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Figure 1: Hand drawing “Brothers”, by artist Tyler Hobbs (used with permission). (a) Reference image with 1,618 x 2,048 pixels. (b—d)
Examples of frequency adjustments applied to (a) using our technique, with the images kept at the original resolution. (e) Downscaled version
of (a) generated with our technique in real time (0.01 seconds for frequency adjustment and image reconstruction). (f) Downscaled version
of (a) obtained with spectral remapping (SR) [GO17] (1.5 seconds). In both (e) and (f), resampling to 135 x 171 pixels was done using the
method of [NH14]. Please refer to the supplemental video to see our technique working in real time in our interactive demo.

Abstract

We present a technique for real-time adjustment of spatial frequencies in images and videos. Our method allows for both
decreasing and increasing of frequencies, and is orthogonal to image resizing. Thus, it can be used to automatically adjust spatial
frequencies to preserve the appearance of structured patterns during image downscaling and upscaling. By pre-computing the
image’s space-frequency decomposition and its unwrapped phases, these operations can be performed in real time, thanks to
our novel mathematical perspective on frequency manipulation of digital images: interpreting the problem through the theory
of instantaneous frequencies and phase unwrapping. To make this possible, we introduce an algorithm for the simultaneous
phase unwrapping of several unordered frequency components, which also deals with the frequency-sign ambiguity of real
signals. As such, our method provides theoretical and practical improvements to the concept of spectral remapping, enabling
real-time performance and improved color handling. We demonstrate its effectiveness on a large number of images subject
to frequency adjustment. By providing real-time control over the spatial frequencies associated with structured patterns, our
technique expands the range of creative and technical possibilities for image and video processing.
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1. Introduction

The frequency domain is a common way of analyzing digital signals.
It is used in digital signal processing as a tool for filtering, compres-
sion, and several other applications [OS10]. For some applications,
however, time-frequency analysis is an alternative and preferred tool,
since it allows for the study of transient phenomena. In image and
video processing, the analogous space-frequency domain has also
been extensively used for example with wavelets for image compres-
sion, data analysis and denoising [P197, BH13]. Space-frequency
analysis may be preferred to traditional frequency analysis because
the signal becomes represented by waves concentrated both in space
and frequency [Mal09]. This is useful because the frequency content
becomes more meaningful in each associated region.

We present a new mathematical perspective on frequency ma-
nipulation of digital images and videos. Using the theory of in-
stantaneous frequencies and phase unwrapping operators [Mal09],
our real-time spatial frequency adjustment technique is the first
method capable of performing image edits such as the ones shown in
Figure 1 in real time. The performance improvement resulting from
our formulation is also critical for making frequency adjustments
in videos practical. The idea of our method is to decompose an im-
age into local phase and amplitude components such that the phase
encodes the high-frequency structured content. This decomposition
provides simple and interesting ways of manipulating frequency
through phase manipulation.

Our technique has two steps: first, it estimates, for each pixel
p. the phase values 8! (p), 6%(p), ... associated with several cosine
functions cos(0"(p)), that when combined, locally define the im-
age’s structured high-frequency patterns (Section 3.2). In the second
step, the obtained phase values are used to perform per-pixel adjust-
ment of spatial frequencies and image reconstruction in real time.
This is achieved by accumulating cos(a8" (p)) for some frequency
scaling factor o0 > 0 over all 8”(p) (Section 5). Note that this pre-
serves the monotonic relationship among the adjusted frequencies.
Despite working with cosine functions for the decomposition, our
technique is able to handle complex structured patterns as demon-
strated throughout the paper (e.g., see Figure 8).

Our novel mathematical framework is fundamental in allowing
our approach to work in real time (Figure 2). To make this possible,
we introduce technical contributions to ridge analysis and 2-D/3-
D phase unwrapping of digital images and videos. As far as we
know, we are the first to describe an algorithm for simultaneous
unwrapping of several unordered components (Section 4.2). This
is essential for handling complex patterns such as the sunflower’s
disk in Figure 8, or the lizard’s leg in Figure 11. We also show
how to handle the problematic sign-ambiguity that arises from the
conjugate-symmetry of real waves (Section 4.1.1). Our approach
also improves color handling when compared to recent frequency
remapping methods [GO17], by jointly unwrapping the color chan-
nels’ phase functions (Section 4.3). This improvement is visible in
Figure 5 and on the shirt example between 4min20s and Smin of our
supplemental video.

T rlgermano@inf.ufrgs.br, oliveira@inf.ufrgs.br, eslgastal @inf.ufrgs.br

By defining the frequency scaling factor o as a function of an im-
age resizing factor r, spatial frequencies are automatically adjusted
to preserve the appearance of structured patterns during image down-
scaling (Section 5.2.3, Figure 1(e)). Combined with our method’s
real-time performance, this opens up a variety of interesting applica-
tions, such as dynamically computing detail-preserving thumbnails
for image galleries, or adapting an image’s content in real time
based on viewing distance. We also demonstrate the use of our
technique for frequency upscaling (Figure 12), and how it can be
combined with existing super-resolution techniques to obtain novel
super-resolution results (Figure 10).

In summary, the contributions of our work include:

o The first real-time technique for spatial frequency adjustment of
images and videos (Section 3). It is based on a novel mathematical
framework that enables its improved performance over the state
of the art.

e A phase-unwrapping technique to recover the phases of real
waves that locally reconstruct an image (Section 4). Our solution
naturally handles a sign ambiguity involving the phase unwrap-
ping of real waves, in addition to simultaneously treating many
unordered phase components without explicit sorting. As such, it
extends the state-of-the-art on phase unwrapping that only covers
a single phase component wrapped to [—T,T).

o A technique for processing color images for use with spatial fre-
quency adjustment (Section 4.3). It is based on a multi-channel
optimization performed in RGB space and avoids some color arti-
facts associated with the use of PCA-based color reconstruction.

2. Related Work

Our work was inspired by the spectral remapping (SR) technique
for image downscaling [GO17]. SR remaps frequencies that are
not representable in the target resolution to new representable fre-
quencies, preserving the orientations of the original high-frequency
patterns. This solution effectively encodes important structured de-
tails at lower frequencies during downscaling, instead of discarding
them with an anti-aliasing filter. This results in more faithful repre-
sentations of the original content. The technique, however, has only
been demonstrated for image downscaling in combination with a
remapping function that takes similarly-oriented waves to a com-
mon frequency. More importantly, (i) it is non-interactive, requiring
the solution of sparse linear system for each combination of input
image / and downscaling factor r; and (ii) the PCA-based recon-
struction strategy used for processing color images may introduce
some noticeable artifacts depending on the target resolution.

Our frequency-adjustment technique can be employed to image
downscaling and addresses the aforementioned issues: it supports
both decrease and increase of spatial frequencies, can be used with
any image resizing factor r > 0, preserves the monotonic relation
among the remapped frequencies, and can be used in interactive
applications, being up to 100x faster than SR. In addition, we also
demonstrate its extension to videos.

