
EUROGRAPHICS 2021 / N. Mitra and I. Viola
(Guest Editors)

Volume 40 (2021), Number 2

Semantics-Guided Latent Space Exploration for Shape Generation

Tansin Jahan† Yanran Guan† Oliver van Kaick

School of Computer Science, Carleton University, Canada

Abstract
We introduce an approach to incorporate user guidance into shape generation approaches based on deep networks. Generative
networks such as autoencoders and generative adversarial networks are trained to encode shapes into latent vectors, effectively
learning a latent shape space that can be sampled for generating new shapes. Our main idea is to enable users to explore
the shape space with the use of high-level semantic keywords. Specifically, the user inputs a set of keywords that describe
the general attributes of the shape to be generated, e.g., “four legs” for a chair. Then, our method maps the keywords to
a subspace of the latent space, where the subspace captures the shapes possessing the specified attributes. The user then
explores only this subspace to search for shapes that satisfy the design goal, in a process similar to using a parametric shape
model. Our exploratory approach allows users to model shapes at a high level without the need for advanced artistic skills, in
contrast to existing methods that allow to guide the generation with sketching or partial modeling of a shape. Our technical
contribution to enable this exploration-based approach is the introduction of a label regression neural network coupled with
shape encoder/decoder networks. The label regression network takes the user-provided keywords and maps them to distributions
in the latent space. We show that our method allows users to explore the shape space and generate a variety of shapes with
selected high-level attributes.

CCS Concepts
• Computing methodologies → Shape modeling;

1. Introduction

Creating digital models of 3D shapes is a challenging task for
novice users, since traditional modeling tools involve the creation
of shapes at a low level, where all the fine details of the sur-
faces have to be explicitly modeled. Thus, over the last twenty
years, computer graphics research has also developed alternative
approaches to facilitate modeling of shapes for non-expert users.
One line of research proposed the use of parametric models of
shapes. With these models, the user can synthesize new shapes,
such as human faces [BV99] or bodies [ASK∗05], by manipulating
a set of sliders that specify the parameters of a shape model. Thus,
the shape does not have to be explicitly modeled by the user and
can be synthesized at a high level. However, conventional paramet-
ric shape models are only applicable to shapes that can be described
by a template, since a one-to-one mapping between all the shapes
in a collection is required by these methods.

Recently, there has been great interest in using deep neu-
ral networks for synthesizing shapes, such as variational au-
toencoders (VAEs) [BLRW16] or generative adversarial networks
(GANs) [WZX∗16], which learn statistical models from collections

† Both authors contributed equally to this work.

Figure 1: Our approach for semantics-guided shape generation:
after specifying keywords that constrain the attributes of the gener-
ated shapes (“straight square back” and “four straight short legs”
in this example), the user can manipulate a set of sliders to ex-
plore the subspace of shapes with these attributes. The subspace is
modeled as a set of mixtures of distributions [Bis94], one for each
dimension of a latent representation of the shapes. The example
shows three shapes generated by navigating through one specific
dimension of the shape space.

of shapes. In these approaches, the networks learn to encode high-
dimensional shapes into low-dimensional latent vectors and then
decode the latent vectors back into shapes, so that a shape can be
generated by simply sampling a latent vector and providing it to the
decoder. Thus, the space spanned by the latent vectors can be seen

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.142619

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-1045-2129
https://orcid.org/0000-0002-7348-366X
https://orcid.org/0000-0001-9869-6832

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

as a type of parametric shape space. These approaches have sparked
great interest since the shape spaces can be learned with weaker
constraints, requiring only a consistent alignment of the shapes in
the collection rather than a mapping to a template.

There have been several efforts investigating the best shape rep-
resentation to be used in conjunction with deep networks, such as
voxel grids [WZX∗16,BLRW16], octrees [WLG∗17], atlases of pa-
rameterizations [GFK∗18], implicit fields [CZ19, PFS∗19], point
clouds [ADMG18], and graphs of parts [LXC∗17, NW17]. How-
ever, less effort has been spent on how to effectively control these
generative models for enabling users to create a shape according to
a pre-defined set of goals or an intended design.

Although the shape spaces learned by the networks are low-
dimensional when compared to the shapes themselves, to allow the
networks to learn effective shape models, the latent vectors still
need to possess a large number of dimensions, e.g., 128 dimensions
or more. Thus, manually exploring the shape space spanned by the
latent vectors is impractical, since many dimensions have to be con-
sidered and not all latent vectors correspond to meaningful shapes.
As a result, in the literature, most of the synthesis methods have
been evaluated by randomly sampling latent vectors or interpolat-
ing these random vectors [WZX∗16]. One work proposes a “snap-
ping” mechanism akin to sketching approaches, where the user cre-
ates a partial model by aggregating cubic blocks with an interface
similar to Minecraft, and the method then “snaps” the shape to the
manifold defined by the latent space, updating the user-modeled
shape to the closest matching shape in the latent space [LYF17].
Other works introduce approaches that convert 2D sketches drawn
by a user into 3D objects, either with the use of procedural mod-
eling [HKYM17] or deformable models [SBS19]. These are valu-
able tools for aiding modeling with neural networks, but they still
require sufficient artistic skills from the user.

In this paper, we introduce a method to facilitate the navigation
of the shape spaces learned with deep networks by incorporating
semantic information into the process. Our key idea is to let the
user explore the shape space according to high-level semantic key-
words, where the keywords characterize the attributes that the in-
tended shape should possess, e.g., “four legs” and “square back”
for a chair. Specifically, given the user input, we map the attributes
to a subspace of the latent space, where the subspace captures the
shapes possessing the attributes. The user then explores only the
subspace to search for shapes that satisfy the intended design (Fig-
ure 1), similarly to using a parametric shape model. To enable an
efficient exploration, we map the keywords to distributions of the
latent dimensions, such that the user is only required to explore di-
mensions with significant variance (such as the distribution shown
in Figure 1). Thus, our method enables an exploratory modeling
approach, where the user can model shapes at a high level and is
not required to possess artistic skills as required by sketching or
partial modeling approaches.

To enable this exploration-based approach, our technical contri-
bution is the introduction of a method composed of a label regres-
sion neural network coupled with shape encoder/decoder networks.
The label regression network (LRN) has a custom architecture that
takes the user-provided keywords and maps them to multiple dis-
tributions in the latent space. These distributions capture the multi-

ple modes that characterize the shapes related to the selected key-
words. The network is trained with the latent representation of a
collection of shapes paired with semantic keywords. Moreover, for
encoding/decoding shapes to/from latent vectors, we use networks
introduced in previous work and couple them with our LRN to pro-
vide a complete framework for exploration. Specifically, we use a
generalized autoencoder (GAE) [WHWW14, GJvK20] for encod-
ing shapes, and a feed-forward network with fully-connected lay-
ers based on an implicit representation [CZ19] for decoding shapes.
Note that our framework does not allow to synthesize entirely novel
shapes, but is able to interpolate and thus combine attributes of the
training shapes, which is the goal of the exploratory approach.

