
EUROGRAPHICS 2021 / N. Mitra and I. Viola
(Guest Editors)

Volume 40 (2021), Number 2

Cyclostationary Gaussian noise: theory and synthesis

Nicolas Lutz, Basile Sauvage and Jean-Michel Dischler

ICube, Université de Strasbourg, CNRS, France

Figure 1: Cyclostationary noise is a procedural model for cyclostationary textures, which are patterns exhibiting a periodicity in their
statistics. We convey existing stationary noises to a cyclostationary context, enabling the synthesis of cyclostationary textures controlled by
spectra (left) and by an exemplar (right).

Abstract

Stationary Gaussian processes have been used for decades in the context of procedural noises to model and synthesize textures
with no spatial organization. In this paper we investigate cyclostationary Gaussian processes, whose statistics are repeated
periodically. It enables the modeling of noises having periodic spatial variations, which we call "cyclostationary Gaussian
noises". We adapt to the cyclostationary context several stationary noises along with their synthesis algorithms: spot noise,
Gabor noise, local random-phase noise, high-performance noise, and phasor noise. We exhibit real-time synthesis of a variety
of visual patterns having periodic spatial variations.

CCS Concepts
• Computing methodologies → Rendering; Texturing;

1. Introduction

Procedural noise has many applications in computer graphics, rang-
ing from geometric modeling and animation to texture synthesis,
as it is able to compactly represent continuous stochastic station-
ary processes. This explains the many research works that noise
generated during the past decades. However, the physical nature of
some natural or man-made phenomena often cause the assumption
of stationarity to be violated. Modeling non-stationary stochastic
processes is more difficult, and such processes have not been well
studied yet.

A key application of noise is procedural texture modeling. Purely
random patterns can be directly generated with noise; an important
class of such patterns are textures that are realizations of station-
ary Gaussian processes. Recent noise synthesis approaches attempt

to enlarge the range of patterns that noise is able to reach directly,
that is, with no additional procedural modeling technique, like lo-
cal random-phase [GSV+14], high-performance [HN18] and Pha-
sor [TEZ+19] noise. Our goal is to follow on from these works and
further increase the range of patterns reachable with a stand-alone
procedural noise.

Therefore, we study a new class of non-stationary stochastic pro-
cesses, called cyclostationary stochastic processes, which have not
been studied yet in the field of computer graphics and procedural
noise synthesis to the best of our knowledge. Such processes, char-
acterized by the periodicity of their statistics, are well known in sig-
nal processing. They are used to model periodically-correlated ran-
dom signals such as signals resulting from rotating machines, radar
systems, or weather patterns. We introduce novel noises, called cy-

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.142629

https://diglib.eg.orghttps://www.eg.org

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

Figure 2: Examples of cyclostationary (CS) textures, which exhibit
a periodic organization when zooming out and, at the same time,
strong stochastic color variations when zooming in. These types
of near-regular textures are difficult to model, because colors are
neither repetitive nor purely random: color randomness is periodic.

clostationary Gaussian noises, which we define as models and al-
gorithms implementing cyclostationary Gaussian processes. These
noises can compactly and procedurally represent a class of tex-
tures we subsequently call cyclostationary noise textures, defined
by their periodically random pattern. The periodicity and repetition
of these textures is not obvious and it can be easier to perceive their
random nature. We showcase examples of cyclostationary textures
in Figure 2: they exhibit strong stochastic variations, best observ-
able when zooming in, while having a repetitive spatial organiza-
tion, best observable when zooming out.

Previous techniques introduced a class of textures, called near-
regular textures [LLH04], defined as periodic tilings with geometry
and color variations. With this respect, our work provides a math-
ematically grounded, novel and complementary type of color vari-
ations, which can be strongly stochastic and detailed. Moreover,
our cyclostationary textures can be synthesized in real-time and are
unbounded, i.e. they have an infinite expanse.

First, we explore the mathematical properties of cyclostationary
Gaussian processes, their statistics, and their link with cyclostation-
ary textures in section 3. We then present various ways of generat-
ing patterns using classic stationary processes, notably with a new
spatially-varying spectrum model, put in practice by adapting real-
time procedural noises known as local random phase noise, Gabor
noise and phasor noise in section 4. Then, we show how we achieve
a high-quality by-example synthesis of cyclostationary textures by
adapting the real-time procedural noises known as spot noise and
high-performance noise as well as a cyclostationary version of his-
togram transfer in section 5. We then show how to estimate the
period of cyclostationary textures in section 6; finally, we discuss
details, comparisons and limitations in section 7.

2. Related work

Our work is related to noise and Gaussian processes, to the the-
ory of cyclostationary processes and to near-regular textures. We
briefly review these topics.

Near-regular textures. Near-regular textures have been intro-
duced to address a specific class of repetitive textures that could
not be sufficiently well generated with aperiodic tilings [Sta97,

CSHD03, Wei04, LHW+04] or patch-based synthesis [EF01,
LLX+01, KSE+03, WY04, LH05]. Liu et al. [LLH04, LTL05] de-
fine near-regular textures as a periodic tiling that undergoes spa-
tial, intensity and color transformations. Various works followed:
evaluations and comparative studies [WHC+06], analysis meth-
ods to detect regularities [DED05,CB11,PBCL09,CB13,LPVV17,
LNS+15], and improvements of synthesis quality [NMMK05,
HH09, RHE11]. But managing simultaneously regularity and
randomness of such textures still remains a challenging issue.
When color variations are dominant (e.g. the resulting pattern is
close to Gaussian noise), synthesis quality quickly breaks down,
PCA [LLH04] not being an appropriate tool and patch-based meth-
ods not providing sufficient variety [RHE11]. We remark that none
of these methods proposed a procedural noise model for handling
color transformations more efficiently and in real-time.

In the last years, texture synthesis has been carried through
convolutional neural networks (CNN) [GEB15]. Some of the re-
cent approaches attempt to automatically recover regularities and
self-similarities in near-regular exemplars. Liu et al. [LGX16]
use spectrum constraints and constraints learned from a CNN,
while deep correlations [SCO17] use a structural energy, based
on correlations and deep learning. These methods are not adapted
to “on-the-fly” synthesis, and are restricted to medium size tex-
tures. Faster and unbounded texturing models have been pro-
posed [ULVL16,GRGH20], but remain computationally expensive
and are not suited for near-regular texture synthesis.