Although our method can generate its results directly at the
target resolution, it complements and can be used in combi-
nation with any resampling strategy, including downscaling
and upscaling [KSP13,NH14, OG15, SN15, WWA*16]. Our
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Figure 2: Overview of our frequency-adjustment technique. (Orange block) The input image is decomposed into several cosine waves (Eq. (4)),
represented by per-pixel scalar amplitudes and instantaneous-frequency vectors. The frequency vector direction and magnitude are given by
the vector from the center of the color wheel to the pixel color in the wheel. This decomposition may be performed in the RGB space (applied
to each color channel independently) or in some other color space where channels better encode the high-frequency content, such as the
PCA-defined color space used for this illustration. (Blue block) The detected frequencies are then integrated by our method to recover a
continuous scalar map of unwrapped phases. Note that the unwrapped phase values for each pixel are not sorted between the images, and as
such the phase data may appear more discontinuous than they actually are. Note also the absence of phase information for low-detail regions,
which are treated as residue only. (Green block) The frequency-adjusted content is obtained by reconstructing the waves from their original
amplitudes and corresponding scaled unwrapped phases (Eq. (19)), using a user-provided scaling factor o (for this example, o = 0.25). All
waves are summed to obtain the frequency-adjusted content. Finally, to obtain the reconstructed image, the frequency-adjusted content is

L

transformed back to RGB space (if initially in RGB space no transformation is needed) and summed back to the residual.

technique can also be used with any single-image super-resolution
method (e.g., [LSK*17, FF10, YWHM10]), and we demonstrate
a hybrid solution combining super-resolution and spatial frequency
adjustment in Section 6.

To achieve our results, we introduce a phase unwrapping
algorithm that simultaneously handles several real-wave phase com-
ponents, in addition to inter-component dependencies (Section 4).
Phase unwrapping is the process of recovering a continuous function
0(x) from samples 8(x) whose values are only known up to modulo
27 [OS10]. This procedure is a fundamental building block in many
applications, ranging from satellite topography and marine/earth
seismology to the analysis of brain waves [CSK77, GZW88]. Phase
unwrapping is tightly linked to the theory of instantaneous-frequency
decompositions and space/time-frequency analysis [Mal09]. In this
context, it is often called “ridge” analysis, and it may be derived from
Gabor [DEG*92] and wavelet transforms [LO10]. There is a sig-
nificant amount of theory and algorithms developed in this area for
1-D signals, such as acoustic and speech data [GKM96]. The corre-
sponding 2-D/3-D problems (required for our frequency-adjustment
technique) is significantly more challenging to solve [GP98]. Ap-
pendices B and C include a more detailed discussion of this topic.

To the best of our knowledge we are the first to describe a practical
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algorithm for dealing with the specific issues that arise during ridge
analysis and 2-D/3-D phase unwrapping of digital images and videos.
We review the phase-unwrapping problem in Section 4.

3. Frequency Adjustment

Consider a continuous wave signal s(x,y) = cos(0(x,y)) described
by a continuously-differentiable phase function 6. The horizontal
Vx0(x,y) and vertical V,0(x,y) instantaneous frequencies of this
signal are given by the partial derivatives of its phase [Mal09]:

) d
ViB(x,y) = 5-6(x,y) and V)8(x,y) = a*y@(x,y) M
Similarly, the local wavefront orientation (normal direction) at (x,y)
is given by the gradient vector VO(x,y) = (V10(x,y), V,0(x,y)).

A frequency-adjusted version sq of s, where frequencies are
scaled by a factor o > 0, is obtained as:

sa(x,y) = cos(aB(x,y)). 2)

It is easy to see that the horizontal and vertical frequencies of so, are
aVx0 and aVy6, i.e., scaled versions of the corresponding frequen-
cies of 5. The local direction of wave propagation is preserved in
so, since Vb = oV 0. Finally, sq is still a continuous function, as
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cos (0(x,y)) cos(%e(x,y)) cos(ie(x,y))

Figure 3: Example of frequency adjustment. The continuous phase
function ©(x,y) is defined by a Perlin noise scalar field (left). Scaling
the phase by factors o. > 0 results in frequency-adjusted signals
cos(aB(x,y)), which preserve the local wavefront orientations.

was s. Figure 3 illustrates an example of frequency adjustment for a
signal where 0 is known analytically.

3.1. Frequency Adjustment of Natural Images

Given a natural image h(x,y), we seek a decomposition which rep-
resents it as a sum of N components with phase functions o'...oY,
amplitude functions A’ ... AV, and a residual d(x, y):

h=s+d where s(x,y) ZA x,y)cos(8"(x,y)). (3)

n=1

Obtaining such a decomposition for a given image / is a severely
under-constrained problem. Thus, we require the summation in
s(x,y) to only encode high-frequency content that should be af-
fected by the frequency adjustment (remaining content goes into
the residual d). Furthermore, the phase functions are required to
be piecewise smooth for the instantaneous frequencies to be well
defined almost everywhere, making s(x,y) (and thus 4) amenable to
frequency adjustment. Finally, the amplitudes A" (x,y) should vary
slowly when compared to local frequencies, so that high-frequency
variations become encoded in the phases only [Mal09].

The decomposition shown in Eq. (3) is related to the Hilbert-
Huang transform (HHT), that separates a signal into a col-
lection of so-called Intrinsic Mode Functions (IMFs) and a
residue [HSL*98, Hual4]. The HHT differs from our decompo-
sition by the way the phases are computed: while we use windowed
Fourier transforms (Gabor analysis) to obtain instantenous frequen-
cies [GO17] (which are integrated to generated the unwrapped
phase), HHT uses the Hilbert transform. Both decompositions how-
ever require unwrapping to obtain a continuous phase, which we
discuss in the following sections.

For a frequency adjustment factor o > 0, the frequency-adjusted
image hq is obtained by using the scaled phase functions o8” during
reconstruction, as in Eq. (2).

3.2. Finding a Decomposition

Time/Space-frequency analysis may be employed to measure the
instantanous frequencies of several non-harmonic spectral com-
ponents [Mal09]. Gastal and Oliveira [GO17] describe a practical
algorithm for this purpose, approximating the neighborhood around
each pixel as a sum of Gaussian-windowed plane waves. From the
constant frequencies and phase-shifts of such waves it is possible

to extract (Appendix A), for each pixel, a series of phase values
@"(x,y) and associated amplitudes B" (x,y), n=1...N, such that

h=s+d where s(x,y) ZB x,y)cos(@"(x,y)). (4

n=1
Despite the similarity of this expression to that of Eq. (3), the values
@" cannot be directly employed for frequency adjustment since they
are wrapped to [0, ). The problem that occurs when trying to do so
is illustrated in Figure 4.

The occurrence of wrapped values is an inherent mathematical
limitation of phase measurements. Since cos(6) = cos(0 + 2mm)
for m € Z, the phase 0 is not uniquely defined. Moreover, when
trying to recover 0 as arccos(cos(6)), one obtains the principal
value ¢ € [0,7]. Recovering a continuous and differentiable phase
function 6(x, y) from wrapped values §(x,y) is called phase unwrap-
ping [0S10]. The measured phase values ¢" recovered from space-
frequency analysis techniques (including Gastal and Oliveira’s) are
wrapped, and therefore require unwrapping in order to define phase
functions 8" amenable to frequency adjustment.

4. Phase Unwrapping in Two Dimensions

While 1-D phase unwrapping has a simple solution [Mer79],
2-D unwrapping is more involving and requires specialized algo-
rithms [GP98]. It has been extensively studied due to its relevance
to many fields, including interferometry and magnetic resonance
imaging, and several algorithms exist aimed at these and other ap-
plications (we include a detailed review in Appendix B). These
algorithms work with a wrapped phase & € [-7, ). As such, B is
related to the true phase 0 by the expression

0(x,y) = B(x,y) +2mk(x,y), )

for unknown k(x,y) € Z. Thus, solving the phase unwrapping prob-
lem in this case consists of finding the shift factors k(x,y).

