physics-based simulations computed with a small time step;
this is owing to the difference between physics-based simulations
that are computed with a large time step and with a small time step.

5. Discussion

When using the proposed method to generate smoke simulations
of a specific frame length, it is important to appropriately choose
the increased frame rate of the physics-based simulation based on
the temporal interpolation. This is because the ratio between the
number of physics-based simulation frames and the number of tem-
poral interpolation frames varies according to the increased frame
rate. For example, the results presented in Experiments Section for
the proposed method are for 15 temporal interpolation frames be-
ing generated between two given input frames, which means that
the interpolation effectively increases the frame rate of the physics-
based simulation by about 16 times. To generate 49 frames of a
smoke simulation using the proposed method with a frame rate that
has been effectively increased 16 times, 4 frames of the physics-
based simulation will be augmented by 45 frames of temporal in-
terpolation.

In order to determine the most efficient increased frame rate for
generating a smoke simulation of a specific frame length, we also
experimented on trained models that increase the frame rate by 4,
8, 16, and 24 times. Figure 10 shows the time costs of the pro-
posed method when increasing the frame rate by 4, 8, 16, and 24
times to generate 49 frames of the Smoke3D & Fixed Bunny scene.
The MantaFlow column in Figure 10 corresponds to the case in
which the physics-based simulation computes all frames. As the

Figure 10: Time cost (sec) and average L1 loss values for gener-
ating 49 frames of the Smoke3D & Fixed Bunny scene when using
the proposed method and increasing the frame rate by 4, 8, 16, and
24 times. The MantaFlow column corresponds to the case in which
all frames are computed by the physics-based simulation.

increased frame rate goes up, we can see the time costs required
for the physics-based simulation decrease sharply when compared
to MantaFlow (see the green blocks in Figure 10). On the other
hand, the time costs required for network inference increase as the
increased frame rate goes up (see the blue blocks in Figure 10).

When considering the change in the combined time cost of the
physics-based simulation and the network inference, we can see
that the time cost can be reduced most when the increased frame
rate is highest. However, it is not best to choose the highest in-
creased frame rate because the average L1 loss of the temporal
interpolation frames increases linearly as the increased frame rate
goes up (see the orange graph in Figure 10). This is because the
time step between the physics-based simulation frames increases
when the increased frame rate goes up, reducing the accuracy of the
temporal interpolation method. In fact, when increasing the frame
rate by 24 times, we distinguished inaccurate temporal interpola-
tion frames and physics-based simulation frames in the result due
to the increasing loss (see the smoke simulation results for the Dis-
cussion in the supplementary video). As a result of this experiment,
we determined that increasing the frame rate by 16 times is most
efficient for reducing time cost and producing stable simulation re-
sults when generating a high frame rate simulation

As shown in Table 3, the inference time of the DNN model
in the proposed method is lower than that of the efficient smoke
generation methods that use DNNs. However, since one step of
physics-based simulation computation for temporal interpolation
in the proposed method requires more computation time than the
low-resolution simulation computation time of the Multi-pass GAN
method, the total time required by the proposed method to gen-
erate the smoke simulation is not significantly different from that
required by Multi-pass GAN. The proposed method requires a sim-
ulation computation with the same grid resolution as the target
simulation conditions for the temporal interpolation, whereas the
TempoGAN and Multi-pass GAN methods use a simulation com-
putation at a grid resolution that is 4 to 8 times smaller than the
target simulation. Therefore, if the proposed method is combined
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Figure 11: Limitation of the proposed method. In the temporal in-
terpolation results (orange) of the two given smoke frames (red),
the smoke shapes are deformed before the external object (sphere)
penetrates the smoke volume.

with one of these super-resolution smoke simulation methods, even
more efficient smoke simulation generation is possible. By using
the Multi-pass GAN method for the one-step physics-based simula-
tion computation in the proposed method, 4.793 sec of the physics-
based simulation computation time can be saved. That is, it can in-
crease the efficiency of the smoke simulation generation by about
30% compared to the current results.

Through the Smoke3 & Moving Sphere scene example, we can
see that the proposed method is capable of appropriate temporal
interpolation even when a linearly moving object passes through
the smoke. However, since the temporal interpolation network does
not have additional information to accurately predict the motion of
the external object other than the two smoke density field frames,
inaccurate temporal interpolation results may be generated in situ-
ations in which a moving object passes through the smoke. Figure
11 shows examples of inaccurate temporal interpolation. Among
the temporal interpolation results (orange) of the two given smoke
frames (red), we can see that the smoke shapes are deformed before
the external object (sphere) penetrates the smoke volume (see the
second and third columns in Figure 11). To address this limitation,
further study of a temporal interpolation network that separately
considers the movement features of external objects is needed. Like
the approach presented in [KAT∗19], defining latent variables for
the external objects and environment and using the latent variables
in temporal interpolation could enable the proposed method to be
used in various kinds of smoke scenes. In addition, although the
proposed method performs a second interpolation step to reduce
artifacts that occur in the first interpolation step, it is sometimes
difficult to generate detailed flows of in-between smoke frames due
to the large range of the expected in-between smoke states. To ad-
dress this limitation, further research into a temporal interpolation
network that considers the detailed flows of the smoke frame is
required. Similar to the approach presented in [CT17], proceeding
with the second interpolation with the high-resolution smoke frame
database could enable the proposed method to generate more effi-
cient and high-quality interpolation results.

6. Conclusion

We have proposed a two-stage temporal interpolation network us-
ing forward advection for efficient smoke simulation generation.

Since the proposed method converts a low frame rate smoke simu-
lation computed with a large time step into a high frame rate smoke
simulation through the inference of a temporal interpolation net-
work, it can efficiently generate a high frame rate smoke simulation
with a lower computational cost than the conventional simulation
method. We performed quantitative analyses of the results gener-
ated by the proposed method and previous temporal interpolation
methods. We also compared the computation time of the proposed
method with that of previous methods that use DNNs to generate
efficient smoke simulations. The experimental results indicate that
the results generated by the proposed method are more accurate and
closer to the ground truth smoke simulation than those generated by
the previous temporal interpolation methods. The proposed method
also generates smoke simulation results more efficiently than pre-
vious smoke simulation methods that use DNNs.
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