Gaussian processes. Noise synthesis, carried through Gaussian
processes, finds its roots in sparse convolution noise [Lew84].
Since then, different variations of this model have been proposed:
Gabor noise [LLDD09, LLD11, TNVT19] sums a Gabor kernel
with random weights to generate noise with controlled spectrum.
Random phase noise [GGM11] uses Fourier series and a random
phase to generate noise. Gilet et al. [GSV+14] shows how fixing
some phases can help preserve the spatial organization of an ex-
emplar; however, freezing phases makes the output tend towards
a perfectly periodic signal, which comes at the expense of vari-
ety. Guingo et al. [GSDC17] explores the possibility of using sev-
eral spectra to provide a higher control over the output spatial or-
ganization, but without synthesizing near-regular textures. Phasor
noise [TEZ+19] generate patterns with strong variations of inten-
sity, by controlling the instantaneous phase and a wave profile. Spot
noise [vW91] is a notable implementation of the ADSN model pre-
sented later by Galerne et al. [GGM11], which consists in blending
a discrete kernel at random positions. These works were improved
with texton noise [GLM17], which computes a summarized ver-
sion of the kernel, optimized for the synthesis. The work of Pavie
et al. [PGDG16] and Cavalier et al. [CGG19] show that control-
ling the position of these spots helps controlling the visual aspect
of the output. High-performance noise [HN18, DH18, Bur19] is a
very fast method approximating the ADSN model. It blends hexag-
onal tiles taken randomly from a discrete exemplar and arranged on
a regular lattice. The small number of blended values enables the
preservation of non-Gaussian features, but diminishes the variety
of the outputs.

These noise models can often be adapted to the by-example case,
either by using the spectrum of the exemplar [GGM11, GLLD12,

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

240

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

GSV+14], or, in the case of the ADSN model, by using the exem-
plar to build a spatial kernel [GGM11, GLM17, HN18].

All these models share issues related to the stationarity of the
underlying Gaussian process that they build upon. They are thus
unable to synthesize periodic statistics, and subsequently unable
to model color transformations in near-regular textures. Works at-
tempting to control the spatial organization of the underling sta-
tionary process do so by either incidentally altering the stationar-
ity [GSDC17,PGDG16,CGG19], by varying the sparse convolution
using specific point processes; or, by altering their Gaussian na-
ture through the control of the phase [GSV+14,TEZ+19]; or by re-
ducing the convergence towards a Gaussian process [HN18]. Con-
versely, we propose to alterate stationarity and keep the Gaussian
nature by exploiting a generalization to Gaussian cyclostationary
processes.

Cyclostationary processes. Cyclostationary processes are peri-
odic processes that can be seen as interleaved stationary processes
(and, as such, are a generalization of stationary processes). They
were first presented in [Ben58], who noted that the synchroniza-
tion algorithms used in communication systems exhibited non-
stationary signals with a periodic mean and a periodic autocovari-
ance function. Since then, they have been used in various contexts
(such as gear systems, mechanical machinery, econometric, or as-
tronomy), but, to our knowledge, have never yet been exploited in
texture synthesis in an explicit way. Our presentation of cyclosta-
tionary processes and their properties is based on the recent work
of Napolitano [Nap19], a book summarizing 60 years of research
on cyclostationary processes and their properties. The work of Kip-
nis et al. [KGE18] was also used, as it establishes the link between
our spatially-varying spectrum and the autocovariance function of
cyclostationary noises.

It is important to note that even though cyclostationary random
fields have been defined, the cyclostationary theory has been mostly
elaborated for one-dimensional processes. As such, some of the cy-
clostationary theory presented in this paper is a generalization of
the 1D model.

3. Cyclostationary model

The main idea of this paper is to consider cyclostationary (CS)
Gaussian processes as generators of procedural noise, character-
ized by the periodicity of its statistics. This section presents their
respective properties and the link between them.

The term "noise" is well defined as a stationary random function
characterized by its power spectral density [LLC+10]. In computer
graphics, the terms random process, noise and textures are some-
times merged; moreover, despite similarities with classic noise, our
model is characterized by additional parameters. To avoid confu-
sions between these three terms, we use them as follows:

• "Process" refers to a general random process, defined through its
mathematical properties, as in section 3.1.
• "Noise" refers to a specific process, defined by a computable for-

mula, along with algorithms to compute it. We explore several
noises in Sections 4 and 5.
• "Texture" refers to an actual image, one result of an algorithm,

and one realization of a process.

3.1. Cyclostationary processes

Processes. A stochastic process Y is a set of random variables Y (x)
defined on a probability space for which the sample space is a sub-
set of Rd , and x lie in Ω. We focus on 2D random fields, thus
Ω = R2. Their realization can produce grayscale (d = 1) or color
(d = 3) textures.

Gaussian processes. A Gaussian process Y is a stochastic pro-
cess for which every linear combination of Y (x1), ...,Y (xN) such
that (x1, ...xN) ∈ Ω

N is a random variable with a normal distribu-
tion. The first order moment and second order moment of these
processes are necessary and sufficient to define their N-th order
statistics for all N, that is, the probability distribution of the entire
process.

Stationarity and cyclostationarity. The invariance of the sets of
probabilities P under a translation t ∈Ω is defined by

P(Y (x1), .. Y (xN)) = P(Y (x1 + t), .. Y (xN + t)). (1)

If equation (1) is satisfied for any t, then Y is said stationary. Y is
said to be a cyclostationary (CS) or periodically correlated process
with a period vector t0 if equation (1) is satisfied for t = kt0, ∀k ∈
Z, where t0 represents the period of the CS process, and there are
no vectors t′0 with any smaller coordinate larger than 0 for which
this invariance is true [Nap19]. Most of the time throughout this
paper, CS processes are assumed to be periodic with not one, but
two vectors t0 and t1 which form a basis of Ω.

As shown in Figure 3, t0 and t1 define a parallelogram Ω
− and

a lattice tiling the plane Ω. We denote as P the operator Ω→ Ω
−

that projects any x modulo (t0, t1):

x = P(x)+ kt0 + lt1, with P(x) ∈Ω
− and (k, l) ∈ Z2 (2)

A stationary process can be seen as a CS process where t0 and
t1 are infinitely small, making CS processes a generalization of the
stationary model. Likewise, a CS process with only one period vec-
tor t0 can be seen as one with an orthogonal t1 infinitely small if
it is stationary in this direction, or infinitely large if it has arbitrary
statistics.

Ergodicity. A stationary process is said to be ergodic when its sta-
tistical properties can be estimated on a single, sufficiently large re-
alization, rather than several realizations of the process. This prop-
erty typically enables an accurate by-example texture synthesis, be-
cause the statistics of the process can be estimated from the exam-
ple. The extension to CS processes is known as cycloergodicity. We
assume all the processes to be cycloergodic, and we will make use
of this property to estimate the CS statistics.

3.2. Cyclostationary statistics

As explained previously, the statistics of a cyclostationary process
Y are periodic. All statistics presented here have an echo in station-
ary processes, as they only take an additional argument x ∈Ω, due
to the spatially-varying nature of CS processes.