Digital images are real functions
and modeled using real waves: the
cosines in Eq. (3). Therefore, in
this situation the measured phase
has a reduced angular range, =
arccos(cos(0)) € [0,m], and an
ambiguous sign, since cos(p) =
cos(—®). As a result, § is related
to the true phase 0 by an unknown
sign, G, in addition to an unknown
shift, k (the diagram to the right illustrates the case k =2, 6 = +1):

a

0(x,y) = o(x,y) ®(x,y) + 2mk(x,y) for o(x,y) € {—1,+1}.

Such sign ambiguity and reduced angular range make phase un-
wrapping for digital images and videos a challenging task.

There are other applications that work with digital images (real
signals) that may also suffer from sign ambiguity. However, in most
situations one can work around this problem since the common un-
derlying frequency transform has predefined frequency bands, such
as when using oriented steerable pyramids [WRDF13]. This cannot
be done in our situation since frequency adjustment requires the use
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Figure 4: Example of unsuccessful frequency adjustment. When
the phase function ®(x,y) is wrapped (values recovered as ¢ =
arccos(cos(9)) are in [0,T] — see color scale on the left), scaling
the phase by factors o > 0 does not result in frequency-adjusted
signals. One must therefore unwrap the phase function before being
able to perform frequency adjustment. Compare to Figure 3.

of instantaneous frequencies extracted from non-harmonic frequen-
cies. That is, in our case the local frequencies are not predetermined,
but are instead detected during the decomposition, and thus vary be-
tween locations of the image. In other situations, the sign ambiguity
may be resolved through procedures that are equivalent to a simple
1-D unwrapping of a single phase component along a particular
dimension [WRDF14]. This also does not work in our case since
frequency adjustment must work with 2-D and 3-D unwrapping of
several phase components.

In the following sections we present our novel 2-D phase unwrap-
ping algorithm designed for spatial frequency adjustment of digital
images (its extension to videos, which requires 3-D processing, is
described in Section 5.3). Our solution handles the following issues
that arise when dealing with real waves: (i) phase measurements
with ambiguous sign, due to the conjugate-symmetry of the spec-
trum of real signals (Section 4.1); (ii) presence of several unordered
phase components, required for representing complex patterns (Sec-
tion 4.2); and (iii) correlated multichannel components in color
images (Section 4.3). Furthermore, implementation details and opti-
mizations are described in Section 5 and Section 5.1.

4.1. Unwrapping the phase of one real wave

For frequency adjustment of digital images, one is interested in un-
wrapping the phase 0(x,y) from a real wave component cos(8(x, y)).
The wrapped phase measurement §(x,y) € [0, 7] is thus related to
the true phase according to Eq. (6). Since k(x,y) defines a piecewise-
constant function, the unwrapped and wrapped gradients are related
only by the unknown sign o(x,y) at each position (x,y):

VO(x,y) =o(x,y)VP(x,y) almost everywhere. 7

In Appendix A we show how to obtain V§ directly from a space-
frequency decomposition. We now focus on how to integrate the
gradient field VO = 6V to recover the phase function, without
explictly computing the signs G.

(Throughout the text we denote the pointwise product of two func-
tions f and g as fg; that is, (fg)(x,y) = f(x,y) g(x,y). Furthermore,
f = g denotes pointwise equality: f(x,y) = g(x,y),V(x,y).)

4.1.1. Integrating the phase gradient field for one real wave.
To recover the unwrapped phase 6, the gradient field VO = cV

(© 2021 The Author(s)
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is integrated in the least-squares sense. Although the signs 6(x,y)
are unknown, our insight is that it is possible to check whether
neighboring pixels experience a change in sign (Section 4.1.2). This
information is sufficient for integrating V0 in a sign-consistent way
through some clever algebraic manipulations, shown below.

Let 7 and Ty be two unit-shift operators that act on a function 6 as
Tx(0)(x,y) =68(x—1,y), and Ty(8)(x,y) = O8(x,y — 1). Furthermore,
let o in T, stand for either x or y. Then, a trapezoidal integration
rule gives the following linear relations between the unknown phase
values 0(x,y) of all pixels [Sol15]:

0—To(0) = 1[Vo®+To(Vo0)]. (8)

Given that VO = oV, Eq. (8) may be expanded as (we use under-
lines to highlight the parts of the equations that have changed):

G—To(e) = %[GVO@‘FTQ(GVO@)] (9)

By introducing a function ¢ satisfying 6@ def 6, Eq. (9) becomes
69 —T5(69) = 3[6Voh+To(c Vo). (10)

Note that to solve the above equation one must know c. To remove
this dependency, we start by multiplying both sides by c:

6’9—0To(09) = [’ Vop+0T(cVe)]. (1)

Note that 6> = 1 for any (x,y), since 6(x,y) € {—1,+1}. Further-
more, since T (fg) = T(f)T(g).* Eq. (11) may be simplified to

P—Ao0To(9) = 1 [Vod+ MG To (Vo) ], (12)

where Aoc & 6T, (0). Note that AxG and AyG encode the locations
where G changes sign. More precisely, AxG(x,y) = —1 whenever
the sign of o(x,y) differs from the sign of the neighboring pixel
o(x—1,y), and A,G(x,y) = +1 otherwise.? An analogous relation
is true for AyG(x,y) in the y-dimension.

As shown below in Section 4.1.2, it is possible to compute AcG
despite ¢ being unknown. As such, the only unknowns in Eq. (12)
are the values of the function ¢, which may be found by solving the
associated linear system through least squares:

min Y [ o—2c0To(9)— fo P+ Al0l*,  (13)
o)

where fo(x,y) encodes the right-hand-side of Eq. (12), for o € {x,y}.
The recovered phase @ is enough to perform frequency adjustment,
without knowing the per-pixel sign G, since the cosine is an even
function. Thus cos(o.@) = cos(ac @) = cos(aB) and so it is not
necessary to recover 9.

The minimum-norm regularization term ||@||? in Eq. (13) is re-
quired for two reasons. First, without regularization, the existence
of one solution ¢ would imply an infinite number of solutions ¢+ C,
for any real integration constant C. Second, due to the inherent
trade-off between space and frequency locality [Mal09], the numer-
ical space-frequency analysis only detects phase information for

P In-DiT(fg) (%) = (fo)(x—1) = fx— 1) glx— 1) = T(f)(x) T (g) (x)-
§  From the definition of the unit shifts 7, and Ty:
Aco(x,y) = 6(x,y)Tx(0) (x,y)= o(x,y) 6(x — 1,y), and

Ayo(x,y) = 6(x,y)T,(0)(x,y)=o(x,y) 6 (x,y — 1).
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high-frequency portions of the image [GO17]. As a result, the mea-
surements V¢ and consequently fo have undefined values for some
pixels, which may result in unconstrained unknowns. The same
occurs along the boundary of the image domain. The regularizer
forces any unconstrained variables to zero. Finally, an additional
benefit of the regularizer is that it penalizes the occurrence of large
absolute values in ¢, making the frequency-adjusted reconstruction
cos(a) less sensitive to small changes in o (the change in cos(0@)
when varying o is given by % cos(ap) = —@sin(a@) x @). This
is important in interactive applications where o is user-controlled.

Eq. (13) has a unique solution obtainable from the linear system
(DY Dy + Dy Dy + M) @ = Dy fi+ Dy fy, (14)

where [ is the identity matrix, and Dy and D) are similar to backward-
difference matrices, but (i) have some entries with flipped signs
(according to A6 and AyG); and (ii) only include contraints for
non-missing values (the reconstruction of pixels with missing values
is handled by windowing, discussed in Section 5). We use A = 107°
in the regularizer since it produces good results.