We apply our method to three collections of shapes and show
with a qualitative evaluation that this solution enables users to ex-
plore the latent space with less effort. We also present a quantitative
evaluation of the quality of the generated shapes based on incep-
tion scores, and an analysis of the method to demonstrate that the
learned models are sound.

2. Related work

In this section, we briefly review traditional statistical shape models
and then discuss the latest developments using deep networks.

Statistical and parametric shape models. Statistical shape mod-
els summarize an entire collection of shapes of the same class with
a set of parameters [BSBW16]. To obtain a useful model, the num-
ber of parameters in the model should usually be much smaller
than the dimensionality of the data, e.g., 20 parameters compared
to thousands of vertices that compose the triangle meshes of the
shapes. A popular parametric model in the literature is built by first
representing all the shapes in a collection with a consistent trian-
gle mesh, where all the vertices across the meshes are in corre-
spondence. Then, by applying a statistical analysis method such
as principal component analysis (PCA) to the vertex positions,
the main modes of variation of the shapes can be discovered. A
user can then explore the shape space by tweaking a set of slid-
ers that modify the parameters, and visualize the corresponding
shapes [BSBW16]. This type of approach has been used most no-
tably for creating shape models of human faces [BV99] and bod-
ies [ASK∗05]. Nevertheless, these methods can also be applied to
other types of shapes, e.g., Wang et al. [WLJ∗18] create statistical
models of botanical trees by defining a metric in the shape space
and then analyzing the data with a geodesic form of PCA.

Similarly to statistical models, parametric shape models allow to
generate variations of a base shape by manipulating a set of param-
eters, although the parameters are explicitly defined during mod-
eling. Based on this representation, Schulz et al. [SSB∗17] per-
form retrieval on parametric shape collections by describing the
parametric shapes as manifolds in a descriptor space. Talton et
al. [TGY∗09] introduce an interface to enable exploration of para-
metric models by learning a probability map over the design space
with kernel density estimation.

Modeling aided by keywords. More closely related to our work,
Streuber et al. [SQRH∗16] introduce a method to generate human
bodies with user-defined ratings of textual shape attributes, e.g.,

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

116

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

the user quantifies how “muscular” or “curvy” the body should
be. The main building block of the approach is the learning of a
function that relates the textual attribute ratings to parameters of a
human shape model. Chaudhuri et al. [CKGF13] learn an associ-
ation between semantic attributes given by users and shape parts
with an optimization approach. The association is then used in an
exploratory modeling interface. Yumer et al. [YCHK15] allow to
continuously deform shapes by manipulating handles associated to
semantic keywords such as “ergonomic” or “elegant”. Achlioptas
et al. [AFH∗19] investigate different natural language models to
produce or evaluate textual descriptions reflecting the structure of
shapes. Chen et al. [CCS∗18] introduce a method for generating 3D
shapes from textual descriptions by learning a joint text and shape
embedding space.

Our method shares similarities with these works, such as the use
of keyword attributes to describe the characteristics of the shapes
to be created. However, our method is designed specifically to be
used with recent deep networks that learn latent shape spaces, and
allows further exploration of the latent space.

Object generation with deep networks. In the last few years,
deep neural networks have shown great success in performing gen-
erative tasks, being used for example to generate images [RAY∗16],
indoor scenes [WSCR18], and terrains [GDG∗17]. Our focus in
this paper is on the generation of man-made objects, and a variety
of deep learning approaches for creating this type of data represen-
tation have also been introduced. Wu et al. [WZX∗16] introduced
a GAN that learns a latent space of object shapes based on a voxel
grid representation of the shapes. The latent space can then be sam-
pled to generate new objects. Similarly, Brock et al. [BLRW16]
use VAEs and voxel grids to learn a shape space that can be used
for object generation, while Dai et al. [DQN17] use an encoder-
predictor network to perform shape completion, which can be seen
as a constrained type of synthesis.

Moreover, since a voxelization is not the ideal parameterization
for 2D surfaces embedded in 3D, other approaches have explored
alternative shape representations in conjunction with neural net-
works. Groueix et al. [GFK∗18] explicitly store the shape topol-
ogy by encoding the shape as an atlas of local parameterizations.
Park et al. [PFS∗19] and Chen and Zhang [CZ19] encode shapes
as implicit functions which are able to generate much smoother ob-
jects. Park et al. [PFS∗19] make use of signed distance functions,
which can be reconstructed with existing methods, while Chen and
Zhang [CZ19] encode shapes as inside/outside binary indicator
functions. Furthermore, Chen et al. [CTZ20] use an implicit en-
coding to generate shapes with a recursive subdivision of space into
convex sets. For shapes that can be represented as graphs of parts,
Li et al. [LXC∗17] introduce an approach that encodes shapes as
a hierarchy of parts, while Nash and Williams [NW17] introduce
a method that models both part geometry and connectivity. Both
methods can be used for shape generation. Wu et al [WZX∗20]
generates shapes by sequential assembly of shape parts.

All of the methods discussed above can be used to generate
shapes based on input latent vectors or example representations of
shapes. The latter can be achieved in encoder-decoder networks by
training the encoder with a different data representation than the

decoder, e.g., encoding an image into a latent vector and then de-
coding it into a voxel grid. However, directly controlling the gen-
eration to achieve a desired design is challenging, as in the case
when the user knows only the general attributes that the designed
shape should possess. We see our work as a way of complementing
the existing approaches by enabling the user to explore the latent
spaces and more closely control the shape generation.

Interactive modeling with deep networks. A few deep learning
approaches have been proposed to control the generation of shapes
more closely. Guérin et al. [GDG∗17] introduce a terrain authoring
system, where the user can draw a 2D sketch of the topographic
features of a terrain, and a GAN then synthesizes a corresponding
elevation model. For man-made shapes, Huang et al. [HKYM17]
introduce an approach where a user can draw a 2D sketch of the
desired shape, and the system then generates a corresponding 3D
object. This is accomplished by learning a neural network that
maps sketches to parameters of a procedural modeling program,
which then synthesizes the shape based on an algorithm. Smirnov
et al. [SBS19] map sketches to deformable parametric templates.
Zekun et al. [ZAESB20] introduce a method where shapes repre-
sented with a set of primitive geometries can be manipulated to
guide the generation of fine-grained meshes. This is accomplished
by learning a joint embedding of coarse and fine-grained shape ge-
ometries. Liu et al. [LYF17] allows to create partial shapes with
a Minecraft-type interface, which are then projected onto the la-
tent manifold learned by a GAN, providing a corresponding shape
in the latent space. Sung et al. [SSK∗17] introduce the Comple-
mentMe system where a user can design a man-made shape in an
interactive manner. Given a partially constructed shape, the system
suggests additional parts that can be added to the shape, according
to a graph-based shape model learned by neural networks.