The first order moment M(x), E[Y (x)] is the expectation of the
process Y in x. The cyclostationarity implies M(x)=M(P(x)). The

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

241

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

Figure 3: A cyclostationary signal characterized by two periods t0
and t1 which define a regular lattice (yellow). Left: the signal can
be decomposed into polyphase components (collection of blue dots,
or magenta dots), which are discrete stationary processes. The x-
th polyphase component (PC) is made of all values on {x+ kt0 +
lt1,(k, l) ∈ Z2} congruent to x. Right: histograms of the PCs are
estimators of the statistics of the underlying process (provided it is
cycloergodic).

cycloergodicity implies that it can be estimated from an exemplar
E by an empirical mean

M̃(x) = 1
#samples ∑

k,l
E(x+ k t0 + l t1) (3)

where #samples is the number of samples x+ k t0 + l t1 in E. This
equation is later used for our cyclostationary ADSN model in sec-
tion 4.3 and can be visualized in the bottom row of figure 6.

The second order central moment is the autocovariance function
of Y , defined by R(x, t) , E[(Y (x)−M(x)) (Y (x+ t)−M(x+ t))]
for any position x and any translation t in Ω. The cyclostationarity
implies R(x, t) =R(P(x), t). The cycloergodicity implies that it can
be estimated from an exemplar E by

R̃(x, t) = 1
#samples ∑

k,l

(
E(y)− M̃(x)

) (
E(y+ t)− M̃(x+ t)

)
,

(4)
where y = x+k t0+ l t1 and #samples is the number of samples for
which both y and y+ t fall inside E. It is computed independently
for each color channel.

In the stationary case, the autocovariance is often controlled in
the spectral domain by its Fourier transform, i.e. the power spectral
density (PSD). In the cyclostationary case, the most straightforward
formula is the instantaneous power spectral density (IPSD), i.e. the
Fourier transform of R with respect to t. However, another, more
effective approach is possible using the polyphase components.

Polyphase components. It is possible to decompose a cyclosta-
tionary signal into stationary components [Nap19]. One possibility
is the translation time series decomposition, or its discrete form,

called the polyphase decomposition. For any x ∈ Ω
−, the collec-

tion of positions {x + kt0 + lt1,(k, l) ∈ Z2} congruent to x de-
fine a discrete sub-process Y x called the x-th polyphase compo-
nent of the process Y (also called x-th decimated component), as
shown in Figure 3 left. This decomposition is helpful because Y x

are stationary processes: their histogram Hx capture the first order
statistics (Figure 3 right), which we may want to control (see sec-
tion 5.3); their power spectral densities Sx are intuitive local spec-
tra (see sections 3.3 and 4.2), that control the second order mo-
ment R [KGE18].

Since our processes are Gaussian, wide-sense and strict-sense
cyclostationarity are equivalent [Lap17], which implies that Y is
entirely defined by M and R, or by all Sx.

3.3. Textures

We model a texture as a function I : Ω→Rd , with d the dimension
of a random vector returned by noise (d = 1 for grayscale, d = 3
for color).

Cyclostationary textures. We define cyclostationary textures (CS
textures) as realizations of arbitrary cyclostationary processes, im-
plying they have periodic statistics, including but not limited to
their mean and autocovariance function; a plausible set of period
vectors and lattice by which the CS textures can be generated by
a CS process also appear clearly when examining CS textures, as
Figure 3 shows. The parameters of the underlying CS process can
be estimated as long as the CS texture is sufficiently large, and the
CS process is assumed cycloergodic.

Stationary random phase textures. Random phase textures are
the result of a random phase noise. They are also commonly called
"Gaussian textures", along with the realizations of other types of
noises, because they often have statistics similar to those of the
realizations of a Gaussian process, although this depends on the
spectrum of the noise. They are defined by Galerne et al. [GGM11]
as textures having a random phase in the Fourier domain:

I(x) = ∑
ξ

A(ξ) cos(2πξx+Φ(ξ)) (5)

for all frequencies ξ in the frequency domain Ω̂, with random
phases Φ uniformly distributed in [0,2π[. These types of textures
are interesting, because they can be compactly modeled in a proce-
dural way using procedural noises.

Cyclostationary random phase textures. Similarly, we define
cyclostationary random phase (CSRP) textures as the realizations
of CS random phase noise processes, to model cyclostationary tex-
tures through a random phase:

I(x) = ∑
ξ

A(x,ξ) cos(2πξx+Φ(ξ)). (6)

The novelty is that the amplitude A : Ω× Ω̂ → R is spatially-
varying, i.e. it is a periodic function of x (periods t0 and t1). The
phase Φ is random, while A entirely defines the statistics of the
CSRP texture. In this scenario, A(x,ξ)2 is equal to the power spec-
tral density Sx(ξ) of the x-th polyphase component.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

242

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

Although not all CS textures are CSRP textures, this model ap-
proximates them well in the same way that random phase textures
approximate "stationary" textures (called micro-textures in Galerne
et al. [GGM11]), and establishes the possibility of synthesizing tex-
tures by defining a spatially-varying amplitude and randomizing
their phase. Note that random phase textures and Gaussian textures
are very similar but not equivalent [GGM11]. For simplicity, in the
CS case, we call them CS noise textures too.

4. Cyclostationary Gaussian noises

In this section, we introduce cyclostationary Gaussian noises. They
consist in different formulations of cyclostationary Gaussian pro-
cesses, giving rise to different synthesis algorithms of cyclostation-
ary noise textures.

4.1. Modulation of a stationary signal

Cyclostationary processes can be expressed as a simple aggrega-
tion of stationary components periodically defined on Ω [Nap19].
A simple way to obtain a cyclostationary signal is therefore to mod-
ulate a set of jointly stationary signals {Y1, ...,YK} as

I(x) = ∑
s

ws(x)Ys(x), ∀x ∈Ω, (7)

where ws : Ω→ R are (t0, t1)-periodic weighting functions.

This approach was used by Guingo et al. [GSDC17] to synthe-
size heterogeneous textures from an input example, from which
they extract a few stationary signals along with weighting func-
tions. It can also be found to a lesser extent in Haindl et al. [HH09],
where near-regular textures are considered as a set of cells inside
which a single noise is extracted and synthesized. The drawback of
this approach is the definition of the weights ws and the stationary
signals Ys: a manual design is tedious, while an automated extrac-
tion is difficult.

4.2. Cyclostationary random phase noise

We have established in equation 6 that cyclostationary random
phase textures can be expressed as a sum of cosines with ran-
dom phases, with statistics being controlled through the spatially-
varying amplitude A. This paves the way to adapt existing sta-
tionary procedural noises based on the PSD: random phase
noise [GGM11, GSV+14], Gabor noise [LLDD09] and phasor
noise [TEZ+19]. The main difficulty is the control of the "spatially-
varying PSD" A2(x,•) = Sx.

We validate this idea in Figure 4 by a direct synthesis in the
Fourier domain, where A2 is linearly interpolated from a small set
of spectra defining a periodic variation. In Figure 1 left, we adapted
the Gabor noise, the local random-phase noise, and the phasor
noise. In this example, A2 is a periodic function, which makes a
bi-lobe vary in orientation according to a single period t0 (red vec-
tor). Note that phasor noise is actually not Gaussian; however, it is
based on a Gaussian process, so we decided to present it here.