4.1.2. Determining sign changes and computing Ac. Let p and
q be two neighboring pixels, for which we compute local gradients
V§(p) and V§(q) according to Appendix A. Also, recall that VO =
oV . Two situations are possible:

1. There is a sign change between the phase gradients VO(p) and
V0(q) of p and g, meaning that 6(p) # o(q);
2. There is no sign change between p and ¢, and 6(p) = 6(gq).

Possibility (1) implies Ac(p) = 6(p) 6(q) = —1, while possibility
(2) implies Ac(p) = 6(p)o(g) = +1. To determine which one is
true, we recall that the phase 6 should be continuously differentiable,
meaning that the phase gradient V0 should be continuous. As such,
we choose the option that better preserves the continuity of V6, i.e.,
that results in the smallest change between V8(p) and V6(q). Thus,

Ao(p) = argmin || Vo(p) ~vVe(@)|* ()
ve{—1,+1}

4.2. Unwrapping the phases of several real waves

Natural images contain complex structured patterns, such as in the
honeycomb and sunflower photographs of Figure 8. These patterns
require the summation of several cosine components in order to be
correctly represented by the decomposition of Eq. (3). The several
phase functions {6',67, ...} that build-up a pattern are in principle
independent and could be separately unwrapped. In practice, how-
ever, this independent unwrapping is severely error prone. To un-
derstand why, note that, before unwrapping, one would be required
to assign each n-th gradient measurement V" (p), of a pixel p, to
a particular phase component 0% (") where Kp(n) is an indexing
function (permutation) specific for p. Furthermore, the permutations
Kp and &, for all neighboring pixels p and ¢ should be consistent to
each other, assigning the gradients that belong together to the same
phase component. Otherwise, severe unwrapping errors will occur.

Due to ambiguous information returned by the space-frequency
decomposition, sometimes it is not possible to precisely define
the permutations ¥, for all pixels p. Furthermore, for particular

pixels, the permutations are often incorrectly defined due to noise
or frequency measurement errors. As a result, the whole phase
unwrapping solution becomes compromised.

We avoid the aforementioned difficulties by, instead, defining
weighted associations between all measurements V" and all phase
functions 0" (in place of discrete permutations). This significantly
reduces the possibility of unwrapping errors, especially in the pres-
ence of ambiguous information returned by the space-frequency
decomposition. It also makes the algorithm more robust to noise and
measurement errors, and handles missing phase information.

Let p and g denote two neighboring pixels (in any direction).
Furthermore, let N(p) and N(g) denote the number of measured
phase components for p and g, respectively. For valid indices n =
1...N(p) and m = 1...N(q), the inter-component version of the
integration rule (Eq. (12)), which couples the n-th component of
pixel p to the m-th component of pixel g, is given by

" =AYV To(¢") = 5 [Vod" + A6 To(Vod™)].  (16)

As before, A""o(p) determines if there is an expected change in
sign between the n-th gradient measurement V" (p) of p, and the
m-th measurement V™ (g) of g.

Some components are more likely to belong together than oth-
ers. Thus, let the weight uf57 (defined below) be proportional to the
probability of V§"(p) and V™ (q) belonging to the same phase
component 6. We transform Eq. (16) into a weighted least-squares
system, that simultaneously searches for the unwrapped phase com-
ponents @" that best adapt to all couplings between measurements,
but giving greater weight to the most probable ones (through ¢™"):

min Y YY" {8 - P AL et am
¢ oc{x,y} VnVm Vn

Here, LY" is the left-hand-side of Eq. (16), and f3™ is its right-hand
side. Furthermore, it is understood that n and m only vary over the
valid indices for each pixel. For up4, we use the wave alignment
measure proposed by Gastal and Oliveira [GO17] (which determines
how well the local Gabor approximations, associated with V" (p)
and V§"(g), match around the midpoint between p and q), scaled
by a frequency-vector orientation similarity measure (Eq. (31)).

4.3. Processing Color Images

Frequency adjustment should be performed in all channels of a color
image, since they have correlated information [RAGSO1]. Thus,
while each color channel has its own phase decomposition (Eq. (3)),
their phase functions are unwrapped simultaneously, in a single
optimization step. Let & be the energy functional from Eq. (17),
written for the phase components @ of a specific color channel
¢ € {R,G,B}. We minimize the global energy

(Er + &G +EB) + B (ARG + Xg + ArB), (18)

where A¢,¢, are cross-channel phase constraints, between two chan-
nels ¢ and ¢;, and = 1073, These new constraints seek similar
phase solutions @¢, (p) and @¢. (p), for a pixel p, if the measured in-
stantanous frequencies V@, (p) and V§c, (p) are similar, between
channels ¢; and ¢;. The indicesn=1...N, (p) andm=1...Nc,(p)
range over all detected phase components for pixel p at, respectively,
color channels c¢; and c;. The formulas are given in Appendix D.
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(a) Original photograph (b) Our multi-channel (c) Spectral remapping

frequency adjustment [GO17]

Figure 5: Our multi-channel phase unwrapping leads to a
frequency-adjusted image, in (b), that is faithful to the colors of
the original photograph, in (a). The remapping algorithm of Gastal
and Oliveira [GOI17], in (c), reduces frequencies but is not able
correctly preserve colors. Adjustment of o. = 0.2.

As shown in Figure 5, when compared to the color-processing al-
gorithm of Gastal and Oliveira [GO17], our multi-channel optimiza-
tion leads to fewer color distortions when used for spatial frequency
adjustments. This occurs because their so-called wave-alignment
step is limited to processing a single color channel (either the light-
ness channel or one PCA-decorrelated channel). Our approach, on
the other hand, allows for a joint optimization that preserves inter-
channel correlations, resulting in improved frequency adjustment
results. As such, we recommend the use of our multi-channel opti-
mization in RGB space (Egs. (17), (18) and (29)) when processing
images which contain cross-channel frequency correlations.

For processing grayscale images one should use Eq. (17) di-
rectly. Similarly, for color images which contain most of their high-
frequency contrast variations in the lightness channel, the combi-
nation of our phase unwrapping technique with the PCA-guided
processing of Gastal and Oliveira [GO17] leads to the best results.
In practice, this means extracting and unwrapping the phase of only
one “channel,” represented by the principal direction of color vari-
ation in RGB space. This procedure was used for generating the
results shown in Figure 10, where the regions with detected high
frequencies are mostly monochromatic (bluish gray and dark blue,
respectively).

5. Implementation Details

Eq. (17) or (18) is solved once in a pre-processing step and the phase
values @"(p) are stored for subsequent real-time frequency adjust-
ment. The resulting linear system is sparse and positive definite,
which we solve using a QR factorization from SuiteSparse [Dav11].
We have also experimented with an iterative conjugate-gradient
solver, but it was slower than the direct solver and stopping the
iterations before convergence leads to visual artifacts during fre-
quency adjustment (misalignment between structured patterns due
to incomplete phase unwrapping). Frequency adjustment by a factor
o > 0 is obtained simply by replacing 8" with a.@” in Eq. (3). The
resulting frequency-adjusted image is then reconstructed as
N(p)
ho =so+d, where sq(p)= Z B"(p)cos(ag”"(p)). (19)

n=1

In practice, however, it is best to compute sq(p) using a neighbor-
hood Q around p. This is achieved through the use of a weighted
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reconstruction window w, centered at p and covering ). This
guarantees a smooth reconstruction for sq, even in the presence of
noisy measurements or missing phase values. The corresponding
reconstruction equation, with windowing, becomes

N(q)
Y w(p—q)B"(g)cos (a{9"(q) + V§"(q)- (p—q)}).

qeQ, n=1

(20)
The expression ¢"(q) + V®"(q) - (p — q) is a first order (linear)
extrapolation of the phase ¢ (g) from g to p. The appropriate recon-
struction window w(x,y) depends on the parameters of the Gabor
decomposition being employed for space-frequency analysis, as
discussed in detail by Gastal and Oliveira [GO17]. In Eq. (20), w is
given by the square of an L*-normalized Gaussian, with the same
standard deviation as the Gabor atoms.