In this paper, we also introduce an approach that allows users
to control the generation of shapes in a more interactive manner. In
contrast to the works discussed above, our method allows the gener-
ation to be performed as a mix of a guided and exploratory process.
The user first provides keywords that describe the high-level char-
acteristics of the shapes. The system then allows the user to explore
the subspace of shapes that possess these characteristics. This is ad-
vantageous in that the user may have a general idea of the intended
design, but may not have necessarily determined all the fine details
that the final shape should possess, or may not have sufficient artis-
tic skills to manually model or draw the fine details. Differently
from simply learning an embedding of shapes [LSQ∗15], the use
of deep generative networks allow us to interpolate shapes in the
collection, leading to novel shapes. We explain our method in more
detail as follows.

3. Semantics-guided shape generation

Our solution to semantics-guided shape generation consists of three
deep networks: (i) a label regression network (LRN) that learns a
mapping from keywords to the latent space of shapes, (ii) a shape
encoder network (SEN) that learns a latent manifold from a set of
shapes, and (iii) a shape decoder network (SDN) that reconstructs
distance fields of shapes from samples of the latent manifold. The
use of the three networks in our workflow is illustrated in Figure 2.
We describe the three networks in the following subsections.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

117

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

z l

. . .

SEN

LRN

SDN

(α,µ,σ)

Input 1

Input 2

Output 1

Output 2 Sample

ζ1 ζ2 ζN

. . .

Input 3 Output 3

Figure 2: Our semantics-guided shape generation involves three different deep networks. During the training phase, we train the shape
encoder network (SEN) to learn a latent manifold from a set of shapes represented by volumes. Then, for each shape, we use its learned
latent representation z and its user-provided labels l to train the label regression network (LRN), which learns to map a set of labels into a
set of mixture models (α,µ,σ) that describe distributions of latent vectors. After training, given only a set of requested labels l, we predict a
set of mixture models with the LRN. Then, we can sample latent vectors ζ from the mixture models and use the shape decoder network (SDN)
to reconstruct occupancy fields of shapes from the vectors.

3.1. Label regression network (LRN)

The LRN takes as input user-provided keywords that describe a
target shape. The network then maps the keywords to the latent
space learned by the SEN. Thus, the output encoding of the latent
space used by the LRN is tied to the representation learned by the
SEN. Our SEN maps shapes to latent vectors of dimension n, while
the SDN maps latent vectors back to shapes. The SEN and SDN
are described in the following sections.

A first design for the LRN would be to simply train it to map
keywords to latent vectors. That would allow to map a set of key-
words to a single point in the shape space, but would not allow the
users to explore the shape variability. Thus, our chosen design for
the network is to map a set of keywords to a mixture of h Gaus-
sian distributions of latent vectors, which can be seen as forming
a probabilistic subspace of the shape space. In our work, we use
h = 5. The user can then sample different vectors from the mixture
to explore the subspace, or methodically change the entries of the
latent vectors according to the distributions.

Input and output. The input to the LRN is a set of keywords rep-
resented as a binary vector l ∈ Bm, where the entry li associated
to the i-th keyword in the dictionary is set to 1 or 0 depending on
whether the keyword is selected or not. The output of the network
is a mixture model of latent vectors conditioned on the input la-
bels, represented as three vectors α, µ, and σ, where α is a h-
dimensional vector storing the mixing coefficient for each distribu-
tion, and µ and σ are two vectors with dimension h×n storing the
mean and standard deviation that represent each Gaussian distribu-
tion in the mixture model. Specifically, for each dimension i of a
hypothetical latent vector z, the network outputs h pairs of mean
and standard deviation {(µwi,σwi) | w ∈ {1,2, . . . ,h}}, with each
pair associated with a mixing coefficient αw.

Network architecture. The architecture of our LRN is illustrated
with the diagram in Figure 3. The regression is performed with a
feed-forward deep network composed of three hidden layers, one
input layer with m nodes (with one node per label), and three out-

put layers that provide the parameters of n mixture models (one
mixture model per dimension of the latent space). All the layers are
fully-connected, since all of the output distributions may be depen-
dent on all of the input labels. Since the standard deviations σwi
should always be positive, for the output layer producing σ, we use
modified exponential linear units (ELUs) as the activation functions
to ensure the non-negativity of the outputs. We define the ELU for
an input scalar x as:

ELU(x) =

{
x+1, if x≥ 0,
exp(x), otherwise.

(1)

Training and loss function. The LRN is trained with a set TLRN =
{(l j,z j)}. Each sample (l j,z j) corresponds to one training shape,
containing the binary label vector l j that describes the attributes
of the training shape and the latent vector z j ∈ Rn produced for
the shape by the SEN. We describe our dataset in Section 4. The
training objective of the regression is to produce, for each entry i
of each sample z j, a mixture model that maximizes the sampling
probability of z j

i . The mixture model is composed of h Gaussian
distributions and its probability density is represented by a linear
combination of Gaussian kernel functions [Bis94]:

P(z j
i | l

j) =
h

∑
w=1

αwφwi(z
j
i | l

j), (2)

where h is the number of components in the mixture, αw is the mix-
ing coefficient, and φwi(z

j
i | l

j) is the probability density function
(PDF) of the target z j

i for the w-th kernel:

φwi(z
j
i | l

j) =
1

σwi
√

2π
exp

−
(

z j
i −µwi

)2

2σw2
i

 , (3)

where µwi and σwi represent the mean and standard deviation of the
w-th kernel for each entry i. Thus, the loss function of the network
is defined as minimizing the negative logarithm of the PDFs of the

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

118

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation
..

.

In
pu

t

m

..
.

..
.

512
1024

..
.

512

..
.

h×n

..
.

h

..
.

h×n

O
ut

pu
t

l

α

µ

σ

Figure 3: The architecture of our feed-forward deep network for
label regression, mapping m input labels into n mixture models,
with each model having h components. The numbers denote the
dimensions of the input/output and intermediate representations.

kernels, which for one entry i of one sample j is denoted as:

LLRN =− log
(

P(z j
i | l

j)
)
. (4)

3.2. Shape encoder network (SEN)

We use a 3D generalized autoencoder (3D-GAE) [GJvK20] to en-
code shapes with our approach, where shapes are represented as
volumes partitioned into voxels. The reason for using a 3D-GAE is
that this network is able to learn a manifold latent space from data
relations explicitly provided during training. Specifically, by pro-
viding a measure of shape similarity to the network, the 3D-GAE
is able to learn a latent space where the proximity of latent vectors
corresponds to the similarity of their corresponding training shapes.
Moreover, we use a volumetric representation for encoding shapes
since a volume is simpler to process by convolutional neural net-
works than other representations. Nevertheless, our method can use
any encoder network that maps some representation of shapes into
a latent space. Specifically, as discussed in Section 3.1, the training
data TLRN for the label regression is composed of pairs (l j,z j) of
label and latent vectors. Thus, to generate the training data, we re-
quire a network that can encode shapes into a latent representation.
This requirement rules out the use of GANs commonly used for
shape synthesis, but other encoder networks such as autoencoders
(AEs), VAEs, and VAE-GANs [LSLW16] can be used.