Figure 4: Cyclostationary random phase noise generated by
Fourier series with a spatially-varying amplitude A (computed from
an array of PSD) and a random phase. The array was constructed
by bilinear interpolation of 9 spectra and defined periodically on
the parallelogram described by t0 and t1.

4.3. Cyclostationary asymptotic discrete spot noise

The stationary asymptotic discrete spot noise (ADSN) [GGM11] is
a stationary and ergodic Gaussian process that computes an output I
of arbitrary size as the sparse convolution of a discrete spot J:

I =
1√
|J|

(J−µ1)∗W, (8)

where W is the realization of a white noise made of uncorrelated
components with distribution N (0,1) and µ is the estimated mean
of the discrete spot J, 1 is a constant function equal to 1 with the
same support as J, and |J| is the number of texels of the discrete
spot.

We introduce a new noise model, the cyclostationary asymptotic
discrete spot noise (CS-ADSN). It is a cyclostationary and cyclo-
ergodic Gaussian process that computes an output texture I from a
spot J as

I =
1√
|J|

(J−M)∗WL, (9)

where M is the first order moment of the cyclostationary process
described in section 3.2, and WL is a discrete process defined on the
lattice whose nodes are congruent to 0 with respect to the periods
t0 and t1. WL is a sum of diracs (one per node) with uncorrelated
random magnitudes distributed according to N (0,

√
|Ω−|). I is a

process with first order moment equal to 0, requiring the addition
of M after the process. The second order moment of I corresponds
to the second order moment of the spot, which we prove in ap-
pendix A.

This model is close to a specific kind of locally controlled
spot noise presented in Pavie et al. [PGDG16] and Cavalier et
al. [CGG19], where the results can be made regular by controlling
the position where the spots are shot: we conjecture that our CS-
ADSN is the underlying cyclostationary model for the perfectly
regular version of the controlled spot noise they present without
consideration for the cyclostationary mean and the variance of the
output, which enables us to go one step further and to achieve a by-
example synthesis for cyclostationary textures in the next section.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

243

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

Figure 5: Exemplars (top row) synthesized with our cyclostationary spot noise (middle) and our cyclostationary high-performance noise
(bottom). Our first order statistics transfer (section 5.3) was applied to all results. All textures are unbounded and continuous, and can be
sampled in real time at any location of infinite space. Here, we show a sampling matching the resolution of the input.

5. By-example synthesis

The parameters of the noise models can be difficult to define man-
ually. Instead, noise by-example consists in estimating the param-
eters from an input example image E. In our context, the idea is
to find an underlying process Y which could have been likely to
generate the example.

The cyclostationary random phase noise of equation 6 is unfor-
tunately not a convenient model for by-example synthesis, because
it requires an accurate estimation of the PSD Sx of polyphase com-
ponents; however, we dispose of only a few sparse samples in E
for each polyphase component. Because of this, we choose to elab-
orate on the CS-ADSN model presented in section 4.3. We applied
it to two procedural noises using an exemplar as a discrete spot:
spot noise (section 5.1), and high-performance noise (section 5.2),
with results of these algorithms shown in Figure 5.

In this section, we assume that t0 and t1 are already estimated
from an exemplar; we show how to do this in section 6.

5.1. Cyclostationary spot noise

The by-example stationary spot noise algorithm [GGM11] is a di-
rect implementation of the ADSN model of equation (8) that con-
sists in shooting E (the spot J = E) on random positions. The ran-
dom positions are determined by a sparse Poisson process [vW91]
instead of a white noise W , which increases the space coverage. As
shown in Figure 6 top, it is unable to reproduce the pattern regular-
ity.

We define the cyclostationary spot noise from equation 9, by
shooting E only on the regular lattice described by t0 and t1, as
shown in Figure 6 bottom. Since WL is sparse, it can be faster to
compute the cyclostationary spot noise directly instead of simulat-
ing it by shooting E several times. For this process, the first order
moment M needs to be estimated from the exemplar, which can

Figure 6: Comparison between the stationary (top) and our cyclo-
stationary (bottom) spot noise, using an exemplar texture as the
spot. The estimation of the lattice and the mean M (Equation 3) are
the critical steps for preserving the statistics of the exemplar. The
addition of µ and M required after equations (8) and (9) is omitted.

be done with Equation 3. The asymptotic result of this by-example
noise takes the form of a Gaussian cyclostationary process with the
statistics of the CS-ADSN of E.

5.2. Cyclostationary high-performance noise

The stationary high-performance noise algorithm [HN18, DH18,
Bur19] is a real-time by-example synthesis designed as a compro-
mise between a tiling algorithm and a noise algorithm. It consists in
blending hexagon-shaped spots centered on the vertices of a trian-
gular grid. For each vertex x of the grid, an hexagonal tile is taken
from the exemplar E at a random position given by a hash function
h(x). The overlapping tiles are linearly blended within each trian-
gle. As shown in Figure 7 left, it fails to reproduce CS textures. The
reason is that x and h(x) are not congruent.

We define a cyclostationary variant of the high-performance
noise by controlling the positions of the tiles. The hash function

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

244

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

Figure 7: High-performance noise: stationary (left) and cyclosta-
tionary (right) version. For the latter, the positions of the hexagonal
tiles in the example (h(x)) and in the result (x) are congruent.

h(x) returns a random position congruent to x, i.e. P(h(x)) =P(x)
(see yellow vectors in Figure 7). Additionally, it is compatible with
the enhancement proposed by Burley [Bur19] that modifies the
blending weights.

5.3. First order statistics transfer

The previous algorithms are designed for textures with cyclosta-
tionary Gaussian statistics. However, many natural stochastic tex-
tures do not have Gaussian statistics. Therefore, many works tried
to push the algorithms beyond the pure Gaussian scope of applica-
tion. Among them, optimal transport has been used successfully to
control the first order statistics [GLR17, HN18, DH18], namely to
process textures with non Gaussian histograms.

In the following, we briefly recall stationary histogram transfer,
show its limitations, propose a CS histogram transfer, discuss ro-
bustness issues and filtering.

5.3.1. Stationary histogram transfer

Let EH be an exemplar with non Gaussian histogram H. The prin-
ciple is as follows:

• Pre-compute a transfer function T that maps H onto a Gaussian
histogram G.
• Pre-compute T−1 in a lookup table.
• Pre-compute EG = T (EH), a "Gaussianized" example.
• At runtime, compute the result T−1(Synthesis(EG)) by applying

the synthesis algorithm to EG and compositing by T−1.

The results has H as non-Gaussian histogram, just as the exam-
ple EH . When applied to a CS texture, this procedure produces ar-
tifacts, as shown in Figure 8. These artifacts are due to the global
nature of the histogram, which does not capture spatial variations.

5.3.2. Cyclostationary histogram transfer

As explained in section 3, a CS process can be decomposed into a
set of polyphase components (PC) which are stationary processes.
In this section, the intuition is to preserve the histogram of each PC
independently.