5.1. Sparse Sampling

One can improve the computational and storage costs of the pre-
processing step by performing a subsampled Gabor decomposition.
For a properly selected subsampling step, this procedure conveys the
same information as the fully-sampled alternative. This is possible
because a fully-sampled Gabor space is highly redundant [Mal09].
Thus, in practice, one can compute the gradient measurements
V®(p) only every T pixels (in all directions). This reduces the
computational and storage costs by a factor of 7% when processing
images, and 7 for videos. The maximum admissible value of the
stepsize T > 1 depends on the Gabor atom’s spread [Mal09]. Note
that the windowed reconstruction from Eq. (20) naturally handles
subsampling: any pixel ¢ without phase information has N(g) = 0,
and its computed final value s¢(g) is obtained from the neighbor-
hood €. In this case, however, the proper reconstruction window w
depends on 7. A formula for obtaining w can be found in [GO17].
One should also adapt the integration rule in Eq. (8) to consider the
step size T by dividing the left-hand-side by 7, and also computing
the shift operators 7o using shifts of T [Soll5].

5.2. Use with Image Resizing

Frequency adjustment is orthogonal to image resizing. For reducing
the number of pixels (downscaling), two equivalent procedures exist.

5.2.1. Procedure 1. the frequency-adjusted image (hq in Eq. (19))
is first reconstructed at the original resolution (preferably with win-
dowing, Eq. (20)), and subsequently downsampled using a suitable
strategy, which often involves a prefilter to avoid aliasing [NH14];

5.2.2. Procedure 2. the residual image (d in Eq. (19)) is down-
scaled independently (by a suitable strategy), and the frequency-
adjusted detail (so) is reconstructed directly at the target resolution.
That is, for a downscaling factor r < 1, the values of sq(p) are
sampled every 1/r units. Note that Eq. (20) naturally supports such
fractional sampling in its argument p (with the understanding that
the pixels ¢, inside the summations, represent only valid pixels from
the original image’s resolution, i.e., located at integer coordinates).
The linear extrapolation in the cosine’s argument computes the cor-
rect phase for any fractional location p, based on its shift p — ¢
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(b) Residual image (d) (¢) Frequency-adjusted detail (sq)

—ZIOO —1‘00 0 160 2(I)0 300
(d) Unwrapped phase components for the red channel ( (plll, (p2R, (p% )

Figure 6: Decomposition used for frequency-adjustment of the ref-
erence image in (a). (b) Residual returned by the space-frequency
decomposition, containing the low-frequency information of the
input image. Note the absence of the stripes on the fabrics when
compared to (a). (c) High-frequency detail so, after being frequency-
adjusted with o. = 0.25 by our technique. Note that values in sq
are permitted to be negative, and the visualization in (c) maps all
values to [0, 1] for viewing purposes only. (d) Unwrapped phases
(in radians) obtained by solving the multichannel Eq. (18), used to
compute o, in (c) (only components for the red channel are shown).

from q. For this strategy to be effective, however, the adjustment
factor oo must take into account the target resolution, as it defines
a maximum representable spatial frequency; otherwise, fractional
sampling will be prone to aliasing (see Section 5.2.3, below).

For image upscaling (» > 1), one must reconstruct the high-
frequency details sq directly at the target (higher) resolution. The
demo provided in the supplementary materials uses the GPU’s mip-
map hardware for filtering and rescaling the residual image d, and
uses a pixel shader to compute the frequency-adjusted detail sq, at
the target resolution using fractional sampling (either downscaled or
upscaled). For additional flexibility, the provided demo allows for

independent control of frequency adjustment () and image resizing
(r) factors, with instant feedback on the resulting image. As one
would expect, depending on the selected values for these parameters,
aliasing may occur. Alternatively, the two factors may be “linked,”
automatically adjusting the frequencies in synchrony with image
resizing and avoiding aliasing.

Figure 6 illustrates the decomposition so + d (Eq. (19)) for the
image in (a), subject to frequency adjustment using o = 0.25. It
also shows the unwrapped phase components (for the red channel)
used by our application for real-time frequency adjustment. It is
important to note that the residual d may be upsampled or down-
sampled using any applicable strategy before being added to the
reconstructed frequencies in sq. As such, our method is orthogonal
to any resampling technique (Section 6).

5.2.3. Choosing a. The selection of the frequency-adjustment
factor o should consider some criteria. Thus, let ®max € [0,7] be
the maximum frequency (in radians per pixel) present in an image
at its original resolution. After undergoing simultaneous resizing
by a factor r > 0 and frequency adjustment by a factor & > 0, ®Wmax
becomes ®; = (0./r) Omax. In order to avoid aliasing in the resulting
image, the Nyquist limit must be observed:

(0t/r) ®max < . (21)

If the original image encompasses the full available bandwidth, then
by definition ®max = 7, and Eq. (21) results in the requirement
that o0 < r. Most commonly, however, structured patterns in images
rarely represent the highest possible frequency (not considering
the piecewise discontinuities that occur, for example, along object
edges—the frequencies associated with these discontinuities are
deliberately not included in the high-frequency detail s by the space-
frequency analysis) As such, one can often select o > r and still
obtain good (aliasing-free) results. The exact value of o used for
a particular application is a subjective choice, left to the user, but
should satisfy Eq. (21) to avoid aliasing.

In our demo, we provide the following options: (i) a freely con-
trollable by the user; (ii) 0. = ro.™ where o* is user-controllable (i.e.,
o is proportional to r with some user-adjustable proportionality con-
stant); and (iii) o0 = \/ro*. We call this last (empirically-defined)
option a “perceptual” selection for «, as it leads to downscaled
images that better match a user’s expectations (refer to Figure 7).

5.3. Processing Videos and 3-D Volumes

Extending our technique to videos is straightforward. While one
could consider independently applying our method to the individual
frames, this introduces visual artifacts due to discontinuities in the
recovered phases for adjacent frames. A more robust solution pro-
cesses the whole 3-D (x,y,#) video volume at once. For the phase
unwrapping pre-processing step, this is done by adding a new set
of linear constraints relating to the third dimension: that is, simply
by considering o € {x,y,¢} in Egs. (13) and (17) and all associated
equations. The resulting 3-D phase functions @”(x,y,t) are stored
and later employed for real-time frequency adjustment by combin-
ing the frequency-adjusted components cos(a.¢” (x,y,t)) according
to Eq. (20) (windowed reconstruction with a 3-D neighborhood €,).
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Adjusted
(v=r)

111
s
-

Figure 7: Perceptual frequency adjustment. The image on the left
was downscaled using factors r € {%, %, %} If no frequency ad-
Jjustment is performed before downscaling (right-bottom row), the
high-frequency information is lost at the smaller image sizes. If
frequencies are adjusted using a factor oL = r (right-top row), the
striped pattern is correctly preserved at all resolutions. However,
note how all resulting images have sinusoids with the same period,
measured in pixels. This results in a “perceptual dissonance” since,
while the image size is being reduced, the pattern is perceived as
staying the same size (since the wave periods are constant). This is
solved by using a “perceptual” adjustment factor & = \/r (right-
center row), which reduces the pattern’s period lengths while still
preserving the stripes.