Input and output. The SEN is composed of two networks: an en-
coder and a decoder. The encoder takes as input a shape represented
as a set of 32× 32× 32 voxels, where a voxel can be defined as
either occupied (1) or empty (0). The encoder outputs a latent rep-
resentation z∈Rn of the shape. The decoder then translates a latent
vector back into a shape represented as a volume. Note that, we re-
quire the encoder and decoder for training the network. However,

once the network has learned its objective, we discard the decoder
and use mainly the encoder to create the training data for the LRN.
Moreover, given that the last layer of the decoder uses a sigmoid
activation function, each output voxel contains a real value in the
range [0,1]. Thus, we transform each voxel into a binary value ac-
cording to a threshold of 0.5, that is, the voxel becomes 0 if the real
value is below 0.5, or 1 otherwise.

Network architecture. We use a symmetric architecture where
the encoder and decoder have the same number of layers. The en-
coder uses three layers for three levels of downsampling, while the
decoder performs upsampling also at three different levels. Specif-
ically, the input is downsampled from 32× 32× 32 to 4× 4× 4
using three convolutional layers followed by a batch normalization
layer that helps the network to learn features independently from
the output of previous layers. We use filters of size 4× 4× 4 and
stride 2 for all the convolutional layers. The output layer of the en-
coder, which generates the latent vector z, is a fully-connected layer
with a rectified linear unit (ReLU). We experimented with different
values for the size of the latent vectors and found that 128 dimen-
sions provide the best encodings with our architecture. The decoder
follows the inverse of this architecture for performing upsampling,
with the exception that the output layer uses a sigmoid activation
function.

Training and loss function. The 3D-GAE is trained with the GAE
loss [WHWW14], where the reconstruction x̂ j of each input shape
x j is compared to a set of shapes Ωx j , which consists of the k-
nearest neighbors of x j given by the Chamfer distance [FSG17]. In
our work, we use k = 10. The 3D-GAE loss combines the GAE loss
with the reconstruction error of each batch of shapes B, so that the
model can better converge to a global optimum [GJvK20]:

LSEN =
∥∥B−B̂∥∥2

+ ∑
x j∈B

∑
x j′∈Ωx j

s j, j′
∥∥∥x j′ − x̂ j

∥∥∥2
, (5)

where s j, j′ is the weight given by Laplacian eigenmaps [BN01]:

s j, j′ = exp

−
∥∥∥x j−x j′

∥∥∥2

t

 , (6)

and t is an empirical tuning parameter. In our work, we set t = 200.

The training set TSEN is composed of voxelized triangle meshes.
To voxelize a model, we subdivide its triangles until each edge is
smaller than the sides of a voxel, and then denote as occupied all
the voxels that contain vertices of the subdivided mesh.

3.3. Shape decoder network (SDN)

With the latent manifold learned by the SEN, instead of also using
a volumetric decoder to reconstruct latent vectors into shapes, we
use the network introduced by Chen and Zhang [CZ19] to decode
latent vectors into an implicit representation of shapes, which leads
to reconstructed shapes with a higher visual quality. Specifically,
the input latent vector ζ is reconstructed into an occupancy field
F , where F(p) = 0 for points outside the shape and F(p) = 1 for
points inside the shape.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

119

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

Input and output. The input to the decoder is an (n + 3)-
dimensional vector, composed of the n-dimensional vector ζ sam-
pled from the latent manifold concatenated with a 3D point p. The
implicit decoder aims to find a parameterization f (ζ,p) that maps
each input vector to the value F(p). Thus, the output of the net-
work is a value in the range [0,1] that indicates whether the point p
is inside or outside the shape encoded by ζ.

Network architecture. The SDN follows a feed-forward architec-
ture [CZ19], with five fully-connected hidden layers for five levels
of downsampling that have respectively 2048, 1024, 512, 256, and
128 units. Each of the first four hidden layers is skip-connected
with the input vector and all the five layers use leaky ReLU as the
activation function. The output layer is also fully-connected with
the previous hidden layer, but uses a sigmoid activation function.

Training and loss function. The SDN simply uses the mean
squared error as the loss function. For training the network, for each
input shape S, we first pre-compute a set of points P uniformly
sampled from S and the ground-truth occupancy field FS . Then,
for each point p ∈ P , we minimize the average squared difference
between the ground-truth occupancyFS(p) and the predicted value
f (ζ,p):

LSDN =
1
|P| ∑

p∈P
‖FS(p)− f (ζ,p)‖2 . (7)

The loss is summed for all training shapes. We use the latent
vectors learned for the training shapes by the SEN to train the SDN,
with each latent vector z j paired with a set of points P j sampled
from its corresponding shape. Thus, the training set can be denoted
as TSDN = {(z j,P j)}.

3.4. Exploration of the shape space

Once the three networks are trained, as explained above, the user
can employ them to perform an exploration of the latent space and
generate new shapes. The user first inputs a set of labels l which
are mapped with the LRN to three vectors (α,µ,σ) representing
the predicted mixture model. The mixture model is then used to
create a latent vector ζ according to further user input. Specifically,
our system first ignores the insignificant Gaussian components, i.e.,
components associated with low mixing coefficients α. Then, for a
Gaussian component w and each dimension i of the latent space,
our system exposes the dimension to the user only if σwi is sig-
nificant (larger than a threshold ε). If σwi is not significant, we set
ζi = µwi. We show the exposed dimensions to the user sorted by the
magnitude of the standard deviations. Finally, the user can explore
the exposed dimensions by varying a set of sliders that navigate
around the space (µwi−σwi,µwi +σwi) to define each ζi. For any
ζi defined with this process, the decoder network generates a cor-
responding shape. This results in an interactive experience where
the user can analyze the shape generated by the new parameters se-
lected. As we will discuss in Section 4, we observed experimentally
that the number of dimensions with large σ is relatively small, and
thus it is feasible for the user to manipulate them in an exploratory
manner.

4. Results and evaluation

We first describe the set up of our experiments and then present
qualitative results, followed by an overall evaluation of our method.
Our implementation is available at https://github.com/
IsaacGuan/SGSG.

4.1. Experimental setup

Shape dataset. We present results for our method on a set of 400
chairs from the COSEG dataset [WAvK∗12] and 100 tables and
lamps from the auto-aligned ModelNet40 [WSK∗15, SB15]. We
use attributes of the original shapes to derive the labels for training
the LRN, described as follows.

Label dataset. We assign labels to each shape of the dataset. The
labels describe a variety of visual attributes of the shapes, espe-
cially properties of their individual parts. To create the labels, we
define a set of shape features and their admissible values, which
are then transformed into binary labels. For example, the property
“leg length” of chairs admits the values “short” and “long”, which
are then transformed into the binary labels “leg length short” and
“leg length long”. More details of our label dataset are described in
Appendix A.