Let E be a CS texture we want to synthesize, which we assume to
be the result of an underlying CS process. Let Ex be the polyphase
components estimates: for any x ∈ Ω

−, it is an estimation, from
the example E, of the x-th PC of the underlying process. In con-
crete terms, Ex is a subsampling of E with |E|/|Ω−| samples. Let
Hx be the histogram of Ex (Figure 3), which is an estimation of

Figure 8: Histogram transfer: comparison between stationary
(left) and cyclostationary (right) transfer with the HPN synthesis
algorithm [HN18]. Our CS transfer helps reducing color artifacts.

the first order statistics of the PC. The collection {Hx}x∈Ω− is an
estimation of the first order statistics of the CS process.

Our CS histogram transfer operates per PC similarly to the sec-
tion 5.3.1:

• Pre-compute, for each Hx, a transfer function Tx and its in-
verse T−1

x .
• Pre-compute EG(x) = TP(x)(E(x)), because each x belongs to

the P(x)-th PC.
• At runtime, compute the result T−1

P(x)(Synthesis(EG)).

As shown in Figure 8, this cyclostationary transfer helps against
false colors. It notably removes region bleeding (when the output
color is incorrectly interpreted as that of a different region of the ex-
emplar), and reduces ghosting when attempting to synthesize tex-
tures with slight geometric irregularities. The inverse transfer func-
tions T−1

P(x) are stored for all texels x∈Ω
−. In practice, the memory

footprint is at most equivalent to the footprint of the exemplar itself.

5.3.3. Robust histogram estimation

The CS histogram transfer (previous section) relies on the estima-
tions Hx. However, for small examples and large periods, |Ex| be-
comes small, causing issues in the histogram estimation and ar-
tifacts in the result (see Figure 9). To make our estimation more
robust, we assume a local stationarity: in a small neighborhood of
size δ around x we assume the PC to be similar. Practically, we
add into Ex the samples of the neighboring PC estimates: δ = 1
enlarge the sampling by a factor 9, δ = 2 by a factor 25, etc. As

Figure 9: Robust histogram estimation, by collecting the polyphase
component estimates in a small neighborhood of size δ. Extending δ

trades noisy for blurry artifacts.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

245

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

shown in Figure 9, extending the neighborhood yields a compro-
mise between the stationary (wrong colors, visible blur) and cyclo-
stationary (better colors, visible noise) transfer. In the limit (as the
neighborhood covers the example), all estimates are equal and it
boils down to a stationary transfer.

5.4. Real-time rendering and filtering

The synthesis algorithms presented in this paper are tailored for
real-time synthesis and rendering, while keeping a low memory
load. It requires to filter the resulting texture in real-time. Both
the spot noise [vW91] and the high-performance noise [HN18]
can be filtered using a pre-computed MIP-map of the example E.
This technique is still valid with our cyclostationary model. We
directly applied the histogram transfer on the result, as Heitz &
Neyret [HN18]. Deliot et al. [DH18] improve the results by com-
puting one pre-filtered lookup table per MIP level: it can be adapted
with one lookup table per level per polyphase component, however
its practical implementation remains to be investigated.

6. Estimation of period vectors

In this section, we investigate the estimation of the period vectors
(t0, t1) from an exemplar E. As stated in the related works section,
many methods have been proposed to estimate manually, semi-
automatically or completely automatically repetitive structures in
patterns. These approaches are useful, but sometimes lack accuracy
when combined with our by-example synthesis algorithms, which
require a sub-pixel precision. When using them, polyphase com-
ponents may be incorrectly estimated and cause ghosting artifacts
similar to those observed in Figure 8. Furthermore, automatic meth-
ods tend to be designed for harder problems and rely on complex
software such as neural networks, which are heavy for the task at
hand. We propose to use simple techniques such as a manual es-
timation, which is then refined by exploiting the characteristics of
cyclostationary textures.

Our refinement algorithm is based on the observation that (t0, t1)
represent the translations to the next element in the repeated pat-
tern, which corresponds to another sample in the same polyphase
components. We expect the PC to be strongly coherent, i.e. that any
two points y and z in a given PC Ex are similar. Thus, we define

dPC(t0, t1,E
x) =

1
|Ex|2 ∑

y∈Ex
∑

z∈Ex

√
(E(y)−E(z))2, (10)

which is a measure of the internal coherence of Ex. Then we mea-
sure the global relevance of the vectors (t0, t1) by

d(t0, t1) =
∫

x∈Ω−
dPC(t0, t1,E

x)dx. (11)

To refine the initial estimation (t0, t1), we locally minimize d us-
ing a stochastic gradient descent. A visualization of d is shown in
Figure 10, where an optimal point is found, even on the third ex-
emplar exhibiting geometric irregularity. Note that d is not convex;
however, the procedure robustly converges to the local minimum,
as long as the the initial estimation is precise enough.

Figure 10: Distance function d applied around the local minimum
of d (corresponding to ground truth period vectors of t0 and t1)
on various textures. d was only evaluated with orthogonal period
vectors to produce this visualization.

7. Results and discussion

Implementation When a discrete exemplar needs to be sampled at
any continuous location (e.g. for the CS-spot noise), it is bilinearly-
interpolated between the pixels. The CS-spot noise is implemented
with the enhancement of Galerne et al. [GGM11] that consists in
smoothing the border of the exemplar to remove linear artifacts. As
in the original stationary version [HN18], the CS-HPN is easier to
implement with a periodic examplar, otherwise hexagons that cross
the border must be avoided. The performances of the stationary
and cyclostationary algorithms are similar, so we invite the reader
to refer to the original papers to get detailed information about tim-
ings. Indeed, our algorithms inherit the pros and cons of the orig-
inal algorithms. Our codes are publicly available in the ASTex li-
brary [ast17] and on shadertoy.

Synthesis of CS random-phase textures We have extended to the
CS context several noises from the sate of the art: Figure 4 is a di-
rect implementation of random phase noise ; Gabor noise, local
random-phase noise, and phasor noise are shown in Figure 1 (left).
Some additional high resolution results are available in our supple-
mental material.

We designed the spatially-varying PSD using functions or linear
interpolation between discrete PSD. Other interpolation operators
could be used, such as b-spline interpolation or Wasserstein inter-
polation [BPC16]. An estimation of this spectrum from an exem-
plar would be a powerful tool. This is however a difficult task, as
samples of polyphase components estimates are sparse. Moreover,
Guingo et al. [GSDC17] show that the extraction of spatial varia-
tions of the spectrum is difficult.

By-example synthesis We adapted spot noise and high-
performance noise. Many results on various patterns are shown in
Figure 5. The textures are unbounded and continuous: they can
be sampled in real-time at any location of an infinite plane. A
histogram transfer extends the application to examples with non
Gaussian histograms, and helps reducing artifacts (Figure 8).