Adjusted

(0= )

Not
Adjusted
Original size (a=1)
(100 x 100 pixels)

1
r=3

As in the case for images, this process is completely independent per
pixel and can be computed in parallel on a GPU. Furthermore, this
can be done during video playback where only the current frame has
to be reconstructed. The same considerations apply for processing
3-D volumes in general (3-D scalar fields).

5.4. Complexity Analysis

The cost of the space-frequency analysis (Appendix A) for an input
image with K = w X h pixels using an L X L window is O(KLlogL).
Phase unwrapping requires solving a sparse linear system with
O(K /7) non-zero elements, where 7T is the sampling step.

To reconstruct a target image with M pixels and at most N de-
tected phase components per pixel, it requires MN element-wise
multiplications of an L X L reconstruction window by the (per-pixel)
cosine functions corresponding to the unwrapped phases, resulting
in a cost of O(MNLz). Using sparse sampling with a step T in both
dimensions, the cost reduces to O(MN |L/t|%).

The reconstruction algorithm uses as input a residual image
with the same dimensions w X h as the original image, and 2-
D arrays containing pre-computed phase (unwrapped), amplitude,
and gradients for the N components. Each such array has dimen-
sions w+ L X h+ L. The extra L rows and columns are required
as reconstruction windows outside the image may affect pixels in-
side it. When sparse sampling with a step T, only [(w+L)/t] X
|(h+L)/t] samples are stored for each array, in which case the
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amount of memory required by the reconstruction algorithm is
O(wh+M+4N | (w+L)/t] | (h+L)/T]).

6. Results

We have applied our frequency-adjustment technique to a large
number of images, including photographs, hand drawings, as well
as synthetic ones. Here we demonstrate the potential and flexibility
of our method through a few representative examples illustrating
both increase and decrease of spatially-localized frequencies in
combination with image resizing, resampling, and super-resolution
techniques. Image factorization and phase unwrapping take a few
seconds for a full HD image and is performed as a pre-processing.
For instance, the factorization of the 1,618 x 2,048-pixel image
shown in Figure 1 (a) takes about 8.8 seconds (detecting the relevant
waves: 7.83 sec; building and solving an 83,633 linear system: 0.93
sec and 0.04 sec, respectively). These measurements were made on a
6-core 3.2 GHz CPU. For all examples shown in the paper, frequency
adjustment and image reconstruction are performed in real time on
a pixel shader. Our technique performs frequency adjustments on
the 3 megapixel image shown in Figure 1 (a) at about 70 fps using
T =10 on an AMD R9 280X GPU. Although spectral remapping
can also detect relevant phases as some pre-processing, it requires
building and solving a linear system for phase alignment every time
the target resolution changes. For the image shown in Figure 1, these
operations take about 1.5 seconds on a 6-core 3.2 GHz CPU.

In all comparisons with other techniques, we used software pro-
vided by their own authors. Our technique can generate its results
directly at the target image resolution. Nevertheless, in all downscal-
ing examples shown in the paper we perform frequency adjustment
at the same resolution as the input image, followed by a resam-
pling to the target dimensions. We do so to stress the fact that our
method is orthogonal to and complements existing downscaling
techniques [KSP13, NH14, OG15, SN15, WWA*16]. Thus, along
the following examples we will be using different resampling tech-
niques. We encourage the reader to inspect our results by zooming
in on the full-resolution images embedded on the PDF, and by ex-
ploring them in their original sizes in the supplementary materials.

Figure 1 (a) shows a hand drawing containing regions with very
high and others with low spatial frequencies. Figure 1 (e) shows the
downscaling of the reference image to 135 x 171 pixels using our
technique, taking 0.01 seconds for frequency adjustment and image
reconstruction. Note how the structured details of the high-resolution
reference image are preserved by our technique at the lower image
resolution in (b). By comparison, spectral remapping [GO17], in (c),
generates a similar result but is two orders of magnitude slower to
compute. In both cases, the resampling to the target resolution was
performed using the Cubic O-MOMS filter [NH14]. Figures 1 (d—f)
show examples of frequency-adjusted results using our technique
for different adjustment factors o.

Figure 8 (a) shows two photographs containing natural high fre-
quency patterns. By reducing the frequency of these structures using
our approach, one is able to preserve their appearance in a much
lower resolution, as shown in (b) for a scaling factor of 0.15x. For
these examples the frequency-adjusted images were reconstructed at
the original resolution and subsequently downscaled using a 7-lobed
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(288x192, r = 0.15, oo = 0.45)

(288x192)

(a) Reference (top: 1920 x 1278, bottom: 1920 x 1440)

(288x216, r =0.15, o0 = 0.6)

(b) Ours + Lanczos

(288%216)

(¢) Lanczos

Figure 8: Examples of adjusting the frequency of complex natural patterns for downscaling. (a) Reference high-resolution images. (b)
Downscaled versions of the images in (a) generated by performing frequency adjustment with our technique, followed by resampling using a
Lanczos kernel. (c) Downscaled versions of the images in (a) using Lanczos resampling only. Note how our result in (b) manages to preserve
the structure in the sunflower’s disk and the honeycomb’s tiling, which are otherwise discarded by standard downscaling prefilters (c).

Lanczos kernel. If one downscales the reference image using this
same kernel, but without adjusting frequencies using our approach,
the detailed patterns of the sunflower and honeycomb are lost, as
shown in Figure 8 (c).

Although frequency adjustment is performed at pixel level, it
potentially affects content over the entire image. Thus, additional
creative control is provided by allowing the user to specity a different
frequency scaling factor to individual portions of an image, or to
delimit the set of pixels the frequency adjustment should be applied
to. This can be achieved by providing a stencil mask specifying the
target pixels (Figure 9).

Figure 10 shows the results of our technique applied to some
textured fabrics. In these examples, we demonstrate the combined
use of our method with Lim et al’s. [LSK*17] super-resolution
technique. This illustrates our method’s ability to complement super-
resolution strategies to obtain high-resolution images with a wider
frequency bandwidth. Figures 10 (b) and (h) show downscaled ver-
sions of the corresponding reference images to 80 x 60 and 75 x 75
pixels, respectively, produced by our method. In both cases, resam-
pling was performed using the technique of Weber et al. [WWA™16].
Figures 10 (c)/(i) show results generated by our method when in-

creasing the frequencies by a factor o = 2, while preserving the orig-
inal resolution (r = 1). Note how the spatial frequencies in (c)/(i)
are higher than the ones in the corresponding reference images
(a)/(g). They are also higher than the ones in the results produced
by the super-resolution technique of Lim et al. [LSK*17], shown in
(e)/(k). Figures 10 (d)/(j) show the results obtained by combining our
method with Lim et al.’s. This hybrid solution consists of applying
the super-resolution technique to the residual image, which is then
added to the adjusted high-frequency detail, according to Eq. (19).
Note that such a procedure can be used with any super-resolution
method. Figures 10 (d)/(j) show fabrics with significantly higher
frequency content in comparison to the plain super-resolution results
in (e)/(k), and also to standard bicubic upsampling in (f)/(1). These
results demonstrate the effectiveness and simplicity of such a hybrid
approach.