Optimizer and hyper-parameters for learning. We trained all
the networks with the Adam optimizer. We split the datasets into
training batches of 10 instances each for the LRN and SEN. As the
hidden layers of the LRN are fully-connected layers that require
extensive training, we set the learning rate for the LRN to 3×10−4

and train the network for 3000 epochs. For the SEN, we set the
learning rate to 1× 10−3 and train the network for 200 epochs.
And for the SDN, we use a learning rate of 5×10−5 and adopt the
progressive training scheme suggested by Chen and Zhang [CZ19],
where we first train the SDN for 50 epochs with occupancy fields
of shapes sampled from 16× 16× 16 grids, then 50 epochs with
occupancy fields sampled from 32×32×32 grids, and finally 100
epochs with occupancy fields sampled from 64× 64× 64 grids.
Also, we pre-train the SDN for chairs and fine-tune it with lamps
and tables.

Learning objectives. To prevent deep networks from overfitting,
it is important to train the networks with datasets that are large
enough and for an adequate number of epochs. In our setting, we
would argue that overfitting is less of a concern, since we are not us-
ing our networks to predict the encoding for unknown test shapes.
The main requirement in terms of generalization is that the network
should be able to perform a meaningful interpolation between the
latent vectors of the training shapes. We verify this requirement by
monitoring the training loss and with a visual inspection of the re-
sults. After training, the average losses for the LRN, SEN, and SDN
are respectively around 0.5, 3, and 0.03. Regarding the scalability
of our method, to augment a given dataset with more shapes, it is
possible to train the networks starting from the current set of neuron
weights to reduce training time.

Timing and machine configuration. Our deep networks were
trained with an NVIDIA GeForce RTX 2080 Ti GPU with 11GB

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

120

https://github.com/IsaacGuan/SGSG
https://github.com/IsaacGuan/SGSG

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

of memory and CUDA version 10.0. The prediction performed by
the LRN takes 1.1ms, while the generation of a shape, including
the implicit field prediction with the SDN and mesh creation with
marching cubes, takes 0.25s. Thus, once the networks are trained,
the method allows for real-time exploration of the shape subspaces.

4.2. Qualitative results

Table 1 shows example shapes generated with our approach. We
manually created these results with our exploration method, to
simulate the scenario where a user would explore the spaces con-
strained by the specified labels. Each shape was created in less than
a minute as can be seen in the supplementary video. Specifically,
to create these shapes, the user first selects a set of labels, which
are shown on the left column of the figure. The LRN then predicts
the mixtures of Gaussians for all the entries of the latent vectors.
The center column shows a summary of the predicted distributions.
Specifically, we take the standard deviation (σ) of the Gaussian dis-
tribution with most significant α in the mixture predicted for each
dimension, and show the sorted σ’s of all dimensions in the plots.
The right column shows examples of shapes that the user obtained
by varying the entries of the latent vectors with significant stan-
dard deviation. We see how the generated shapes show variations
in their structure and overall geometry. While the user was able to
generate a variety of shapes, all of the shapes in a row still possess
the attributes specified by the input labels. Moreover, we see in the
σ plots that not all the dimensions of the latent vectors need to be
considered in the exploration. We also see that some of the selected
labels provide richer subspaces with more variance (as seen by the
shape of the σ plots), while other labels constrain more the vari-
ation that can be found. Note also that the selected labels include
configurations of labels that do not exist in the training data.

We further examine the individual examples. In Table 1(a), (b),
and (f), the user provided a set of labels that constrain more the
seats and legs of chairs than their backs. Thus, the exploration of the
distributions of these three examples provides shapes that mainly
vary in the type of back. We observe that the backs of the generated
chairs vary from either straight to round and can also have holes
or not. The width of the seats in (b) also varies since the provided
label did not constrain the size of the seat. In (c) and (e), the user
provided many constrains for the back of the chairs and was able
to explore different types of legs, generating, e.g., beam-type legs,
three/four roller legs, and four straight legs. In (d), the chairs are
constrained by the labels to a more fixed structure, except for the
presence or not of holes on the backs.

Furthermore, for the lamps in Table 1(h), the shapes are con-
strained to have a bell shade and pipe-type body. Thus, the varia-
tion in the shapes can be seen among the bases. We observe round
and square bases and also the absence of a base among the gener-
ated lamps. We also observe a few geometric variations in the bell
shades of these lamps. A slightly different label set is provided for
(g), where most of the constrains are on the body and base of the
lamps rather than on the shades. As a result, we can see rectangular,
round, and bell shades present among the generated shapes. For the
tables in (j), the variation among the number and connection of legs
are expected as the labels constrain mainly the table top. Therefore,
we see tables with one and four legs, and straight or roller-type legs.

Gaussian 1
α1 = 0.52

Gaussian 2
α2 = 0.22

Gaussian 3
α3 = 0.18

Gaussian 4
α4 = 0.04

Gaussian 5
α5 = 0.04

Figure 4: Shapes generated from different Gaussian distributions
in one mixture model, where the mixture model is derived from the
label set of Table 1(b). Note how the Gaussians with lowest alpha
also generate the less meaningful shapes.

We also see a limitation of the approach in the example shown
in (e). Although the the user selected the label “vertical ladder” to
constrain the back of the chairs, the learned implicit model is not
fine enough to capture the multiple holes on the back, generating
mainly one or no holes.

Table 1 shows results for the most significant Gaussians in the
mixtures predicted for each example. In Figure 4, we show one ex-
ploration session where the user also considered other Gaussians
in the mixture models. We see that the first three Gaussians pro-
vide an interesting range of variations of chairs with the given set
of labels, although no Gaussian is responsible for a specific shape
feature, e.g., there is variation in back holes in all of the first three
Gaussians. This shows that the features in the latent space are not
distributed according to a single Gaussian and thus using multiple
distributions is more effective in capturing the label space. More-
over, the last two Gaussians which have low α values also provide
less meaningful shapes as expected, showing that they can be ig-
nored in the exploration.

We also performed an analysis of the space covered by the Gaus-
sians to verify that the Gaussians in the mixtures capture different
modes. Specifically, we measure the distance between the means of
Gaussians with significant standard deviation, and compare these
distances to the average pairwise distances between training shapes
in the latent space. We find that, although there is overlap among
the Gaussians, each Gaussian covers different regions of the latent
space, as the distances between means are larger than 1% of the
pairwise distances between shapes. Thus, a single distribution does
not capture the same amount of detail as a mixture model.