We use Figure 11 to further investigate the comparison between
these two algorithms: row 1 shows the exemplar, row 2 shows
our CS-spot noise with no histogram transfer (to show what unal-
tered Gaussian cyclostationary results look like), and row 3 shows
our CS high-performance noise with histogram transfer. The ma-
jor strength of the CS-spot noise is to create variety. For instance,

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

246

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

Figure 11: Exemplars (row 1) synthesized with a CS-spot noise
and no histogram transfer (row 2), and with a CS-HPN with cyclo-
stationary histogram transfer (row 3). The Gaussian nature of our
CS-spot noise makes it work especially well with exemplars hav-
ing cyclostationary Gaussian statistics (A,B). Our CS-HPN instead
better preserves complex, non-Gaussian structures (E,F), but can
produce repetitions (circled in red) and new aberrant tiles (A,B,C).

columns A and B exhibit colored tiles, for which the colors are
close to the result of a normal variable: CS-spot noise (row 2) im-
plicitly estimates the Gaussian CS process that could have gener-
ated this tiling and creates new colors that match that process. This
result is only possible when the distribution of the colors of each
polyphase component corresponds to the result of a Gaussian pro-
cess, otherwise it creates false colors (columns C and D).

Real-life CS textures corresponding to the realization of a pure
Gaussian CS process are pretty rare. The global appearance and
periodicity of other CS textures is well kept by the CS-spot noise,
but the fine details and complex structures of these textures can be
lost by the process. As can be seen in columns E and F, our CS
high-performance noise (row 3) better reproduces such features.
This is due to the underlying tiling and blending algorithm, which,
in counterpart, may create slight visual repetitions (red circles). On
some other examples such as colored tiles (columns A, B, C and
D), unwanted patterns are created by the linear blending.

To summarize, our CS-spot noise should be used when variety
is especially important; our CS-HPN should instead by used when
fine details are more important; and neither process is capable of
preserving the appearance of CS textures for which the distribu-
tion of the colors on each polyphase component is not a Gaussian
histogram.

Our cyclostationary histogram transfer may be used to correct
the colors, as it is able to correct the first order statistics of the
exemplar. However, it does not act on higher-order statistics, and
neighboring transfers are independent, causing potentially unex-
pected color differences between neighbors, such as in column D
of Figure 11.

Among other existing by-example noise algorithms, it would be
worth investigating texton noise [GLM17]. However, a robust esti-
mation of the cyclostationary texton is not trivial.

Comparison with near-regular textures Cyclostationary tex-
tures represent a subset of near-regular textures for which there are

Figure 12: Comparison with the tile synthesizer of Liu et
al. [LLH04]. Tiles produced with their PCA technique (middle)
show a loss of contrast and detail, and further require a restitch-
ing of tiles to produce output textures. Our real-time CS spot noise
(right) avoids these drawbacks.

Figure 13: Comparison with the offline synthesis algorithm of
Haindl et al. [HH09] which reproduces a sub-class of CS textures.
Our CS spot and CS high-performance noises are real-time, and
better preserve finely structured and contrasted random patterns.

no, or very little, geometric alterations, but important color alter-
ations. Liu et al [LLH04] synthesize color transformations using
principal component analysis (PCA). In our experiments, we ob-
served that PCA often induces important losses of contrast and a
higher loss of details compared to our CS-spot noise, as shown in
Figure 12. Because they separates individual tiles, the output tiles
need to be stitched together, making real-time rendering harder to
obtain, unless a lower quality blending of tiles is used. Haindl et
al. [HH09] propose another offline synthesis algorithm for a sub-
class of CS textures, which are characterized by a stationary noise
within a periodic structure. We show in Figure 13 that CS-spot
noise better preserves finely structured and contrasted details. CS-
HPN even better preserves complex details.

Comparison with optimization and CNN techniques Until now,
optimization and CNN techniques are computationally expensive
and rarely suited for the rendering of unbounded textures, whereas
speed and unbounded size are two core properties of our methods.

We show in Figure 14 a side by side comparison with "Deep cor-
relations" [SCO17], which attempts to recover automatically repet-
itive structures in exemplars. Our methods better preserve fine de-
tails. More comparisons are given in the supplementary materials.
Our model has the advantage of offering some guarantees: exem-
plars that fall in the class of cyclostationary noise textures are faith-
fully synthesized, and geometric regularity is perfectly reproduced.

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

247

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

Figure 14: Comparison with the CNN synthesizer of Sendik et
al. [SCO17]. This synthesis technique is not specifically address-
ing cyclostationary textures, and sometimes fails to capture the pe-
riodicity of statistics. Additionally, it is offline and works for small
bounded textures: the opposite of our approach.

We believe CNN techniques could be helpful for detecting op-
timal period vectors according to more complex criteria, such as
visual criteria, and thus replace the method described in section 6,
or they could possibly provide a more robust way of estimating cy-
clostationary histograms.

Geometric variations As of now, geometric variations are not
handled with our approach. Liu et al [LLH04] apply both geometric
and color transformations, which we could a priori also do. Spatial
warping of grids and barycentric coordinates are used to apply ge-
ometric alterations. However, we experienced that this works only
well if colors have low contrasts and low frequencies. When col-
ors are characterized by high frequencies and strong contrasts, spa-
tial warping generates visual artifacts such as overstretching of de-
tails, unnatural distorted patterns and sampling artifacts. Devising
an elaborated cyclostationary–like process, which considers both
alterations simultaneously, seems like a difficult task that could be
an interesting topic for future research.

8. Conclusion

In this paper, we introduced cyclostationary Gaussian noise, a new
type of noise able to synthesize cyclostationary noise textures, char-
acterized by the periodicity of their statistics. As a generalization of
stationary noise, it broadens the range of patterns that noise is able
to address. Thereby, a key application is the more efficient manage-
ment of stochastic color transformations in near-regular textures.
We defined a frame for our models by presenting cyclostationary
processes and noises, their statistics and estimators, and cyclosta-
tionary textures. We provided a model to synthesize a cyclostation-
ary texture by modulating a stationary process and by designing a
spatially-varying power spectral density; we also provided a cyclo-
stationary version of the ADSN model. This allowed us to gener-
alize five procedural noises to the cyclostationary case: local ran-
dom phase noise, Gabor noise, phasor noise, spot noise and high-
performance noise. We showed how to execute a first order statis-
tics correction on outputs generated with by-example synthesis in
a cyclostationary context to extend the scope of Gaussian cyclo-

stationary noise to a wider class of cyclostationary textures. We
showed how to estimate the periods of an exemplar, required for
by-example synthesis. Finally, we compared our synthesis to state
of the art methods, and discussed limits and future works.

Acknowledgments

This work has been partially funded by the project HDWorlds from
the Agence Nationale de la Recherche (ANR-16-CE33-0001). We
thank Xavier Chermain for his help with shadertoy. All textures
are provided by https://textures.com, except for those of Fig-
ure 13 which are taken from Haindl et al. [HH09].