Figure 11 shows a photograph of a lizard exhibiting high-
frequency details. Figure 11 (b) shows the downscaled version of
the reference image to 220 x 293 pixels generated with frequency
adjustments by our technique. Resampling to the target resolution
was performed with the optimized quasi interpolator OQI3 [SN15].
Figures 11 (c¢) and (d) show results produced by our method after
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Sy
scarf: oo = 0.6
pants: o= 0.2

Masks scarf: o0 =0.2
pants: o = 0.6

Figure 9: Stencil masks used to apply independent scaling factors
to the spatial frequencies of different image regions: pants (red),
scarf (blue), and table cloth (green). These stencils were created
using GIMP’s Intelligent Scissors tool to segment the corresponding
regions, which were further dilated by a few pixels to guarantee
that no pixels at the borders of high-frequency regions were left
out. Alternatively, such regions could potentially be detected by our
technique as clusters of neighboring pixels whose reconstructing
cosine functions have similar amplitude and phase values.

scaling the frequencies by factors of oo = 0.25 and o = 1.25, respec-
tively. One should compare the details on the belly and legs of the
lizards with the ones on the reference image. For the examples in Fig-
ures 11 and 12 no comparisons with the super-resolution technique
of Lim et al. [LSK*17] are provided (the available implementation
did not handle the sizes of the reference images).

The striped shirt in Figure 12 (a) contains a high-frequency pat-
tern, being a challenging test case for image downscaling techniques.
Figure 12 (b) compares the results of our method (top) with spectral
remapping (bottom) for the case of an aggressive downscaling of
the reference image to 200 x 150 pixels. In both cases, the actual
downscaling step was performed with Lanczos filtering followed by
resampling using a cubic B-spline. Figure 12 (c) shows an example
of frequency increase (applied to an already high-frequency pattern).
For this result, we kept the dimensions of the original image (r = 1)
while increasing the frequency of the stripes using o0 = 1.5. This
example also demonstrates the effectiveness of our solution for pro-
cessing color images (Section 4.3), as misalignment in the phases
of the individual color channels would introduce noticeable artifacts
in such a large image (see accompanying video).

Figure 13 illustrates the use of our technique for processing a
video sequence. As discussed in Section 5.3, the whole 3-D (x,y,7)
volume is processes simultaneously, thus preserving temporal coher-
ence of the frequency-adjusted details. The reference and resulting
processed videos are included in our supplementary materials.

6.1. Discussion and Limitations

As discussed in Appendix A, we use a Gabor space-frequency
decomposition for measuring the instantaneous frequencies V@
present in the image’s spectrum [GO17]. One limitation of this ap-
proach is that the (Gaussian-windowed) Gabor atoms have a fixed
bandwidth in space and frequency, controlled by a user-specified
frequency threshold @. If one wants to detect the instantaneous fre-
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quencies of very slowly varying components, the threshold ® must
be small in order to obtain a good frequency (spectral) resolution.
But in turn this comes at the cost of poorer spatial resolution, since
space and frequency locality are conflicting requirements [Mal09].
In practice, this means that reducing the frequency threshold leads
to larger analysis and reconstruction windows for the Gabor frame.
Such large windows may cause some detected high-frequencies
to bleed into nearby pixels during frequency adjustment. These
“blended frequencies” are often hidden by the downscaling proce-
dure, but may be visible when the resulting image is upscaled or
has its size preserved. This can be seen, for example, around the
letters in Figure 10 (d) and around the buttons in Figure 12 (c).
This problem could potentially be mitigated by replacing the Gabor
step with a Wavelet strategy for detecting instantaneous frequen-
cies [DEG*92]. Since wavelets adapt their spatial support based on
the frequency bands of the signal, they define a multiscale approach
which would use the smallest possible window for each detected
frequency.

As mentioned in Section 4.3, for some color images it is best
to use the PCA-based approach for phase unwrapping (processing
only a single “channel”). This occurs because, in some situations,
the inter-channel alignment is not enforceable without breaking
intra-channel phase constraints. This is the case of the images in Fig-
ure 10 (a) and (g), which are highly monotone, and for which a
multi-channel RGB alignment introduces some small chromatic
distortions (Figure 14).

7. Conclusion

We presented a real-time technique for interactive adjustment of
the spatial frequencies in images. It supports both decreasing and
increasing of frequencies with localized spatial control, and is or-
thogonal to image resizing and resampling strategies. Conceptually,
our method consists of factoring the input image, at a pixel level,
into a set of high-frequency waves (cosines) plus some residual.
Frequency adjustment is achieved by scaling the phase values of the
detected waves at each pixel by some factor o.. Image reconstruction
is then obtained (also at pixel level) by accumulating the cosines of
the scaled phase values and adding the corresponding residual.

Our paper introduces two additional contributions: (i) a phase-
unwrapping technique to recover the phase of real waves, and (ii) a
technique for processing color images for use with frequency adjust-
ments. Our phase-unwrapping solution naturally handles the sign
ambiguity associated with the unwrapping of real waves. To the
best of our knowledge, ours is the first algorithm to solve this prob-
lem in 2-D. Our method for processing color images avoids color
artifacts associated with the use of the PCA-based color reconstruc-
tion described in [GO17]. We demonstrated the effectiveness of
our technique on a large number of images subject to downscaling,
upscaling, as well with their dimensions preserved. We have also
shown how to extend our method to videos and how to combine
it with conventional super-resolution techniques to obtain novel
super-resolution results.

By performing frequency adjustment with real-time feedback, our
technique expands the range of artistic and technical possibilities for
image and video processing. This should stimulate the development
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(a) Reference (400 x 300) (b) 0.2x

(g) Reference (600 x 600)

() 0.125x () Ours 1x (r=1, 0=2)

] - £
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(d) Ours + DeepRes: 2x  (€)  DeepRes: 2X

(j) Ours + DeepRes: 2x (k)  DeepRes: 2x

(f) Bicubic: 2x

(r=2a=2) (Super-resolution)

(1) Bicubic: 2x

(r=2o0=2)

(Super-resolution)

Figure 10: Examples of downscaling and upscaling with frequency adjustments. (a) and (g) Reference images. (b) and (h) Downscaled versions
of (a) and (g) generate by performing frequency adjustment with our technique, followed by resampling using the method of [WWA* 16]. (c)
to (d) and (i) to (j) show examples of frequency adjustments using our technique. (c) and (i): Increasing spatial frequency using a scaling
factor o = 2, while keeping the dimensions of the reference image. (d) and (j) Increasing the spatial frequency using o. = 2 while resizing the
image by 2x (using Lim et al.’s [LSK* 17] super-resolution method for upscaling the residual). (¢) and (k) Upscaling by 2x using only Lim et
al’s [LSK* 17] super-resolution method. (f) and (1) Upscaling by 2x using standard bicubic upsampling. Note how our approach is able to
generate high-frequency detail that is significantly different than existing classic and state-of-the-art methods.

of new applications involving real-time exploration of visual content
on small as well as on very large displays. This could include, for
instance, real-time image downscaling to adapt content to thumbnail
sizes or to smartphone displays. Similarly, one could combine our
frequency-enhancement solution with super-resolution methods to
produce upscaled images for exploration on high-definition displays.
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(a) Reference (1,536 x 2,048) (b) (r=a=0.14) (¢) Ours (r=1, a=0.25) (d) Ours (r=1, = 1.25)

Figure 11: Picture of a lizard (courtesy of William Warby). (a) Reference image. (b) Downscaled version of (a) generate with our technique
for frequency adjustment and resampling to 220 x 293 using the method of [SN15]. (c) and (d) Examples of spatial frequency adjustment
generated by our technique. The images were kept at the original resolution (r = 1): (c) Frequency decreasing obtained with a scaling factor
o = 0.25. (d) Frequency increasing obtained with a scaling factor a. = 1.25. Note the adjusted frequencies of the details on legs and belly of
the lizard.
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(a) Reference (1,600 x 1,200) (b) 0.125% (¢) Ours (r=1,a=1.5) (1,600 x 1,200)

Figure 12: Shirt. (a) Reference image. (b) Downscaled versions of (a): (top) generated with our technique and (bottom) obtained with spectral
remapping [GO17]. In both cases, resampling to 200 x 150 pixels was done applying Lanczos filtering followed by resampling using a cubic
B-spline. (c) Result produced by our techniques with same resolution as the reference image (r = 1), but with spatial frequency increased by a
factor a. = 1.5. Please zoom-in to images (a) and (b) to avoid aliasing artifacts caused by the PDF reader’s resampling filter.
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(a) Frame from the reference video (760 x 720)

(b) Frames from our frequency-adjusted video (downscaled to 228 X 216 using Lanczos filtering)

Figure 13: Example of video frequency adjustment. (a) The reference video contains high-frequency patterns on the jacket, which move
around from frame to frame following the person’s movement. (b) Our frequency adjustment technique is applied to the whole 3-D space-time
video volume (Section 5.3), reducing the frequency of the patterns and preserving them at the target (lower) resolution.