4.3. Significance of standard deviation

One important question related to the exploration process is how to
determine what standard deviation values are significant and will

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

121

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

Labels Distributions Generated shapes

(a)

Back: size — full
fill — solid

Seat: shape — square
Leg: number — four

length — long
type — roller

0 20 40 60 80 100 120
0

1

2

3

(b)

Back: size — full
side view — straight

Seat: shape — square
Leg: number — four

length — short
type — straight

0 20 40 60 80 100 120
0

2

4

6

(c)

Back: size — full
fill — solid
side view — straight
front view — curved

Seat: shape — circular
Leg: length — short

0 20 40 60 80 100 120
0

1

2

3

4

5

(d)

Back: size — half
side view — straight
front view — square

Seat: shape — square
Leg: number — four

length — short
type — straight 0 20 40 60 80 100 120

0

2

4

6

8

10

12

(e)

Back: size — full
fill — vertical ladder
fill — hole(s)
side view — bent
front view — square

Seat: shape — circular
Leg: length — short 0 20 40 60 80 100 120

0

2

4

6

8

(f)

Back: side view — straight
Seat: shape — square
Leg: number — four

length — long
type — straight

0 20 40 60 80 100 120
0

2

4

6

8

(g)

Shade: top view — hole
fitting — empty

Body: length — medium
type — pipe
structure — straight

Base: shape — round
connection — untangled 0 20 40 60 80 100 120

0

2

4

6

8

(h)
Shade: front view — bell

fitting — empty
Body: type — pipe
Base: connection — untangled

0 20 40 60 80 100 120
0

2

4

6

(i)
Top: type — single
Leg: number — four

type — straight
Side: connection — open

0 20 40 60 80 100 120
0

2

4

6

(j)
Top: type — single

shape — round
Leg: length — medium

0 20 40 60 80 100 120
0

2

4

6

8

Table 1: Examples of results obtained with our method. Left: input labels selected by the user. Center: a plot of the sorted standard deviations
(σ’s) for the most significant Gaussian in the mixture model predicted for each latent dimension. Right: shapes generated by creating different
latent vectors according to the distributions. Note how the generated shapes possess the attributes described by the selected labels while
revealing different variations in shape and sometimes structure.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

122

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

Shape 1

Shape 2

Shape 3

Shape 4

Shape 5

ζ +0.2 +0.4 +0.6 +0.8 +1 +1.2 +1.4 +1.6 +1.8 +2 +2.2 +2.4 +2.6 +2.8 +3

Figure 5: Visual examples of the changes that occur in a generated shape when adding perturbations to an initial latent vector.

0 20 40 60 80 100 120

−1
0
1

2

3
4

5

6

7

8

9
µ
σ

Figure 6: Distributions generated by the LRN for an input set of
labels, represented with means (µ’s) and standard deviations (σ’s)
of the most significant Gaussian in each mixture model. Each entry
of a latent vector is one point along the x-axis. Note how there are
entries with non-zero mean that can have low variance.

lead to variations in the generated shapes. To determine this thresh-
old, we performed an experimental analysis of the sensitivity of the
generated shapes to changes in the entries of the latent vectors. In
this experiment, we start with a latent vector ζ derived from the
mean of the most significant distribution predicted for a set of la-
bels, and generate a shape corresponding to ζ. Next, we add pertur-
bation vectors with increasing magnitude to ζ, and visually inspect
the changes to the shape. Figure 5 shows a few shapes generated
from the perturbed vectors, where we see that a magnitude of less
than 0.2 does not lead to noticeable changes in the results. At the
same time, a magnitude of more than 1 makes many of the shapes
deviate significantly from the shape manifold. Thus, we select 0.2
as a threshold on σ for determining the dimensions to be explored

Method Chair Lamp Table

3D-AE 2.98±0.41 1.33±0.31 2.19±0.28
3D-VAE 2.92±0.38 1.19±0.25 1.78±0.32
3D-GAE 3.09±0.36 1.57±0.24 2.45±0.35

Ours 5.25±0.56 2.81±0.45 4.76±0.56

Table 2: Inception scores of shapes generated by our method com-
pared with 3D-AE, 3D-VAE, and 3D-GAE.

by the user. Moreover, when presenting the distributions to the user,
we sort the dimensions by the magnitude of the σ values so that the
user can give priority to dimensions with more variance.

Finally, in Figure 6, we show an example of the most signifi-
cant Gaussian predicted for a set of labels, to provide evidence that
the idea of facilitating the exploration according to the standard de-
viation values is sound. We see that, when σ values are low, the
corresponding mean values can still be larger than zero, implying
that low standard deviations do not only happen when the latent di-
mensions degenerate to constant zero distributions, but also appear
for latent dimensions that are important in the shape encoding.

4.4. Evaluation and comparisons to other methods

We quantitatively evaluate the quality of the shapes generated by
our method using the inception score and compare to other ap-
proaches in Table 2. Several works have used inception scores to
evaluate the quality of the output of deep networks. We use the scor-
ing method of Xie et al. [XZG∗18] based on the pre-trained model
of Qi et al. [QSN∗16]. From our generated shapes, we manually se-
lected 100 shapes of each class and compute the score, simulating
the scenario where a user selects the best products of an explo-
ration process. For reference, we compare our score with a volu-
metric autoencoder (3D-AE), a volumetric variational autoencoder
(3D-VAE), and the 3D-GAE, which produce volumes as output.
We compare our method to these networks according to the scores

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

123

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

Chair

Lamp

Table

−2 −1.33 −0.67 0 +0.67 +1.33 +2

Figure 7: Results of moving along the three largest principal com-
ponents of the latant spaces learned from chairs, lamps, and tables.

reported by Guan et al. [GJvK20]. We observe that, the inception
scores of manually selected shapes generated with the implicit rep-
resentation are higher than those of shapes randomly sampled from
the 3D-GAE based on a volumetric representation. This is of course
expected due to the manual exploration involved, but serves as a
confirmation that the generated shapes are of high quality.

We also compare our method to a shape space exploration
method based on PCA. Similarly to GANSpace [HHLP20], we ap-
ply PCA to the latent space to discover interpretable network con-
trols. Specifically, we first compute the principal component de-
composition of the latent vectors learned from the training shapes,
where the decomposition preserves 95% of the original distribu-
tion. Then, we compute the mean and standard deviation on each
principal axis. Finally, we add perturbations ranging from−2 to +2
times of the standard deviation to the mean on each principal axis
and bring the edited vectors back to the original latent space using
the inverse transform of the decomposition. Note that when apply-
ing a perturbation to a certain component, all other components
are fixed to the mean. Figure 7 shows shapes reconstructed from
the latent vectors created through this process, where we show re-
sults where the three largest components of each category of shapes
were edited. We see that each principal component simultaneously
tends to control three or more semantic features of a shape. Thus,

Back: size — full
front view — square

Seat: shape — square

A chair with a high back
and a square shape

Top: shape — rectangular
Leg: number — four
Side: connection — closed

A rectangular table with
four linked legs

Figure 8: Comparison of shapes generated with our method (left)
to results of Text2Shape (right). The labels and textual descriptions
input to the methods are shown on the bottom of the shapes.

although the principal component decomposition can reduce the
dimensionality of the latent space for exploration purposes, it does
not allow to specify semantic constraints for shape generation, as
several features are mixed together in each principal component.
As a contrast, our method allows a more efficient exploration of the
latent space by constraining the shape semantics.

Furthermore, we compare our method to Text2Shape [CCS∗18],
which allows users to synthesize shapes from textual descriptions
based on learning a joint embedding of text and shapes. Figure 8
compares some of our generated shapes to Text2Shape results. We
see that Text2Shape allows to generate one shape based on a tex-
tual description containing keywords similar to our labels. How-
ever, Text2Shape does not allow to further explore the space around
the generated shape and obtain additional results, as enabled by our
method. Moreover, the Text2Shape architecture is based on a volu-
metric shape representation which provides lower-quality meshes.