References
[ast17] ASTex: an open-source library for texture analysis and synthesis.
https://github.com/ASTex-ICube/ASTex, 2017. 8

[Ben58] W. R. Bennet. Statistics of regenerative digital transmission.
Bell. Syst. Tech. J., 37:1501–1542, 1958. 3

[BPC16] Nicolas Bonneel, Gabriel Peyré, and Marco Cuturi. Wasserstein
barycentric coordinates: histogram regression using optimal transport.
ACM Trans. Graph., 35(4):71–1, 2016. 8

[Bur19] Brent Burley. On histogram-preserving blending for random-
ized texture tiling. Journal of Computer Graphics Techniques (JCGT),
8(4):31–53, November 2019. 2, 6, 7

[CB11] Y. Cai and G. Baciu. Detection of repetitive patterns in near reg-
ular texture images. In 2011 IEEE 10th IVMSP Workshop: Perception
and Visual Signal Analysis, pages 60–65, 2011. 2

[CB13] Y. Cai and G. Baciu. Detecting, grouping, and structure inference
for invariant repetitive patterns in images. IEEE Transactions on Image
Processing, 22(6):2343–2355, 2013. 2

[CGG19] Arthur Cavalier, Guillaume Gilet, and Djamchid Ghazanfar-
pour. Local spot noise for procedural surface details synthesis. Com-
puters & Graphics, 85:92 – 99, 2019. 2, 3, 5

[CSHD03] Michael F. Cohen, Jonathan Shade, Stefan Hiller, and Oliver
Deussen. Wang tiles for image and texture generation. ACM Transac-
tions on Graphics, 22(3):287–294, 2003. 2

[DED05] Khalid Djado, Richard Egli, and François Deschênes. Extrac-
tion of a representative tile from a near-periodic texture. In Proceedings
of the 3rd International Conference on Computer Graphics and Inter-
active Techniques in Australasia and South East Asia, GRAPHITE ’05,
page 331–337, New York, NY, USA, 2005. Association for Computing
Machinery. 2

[DH18] Thomas Deliot and Eric Heitz. Procedural stochastic textures by
tiling and blending. GPU Zen 2: Advanced Rendering Techniques, 2018.
2, 6, 7, 8

[EF01] Alexei A. Efros and William T. Freeman. Image quilting for tex-
ture synthesis and transfer. In Proceedings of the 28th Annual Confer-
ence on Computer Graphics and Interactive Techniques, SIGGRAPH
’01, pages 341–346. ACM, 2001. 2

[GEB15] Leon Gatys, Alexander S Ecker, and Matthias Bethge. Texture
synthesis using convolutional neural networks. Advances in neural in-
formation processing systems, 28:262–270, 2015. 2

[GGM11] Bruno Galerne, Yann Gousseau, and Jean-Michel Morel. Ran-
dom phase textures: Theory and synthesis. IEEE Transactions on Image
Processing, 20(1):257 – 267, 2011. 2, 3, 4, 5, 6, 8, 11

[GLLD12] Bruno Galerne, Ares Lagae, Sylvain Lefebvre, and George
Drettakis. Gabor noise by example. ACM Transactions on Graphics
(Proceedings of ACM SIGGRAPH 2012), 31(4):73:1–73:9, July 2012. 2

[GLM17] B. Galerne, A. Leclaire, and L. Moisan. Texton noise. Com-
puter Graphics Forum, 36(8):205–218, 2017. 2, 3, 9

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

248

https://textures.com
https://github.com/ASTex-ICube/ASTex

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

[GLR17] Bruno Galerne, Arthur Leclaire, and Julien Rabin. Semi-
discrete optimal transport in patch space for enriching gaussian textures.
In Geometric Science of Information, volume 10589 of Lecture Notes in
Computer Science, Paris, France, November 2017. 7

[GRGH20] Jorge Gutierrez, Julien Rabin, Bruno Galerne, and Thomas
Hurtut. On demand solid texture synthesis using deep 3d networks. In
Computer Graphics Forum, volume 39, pages 511–530. Wiley Online
Library, 2020. 2

[GSDC17] Geoffrey Guingo, Basile Sauvage, Jean-Michel Dischler, and
Marie-Paule Cani. Bi-layer textures: a model for synthesis and deforma-
tion of composite textures. Computer Graphics Forum, 36(4):111–122,
2017. 2, 3, 5, 8

[GSV+14] Guillaume Gilet, Basile Sauvage, Kenneth Vanhoey, Jean-
Michel Dischler, and Djamchid Ghazanfarpour. Local random-phase
noise for procedural texturing. ACM Trans. Graph., 33(6):195:1–195:11,
November 2014. 1, 2, 3, 5

[HH09] Michal Haindl and Martin Hatka. Near-regular texture synthesis.
In Xiaoyi Jiang and Nicolai Petkov, editors, Computer Analysis of Im-
ages and Patterns, pages 1138–1145, Berlin, Heidelberg, 2009. Springer
Berlin Heidelberg. 2, 5, 9, 10

[HN18] Eric Heitz and Fabrice Neyret. High-performance by-example
noise using a histogram-preserving blending operator. Eurographics
Symposium on High-Performance Graphics 2018, 2018. 1, 2, 3, 6, 7,
8

[KGE18] A. Kipnis, A. J. Goldsmith, and Y. C. Eldar. The distortion rate
function of cyclostationary gaussian processes. IEEE Transactions on
Information Theory, 64(5):3810–3824, 2018. 3, 4

[KSE+03] Vivek Kwatra, Arno Schödl, Irfan Essa, Greg Turk, and Aaron
Bobick. Graphcut textures: Image and video synthesis using graph cuts.
ACM Trans. Graph., 22(3):277–286, 2003. 2

[Lap17] Amos Lapidoth. A foundation in digital communication. Cam-
bridge University Press, 2017. 4

[Lew84] John-Peter Lewis. Texture synthesis for digital painting. SIG-
GRAPH Comput. Graph., 18(3):245–252, January 1984. 2

[LGX16] Gang Liu, Yann Gousseau, and Gui-Song Xia. Texture syn-
thesis through convolutional neural networks and spectrum constraints.
In 2016 23rd International Conference on Pattern Recognition (ICPR),
pages 3234–3239. IEEE, 2016. 2

[LH05] Sylvain Lefebvre and Hugues Hoppe. Parallel controllable tex-
ture synthesis. In ACM SIGGRAPH 2005 Papers, SIGGRAPH ’05, page
777–786, New York, NY, USA, 2005. Association for Computing Ma-
chinery. 2

[LHW+04] Wen-Chieh Lin, James H. Hays, Chenyu Wu, Vivek Kwatra,
and Yanxi Liu. A comparison study of four texture synthesis algorithms
on regular and near-regular textures. Technical report, Robotics Institute,
Carnegie Mellon University, 2004. 2

[LLC+10] Ares Lagae, Sylvain Lefebvre, Rob Cook, Tony DeRose,
George Drettakis, D.S. Ebert, J.P. Lewis, Ken Perlin, and Matthias
Zwicker. State of the art in procedural noise functions. In Helwig Hauser
and Erik Reinhard, editors, EG 2010 - State of the Art Reports. Euro-
graphics, Eurographics Association, May 2010. 3