5. Conclusion, limitations, and future work

We introduced a method to facilitate the exploration of latent spaces
for the generation of shapes with deep neural networks. We demon-
strated that a mapping of semantic labels to distributions in the la-
tent space enables users to explore subspaces of shapes constrained
by the labels, effectively allowing the user to generate a variety of
shapes with the specified attributes. This is made possible by the
combination of a label regression network that learns distributions
of latent vectors conditioned on the labels, and a generative network
which translates sampled latent vectors into 3D shapes.

Although we demonstrated that the mappings learned by these
two networks are sound and lead to a meaningful exploration and
results, our work has certain limitations. First, our method requires
a dataset of shapes labeled with keywords describing the attributes
of the shapes. We manually assigned keywords to three datasets for
our study. We show results with chairs and lamps since these are
some of the categories of man-made shapes with the most structural
and geometric variability. However, a crowdsourcing effort could
provide the labeling for additional categories and larger datasets.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

124

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

Evaluating the method on additional data could demonstrate the
general applicability of the method.

Regarding the technical components of the method, currently the
LRN maps a set of labels to a mixture of Gaussians in the latent
space. It would be valuable to explore if other types of distributions
or statistical models could be used to learn such a mapping. This
would enable to capture modes in the latent space with different
shapes and characteristics. In addition, when generating a shape
from a given latent vector, we could perform a “snapping” of the
vector onto the latent space [LXC∗17], to obtain a shape that is
part of the learned manifold, possibly improving the visual quality
of the generated shape.

Acknowledgments

We thank the anonymous reviewers for their valuable comments.
This work was supported by NSERC (2015-05407).

References

[ADMG18] ACHLIOPTAS P., DIAMANTI O., MITLIAGKAS I., GUIBAS
L.: Learning representations and generative models for 3D point clouds.
In Proc. Int. Conf. on Machine Learning (2018), pp. 40–49. 2

[AFH∗19] ACHLIOPTAS P., FAN J., HAWKINS R., GOODMAN N.,
GUIBAS L.: ShapeGlot: Learning language for shape differentiation.
In Proc. IEEE Int. Conf. on Computer Vision (2019), pp. 8937–8946. 3

[ASK∗05] ANGUELOV D., SRINIVASAN P., KOLLER D., THRUN S.,
RODGERS J., DAVIS J.: SCAPE: Shape completion and animation of
people. ACM Trans. on Graphics 24, 3 (2005), 408–416. 1, 2

[Bis94] BISHOP C. M.: Mixture Density Networks. Tech. Rep.
NCRG/94/004, Aston University, 1994. 1, 4

[BLRW16] BROCK A., LIM T., RITCHIE J. M., WESTON N.: Gener-
ative and discriminative voxel modeling with convolutional neural net-
works. CoRR abs/1608.04236 (2016). 1, 2, 3

[BN01] BELKIN M., NIYOGI P.: Laplacian eigenmaps and spectral tech-
niques for embedding and clustering. In Advances in Neural Information
Processing Systems (2001), pp. 585–591. 5

[BSBW16] BRUNTON A., SALAZAR A., BOLKART T., WUHRER S.:
Statistical shape spaces for 3D data: A review. In Handbook of Pattern
Recognition and Computer Vision. World Scientific, 2016, pp. 217–238.
2

[BV99] BLANZ V., VETTER T.: A morphable model for the synthesis of
3D faces. In Proc. SIGGRAPH (1999), pp. 187–194. 1, 2

[CCS∗18] CHEN K., CHOY C. B., SAVVA M., CHANG A. X.,
FUNKHOUSER T., SAVARESE S.: Text2Shape: Generating shapes from
natural language by learning joint embeddings. In Proc. Asian Conf. on
Computer Vision (2018), pp. 100–116. 3, 10

[CKGF13] CHAUDHURI S., KALOGERAKIS E., GIGUERE S.,
FUNKHOUSER T.: AttribIt: Content creation with semantic attributes.
In Proc. ACM Symp. on User Interface Software and Technology (2013),
pp. 193–202. 3

[CTZ20] CHEN Z., TAGLIASACCHI A., ZHANG H.: BSP-NET: Gener-
ating compact meshes via binary space partitioning. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (2020), pp. 42–51. 3

[CZ19] CHEN Z., ZHANG H.: Learning implicit fields for generative
shape modeling. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (2019), pp. 5932–5941. 2, 3, 5, 6

[DQN17] DAI A., QI C. R., NIESSNER M.: Shape completion using
3D-encoder-predictor CNNs and shape synthesis. In Proc. IEEE Conf.
on Computer Vision and Pattern Recognition (2017), pp. 6545–6554. 3

[FSG17] FAN H., SU H., GUIBAS L.: A point set generation network for
3D object reconstruction from a single image. In Proc. IEEE Conf. on
Computer Vision and Pattern Recognition (2017), pp. 2463–2471. 5

[GDG∗17] GUÉRIN É., DIGNE J., GALIN E., PEYTAVIE A., WOLF C.,
BENES B., MARTINEZ B.: Interactive example-based terrain author-
ing with conditional generative adversarial networks. ACM Trans. on
Graphics 36, 6 (2017), 228:1–228:13. 3

[GFK∗18] GROUEIX T., FISHER M., KIM V. G., RUSSELL B. C.,
AUBRY M.: A papier-mâché approach to learning 3D surface genera-
tion. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(2018), pp. 216–224. 2, 3

[GJvK20] GUAN Y., JAHAN T., VAN KAICK O.: Generalized autoen-
coder for volumetric shape generation. In Proc. IEEE Conf. on Computer
Vision and Pattern Recognition Workshops (2020), pp. 1082–1088. 2, 5,
10

[HHLP20] HÄRKÖNEN E., HERTZMANN A., LEHTINEN J., PARIS S.:
GANSpace: Discovering interpretable GAN controls. In Advances in
Neural Information Processing Systems (2020), pp. 9841–9850. 10

[HKYM17] HUANG H., KALOGERAKIS E., YUMER E., MECH R.:
Shape synthesis from sketches via procedural models and convolutional
networks. IEEE Trans. on Visualization and Computer Graphics 23, 8
(2017), 2003–2013. 2, 3

[LSLW16] LARSEN A. B. L., SØNDERBY S. K., LAROCHELLE H.,
WINTHER O.: Autoencoding beyond pixels using a learned similarity
metric. In Proc. Int. Conf. on Machine Learning (2016), pp. 1558–1566.
5

[LSQ∗15] LI Y., SU H., QI C. R., FISH N., COHEN-OR D., GUIBAS
L. J.: Joint embeddings of shapes and images via CNN image purifica-
tion. ACM Trans. on Graphics 34, 6 (2015), 234:1–234:12. 3