[LLD11] Ares Lagae, Sylvain Lefebvre, and Philip Dutré. Improving ga-
bor noise. IEEE Transactions on Visualization and Computer Graphics,
2011. 2

[LLDD09] Ares Lagae, Sylvain Lefebvre, George Drettakis, and Philip
Dutré. Procedural noise using sparse gabor convolution. ACM Transac-
tions on Graphics (Proceedings of ACM SIGGRAPH 2009), 28(3):54–
64, July 2009. 2, 5

[LLH04] Y. Liu, W-C. Lin, and J. Hays. Near-regular texture analysis
and manipulation. ACM Transactions on Graphics (SIGGRAPH 2004),
2004. 2, 9, 10

[LLX+01] Lin Liang, Ce Liu, Ying-Qing Xu, Baining Guo, and Heung-
Yeung Shum. Real-time texture synthesis by patch-based sampling.
ACM Trans. Graph., 20(3):127–150, 2001. 2

[LNS+15] Siying Liu, Tian-Tsong Ng, Kalyan Sunkavalli, Minh N. Do,
Eli Shechtman, and Nathan Carr. Patchmatch-based automatic lattice
detection for near-regular textures. In Proceedings of the IEEE Interna-
tional Conference on Computer Vision (ICCV), December 2015. 2

[LPVV17] L. Lettry, M. Perdoch, K. Vanhoey, and L. Van Gool. Repeated
pattern detection using cnn activations. In 2017 IEEE Winter Conference
on Applications of Computer Vision (WACV), pages 47–55, 2017. 2

[LTL05] Yanxi Liu, Yanghai Tsin, and Wen-Chieh Lin. The promise and
perils of near-regular texture. International Journal of Computer Vision,
62(1-2):145–159, 2005. 2

[Nap19] Antonio Napolitano. Cyclostationary processes and time series:
theory, applications, and generalizations. Academic Press, 2019. 3, 4, 5

[NMMK05] Andre Nicoll, Jan Meseth, Gero Müller, and Reinhard Klein.
Fractional fourier texture masks: Guiding near-regular texture synthesis.
Computer Graphics Forum, 24:569 – 579, 10 2005. 2

[PBCL09] Minwoo Park, Kyle Brocklehurst, Robert T Collins, and Yanxi
Liu. Deformed lattice detection in real-world images using mean-shift
belief propagation. IEEE Transactions on Pattern Analysis and Machine
Intelligence, 31(10):1804–1816, 2009. 2

[PGDG16] Nicolas Pavie, Guillaume Gilet, Jean-Michel Dischler, and
Djamchid Ghazanfarpour. Procedural texture synthesis by locally con-
trolled spot noise. Computer Science Research Notes, 2601:71–79, 2016.
2, 3, 5

[RHE11] Diego Lopez Recas, Anna Hilsmann, and Peter Eisert. Near-
Regular Texture Synthesis by Random Sampling and Gap Filling. In Pe-
ter Eisert, Joachim Hornegger, and Konrad Polthier, editors, Vision, Mod-
eling, and Visualization (2011). The Eurographics Association, 2011. 2

[SCO17] Omry Sendik and Daniel Cohen-Or. Deep correlations for tex-
ture synthesis. ACM Trans. Graph., 36(4), July 2017. 2, 9, 10

[Sta97] Jos Stam. Aperiodic texture mapping. 08 1997. 2

[TEZ+19] Thibault Tricard, Semyon Efremov, Cédric Zanni, Fabrice
Neyret, Jonàs Martínez, and Sylvain Lefebvre. Procedural phasor noise.
ACM Transactions on Graphics, 38(4):Article No. 57:1–13, July 2019.
1, 2, 3, 5

[TNVT19] Vincent Tavernier, Fabrice Neyret, Romain Vergne, and Joëlle
Thollot. Making gabor noise fast and normalized. In The Eurograph-
ics Association, editor, Eurographics 2019 - 40th Annual Conference of
the European Association for Computer Graphics, Eurographics 2019 -
Short Papers, pages 37–40, Genoa, Italy, May 2019. 2

[ULVL16] Dmitry Ulyanov, Vadim Lebedev, Andrea Vedaldi, and Vic-
tor S Lempitsky. Texture networks: Feed-forward synthesis of textures
and stylized images. In ICML, volume 1, page 4, 2016. 2

[vW91] Jarke J. van Wijk. Spot noise texture synthesis for data visualiza-
tion. SIGGRAPH Comput. Graph., 25(4):309–318, 1991. 2, 6, 8

[Wei04] Li-Yi Wei. Tile-based texture mapping on graphics hardware. In
Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Conference on
Graphics Hardware, HWWS ’04, pages 55–63. ACM, 2004. 2

[WHC+06] Wen-Chieh Lin, J. Hays, Chenyu Wu, Yanxi Liu, and V. Kwa-
tra. Quantitative evaluation of near regular texture synthesis algorithms.
In 2006 IEEE Computer Society Conference on Computer Vision and
Pattern Recognition (CVPR’06), volume 1, pages 427–434, 2006. 2

[WY04] Qing Wu and Yizhou Yu. Feature matching and deformation for
texture synthesis. ACM Trans. Graph., 23(3):364–367, August 2004. 2

Appendix A: Autocovariance of the cyclostationary ADSN

We prove the claim of section 4.3 that the second order moments of
the spot J and its CS-ADSN I are identical. We prove it similarly
to Galerne et al. [GGM11] for the stationary case. To enable an
accurate estimation of the autocovariance on a spot, we consider
that J is periodic. Let us denote by L the lattice described by the

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

249

N. Lutz, B. Sauvage & J-M. Dischler / Cyclostationary Gaussian noise: theory and synthesis

vectors t0 and t1 as in Figure 3. We call |L| the number of nodes of
the lattice on the spot J.

The autocovariance of the spot J (which is the autocovariance
of section 3.2 with the mean subtracted to each term) can thus be
estimated by

R̃J(x, t) =
1
|L| ∑

u∈L
(J(x−u)−M(x))(J(x−u+ t)−M(x+ t))

(12)
since M(x) = M(x− u) for all x ∈ Ω, u ∈ L. Let us define J̇ =

1√
|J|

(J−M). The autocovariance function of I is

RI(x, t) = E[∑
u∈L

J̇(x−u)WL(u) ∑
v∈L

J̇(x+ t−v)WL(v)]

= |Ω−| ∑
u∈L

J̇(x−u)J̇(x+ t−u)

= R̃J(x, t)

(13)

since |Ω
−|
|J| = 1

|L| , and E[WL(u)WL(v)] is equal to 0 when u 6= v,

u /∈ L or v /∈ L, and
√
|Ω−| otherwise. I is therefore a centered cy-

clostationary Gaussian process with second order moment R̃J(x, t).

c© 2021 The Author(s)
Computer Graphics Forum c© 2021 The Eurographics Association and John Wiley & Sons Ltd.

250