[LXC∗17] LI J., XU K., CHAUDHURI S., YUMER E., ZHANG H.,
GUIBAS L.: GRASS: Generative recursive autoencoders for shape struc-
tures. ACM Trans. on Graphics 36, 4 (2017), 52:1–52:14. 2, 3, 11

[LYF17] LIU J., YU F., FUNKHOUSER T.: Interactive 3D modeling with
a generative adversarial network. In Proc. Int. Conf. on 3D Vision (2017),
pp. 126–134. 2, 3

[NW17] NASH C., WILLIAMS C. K. I.: The shape variational autoen-
coder: A deep generative model of part-segmented 3D objects. Computer
Graphics Forum 36, 5 (2017), 1–12. 2, 3

[PFS∗19] PARK J. J., FLORENCE P., STRAUB J., NEWCOMBE R.,
LOVEGROVE S.: DeepSDF: Learning continuous signed distance func-
tions for shape representation. In Proc. IEEE Conf. on Computer Vision
and Pattern Recognition (2019), pp. 165–174. 2, 3

[QSN∗16] QI C. R., SU H., NIESSNER M., DAI A., YAN M., GUIBAS
L. J.: Volumetric and multi-view CNNs for object classification on 3D
data. In Proc. IEEE Conf. on Computer Vision and Pattern Recognition
(2016), pp. 5648–5656. 9

[RAY∗16] REED S., AKATA Z., YAN X., LOGESWARAN L., SCHIELE
B., LEE H.: Generative adversarial text to image synthesis. In Proc. Int.
Conf. on Machine Learning (2016), pp. 1060–1069. 3

[SB15] SEDAGHAT N., BROX T.: Unsupervised generation of a view-
point annotated car dataset from videos. In Proc. IEEE Int. Conf. on
Computer Vision (2015), pp. 1314–1322. 6

[SBS19] SMIRNOV D., BESSMELTSEV M., SOLOMON J.: Learning
manifold patch-based representations of man-made shapes. CoRR
abs/1906.12337 (2019). 2, 3

[SQRH∗16] STREUBER S., QUIROS-RAMIREZ M. A., HILL M. Q.,
HAHN C. A., ZUFFI S., O’TOOLE A., BLACK M. J.: Body Talk:
Crowdshaping realistic 3D avatars with words. ACM Trans. on Graphics
35, 4 (2016), 54:1–54:14. 2

[SSB∗17] SCHULZ A., SHAMIR A., BARAN I., LEVIN D. I. W.,
SITTHI-AMORN P., MATUSIK W.: Retrieval on parametric shape col-
lections. ACM Trans. on Graphics 36, 1 (2017), 11:1–11:14. 2

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

125

T. Jahan, Y. Guan & O. van Kaick / Semantics-Guided Latent Space Exploration for Shape Generation

back seat leg

size fill side view front view shape number length type

half full solid
vertical
ladder

horizontal
ladder hole(s) no back straight bent square round curved square circular one two three four five short long straight roller beam box

(a)

shade body base

front view top view fitting length type structure shape connection

bell cylinder round funnel rectangular hole no hole wired empty short medium long pipe spiral beam curved straight bent uneven round square no base tangled untangled

(b)

top leg side

type shape number length type connection

single nested rectangular round square one two three four six short medium long straight roller beam box twisted open closed

(c)

Figure 9: All the labels that we use to describe the visual attributes of (a) chairs, (b) lamps, and (c) tables, along with an example shape for
each attribute.

[SSK∗17] SUNG M., SU H., KIM V. G., CHAUDHURI S., GUIBAS
L.: ComplementMe: Weakly-supervised component suggestions for 3D
modeling. ACM Trans. on Graphics 36, 6 (2017), 226:1–226:12. 3

[TGY∗09] TALTON J. O., GIBSON D., YANG L., HANRAHAN P.,
KOLTUN V.: Exploratory modeling with collaborative design spaces.
ACM Trans. on Graphics 28, 5 (2009), 167:1–167:10. 2

[WAvK∗12] WANG Y., ASAFI S., VAN KAICK O., ZHANG H., COHEN-
OR D., CHEN B.: Active co-analysis of a set of shapes. ACM Trans. on
Graphics 31, 6 (2012), 165:1–165:10. 6

[WHWW14] WANG W., HUANG Y., WANG Y., WANG L.: Generalized
autoencoder: A neural network framework for dimensionality reduction.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition Work-
shops (2014), pp. 496–503. 2, 5

[WLG∗17] WANG P.-S., LIU Y., GUO Y.-X., SUN C.-Y., TONG X.:
O-CNN: Octree-based convolutional neural networks for 3D shape anal-
ysis. ACM Trans. on Graphics 36, 4 (2017), 72:1–72:11. 2

[WLJ∗18] WANG G., LAGA H., JIA J., XIE N., TABIA H.: Statistical
modeling of the 3D geometry and topology of botanical trees. Computer
Graphics Forum 37, 5 (2018), 185–198. 2

[WSCR18] WANG K., SAVVA M., CHANG A. X., RITCHIE D.: Deep
convolutional priors for indoor scene synthesis. ACM Trans. on Graphics
37, 4 (2018), 70:1–70:14. 3

[WSK∗15] WU Z., SONG S., KHOSLA A., YU F., ZHANG L., TANG X.,
XIAO J.: 3D ShapeNets: A deep representation for volumetric shapes. In
Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2015),
pp. 1912–1920. 6

[WZX∗16] WU J., ZHANG C., XUE T., FREEMAN W. T., TENENBAUM
J. B.: Learning a probabilistic latent space of object shapes via 3D
generative-adversarial modeling. In Advances in Neural Information
Processing Systems (2016), pp. 82–90. 1, 2, 3

[WZX∗20] WU R., ZHUANG Y., XU K., ZHANG H., CHEN B.: PQ-
NET: A generative part Seq2Seq network for 3D shapes. In Proc. IEEE
Conf. on Computer Vision and Pattern Recognition (2020), pp. 826–835.
3

[XZG∗18] XIE J., ZHENG Z., GAO R., WANG W., ZHU S.-C., WU
Y. N.: Learning descriptor networks for 3D shape synthesis and analysis.
In Proc. IEEE Conf. on Computer Vision and Pattern Recognition (2018),
pp. 8629–8638. 9

[YCHK15] YUMER M. E., CHAUDHURI S., HODGINS J. K., KARA
L. B.: Semantic shape editing using deformation handles. ACM Trans.
on Graphics 34, 4 (2015), 86:1–86:12. 3

[ZAESB20] ZEKUN H., AVERBUCH-ELOR H., SNAVELY N., BE-
LONGIE S.: DualSDF: Semantic shape manipulation using a two-level
representation. In Proc. IEEE Conf. on Computer Vision and Pattern
Recognition (2020), pp. 7628–7638. 3

Appendix A: Label dataset

In total, we have 25 labels for the set of chairs, 24 labels for lamps,
and 20 labels for tables, which are summarized in Figure 9. We
manually selected the labels according to the visual properties of
the shapes to evaluate our method.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

126