Figure 14: Chromatic distortions might happen when enforcing
multi-channel alignment for images that are mostly monotone (see
the button on the left and the shirt texture on the right). Images
obtained using 0. = 0.5 and r = 1.
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Appendix A: Estimating the phase gradient field for one real wave

The pre-processing step of our technique begins by obtaining
a non-harmonic space-frequency decomposition of the image A.
For this purpose, we employ the recent algorithm of Gastal and
Oliveira [GO17], which separates the image as h = s +d, where s
contains most of the high-frequency information of 4, for a certain
predefined frequency threshold (Figure 6). This decomposition ap-
proximates the neighborhood around each pixel as a collection of
plane waves of the form A cos(ax+by+c), where (a,b) € [-7, )
are constant horizontal and vertical frequencies, ¢ € [0,27) is a con-
stant phase shift, and A > 0 is a constant amplitude. In other words,
assuming a single phase component (the case of several components
is discussed in Section 4.2), a tuple of measurements (a,b,c) is
computed for each pixel (xg,), and the approximation

s(xp +8x,y0+8y) = Acos (@) =Acos(adx+bdy+c) (22)

is the best linear-phase approximation of the image’s high-frequency
content s around pixel (xg,yo). The (unknown) true phase value at
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(x0,y0) matches the measured phase shift ¢ up to modulo 2% (i.e., c is
a wrapped measurement).

By definition, a function and its best linear approximation at
point (xg,y0) have matching first derivative at such point. Thus, for
the desired representation s(x,y) = Acos(8(x,y)), with a possibly
non-linear phase function 6(x,y), and given Eq. (22), with (a,b)
computed for a particular pixel (xg,yo), one has

V6(x0,30) = V6 = (,b). 23)
Moreover, since cos(®) = cos(—®), it is also true that
s(x+08x,y+90y) =~ Acos(—®) =Acos(—ady —bdy—c); (24)
so it could also be the case that we have a sign flip:
VO(xo,y0) = =V = (—a,—b). (25)

In other words, V0(xo,y0) = 6(x0,y0) V®(x0,y0) for an unknown
sign 6(xg,yo) € {—1,+1}, where the measured phase gradient

V(AP(XOJO) = (avb) (26)

is given by the horizontal and vertical plane-wave frequencies a
and b, detected at pixel (xp,yp), by a non-harmonic Gabor space-
frequency analysis [GO17].

Appendix B: Unwrapping the phase of one complex wave

The phase-unwrapping literature deals with wrapped phase values
6(x,y) € [~m,n) that are related to the true phase 8 according to
Eq. (5). In practice, this is equivalent to a phase obtained from a
complex wave exp(iB(x,y)). Note that the wrapped phase recovered
from a complex wave is given by 8 = arg(exp(i0)) € [—, ) [1to82],
thus no sign ambiguity occurs. Since the integer shifts k(x,y) in
Eq. (5) define a piecewise-constant function, the unwrapped and
wrapped gradients are such that

VO(x,y) = VO(x,y) almost everywhere. 27

If the vector field Vé(x,y) is conservative, then the scalar potential
field O(x,y) is directly determined by a path integral (up to some
integration constant) [TT88].

In the discrete setting, the wrapped phase 8(x, y) is only sampled
at integer pixel locations, and the discrete analogue to Eq. (27) is
given by finite differences. Some extra care must be taken, however,
to handle the discontinuities caused by the integer shifts k(x,y).
Appendix C reviews how this is done in the phase-unwrapping
literature [Ito82]. The end result is an estimated discrete gradient
field V6 that approximates the true field V0 at each pixel (x,y), and
the unwrapped phase 8(x, y) is obtained by integrating V6. While,
in theory, this may be performed by a cumulative sum over any path
covering all pixels in the image, this process is sensitive to noise
and errors in the measurements [Z1.98], in addition to ambiguities
inherent to the phase-unwrapping problem [SF85]. Thus, in practice,
the integration process becomes path dependent and a good choice
of integration path must be made. Modern approaches obtain good
results by the use of combinatorial optimization with carefully-
selected heuristics [HPV19]. Unfortunately, the time complexity of
these methods scale as O(N*) in the number of pixels.

A second class of algorithms work by integrating the field V8
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in the least-squares sense [TT88, SNPG95, Z1.98]. This is equiv-
alent to solving a discrete Poisson problem. The benefit of these
approaches is that they recover smoothly-varying phase information
even in regions of low signal-to-noise ratio, but at the cost of some
distortion in the recovered phase (which may not exactly match the
wrapped measurements) [ZL98]. For our frequency-adjustment tech-
nique, obtaining a smooth phase field is of utmost importance, as any
discontinuity tends to introduce objectionable visual artifacts. As
such, we opt for a least-squares solution, discussed in Sections 4.1.1
and 4.2. Since this amounts to solving a linear system, the unwrap-
ping computation takes at most a few seconds for a typical image at
full HD resolution on commodity hardware. The actual time depends
on the image resolution and its frequency content. Note, however,
that recovering 6(x,y) can be done as pre-processing, after which
one can perform spatial frequency adjustments in real-time using
independent per-pixel operations (Section 5).

Appendix C: Common approach for estimating the wrapped
gradient field for one complex wave

The following relation holds between the phase 8 of a complex wave
and its wrapped version 6(x,y) = arg(exp(i8(x,y))) [[to82]:

AB(x,y) = wrap(AB(x,y)) if AB(xy) € [-mm)*  (28)

where A = (Ay, Ay) gives the discrete gradient, for

Axe(x,y) = e(xvy) - e(x_ lvy)7 and

AyB(x,y) = 6(x,y) —B(x,y — 1).
The operator wrap(6) = 8+ 27| (t — 8) /27| operates elementwise
when applied to a vector [HPV19]. The identity in Eq. (28) holds
everywhere if the horizontal and vertical variations in 8 are bounded
by 7 radians [Ito82]. This restriction, that AB(x,y) € [—m, )%, is
trivially satisfied for sampled complex signals. The continuous
signal reconstruction with sinc interpolation is naturally band-
limited to the Nyquist frequency interval [—n,n)z. This implies
that the components of the instantaneous frequency VO(x,y) are
in [—7,7), and consequently AB(x,y) € [—m,m)%. As such, given
measurements 8(x,y) of the wrapped phase, the unwrapped phase

0(x,y) for one complex wave can be obtained by integrating
wrap(AB(x,y)) [1to82, SNPG95].

Appendix D: Cross-channel phase constraints

The cross-channel constraints X¢,c, from Eq. (18) are expressed as
Nep N 2
XCICZ = anll Zmi] ngfréz ((Pgl 7Ag;7(1:26(P}C1/;) ) (29)
where, as before, A{¢,6(p) determines if there is an expected
change in sign between the gradient vectors V¢, (p) and V@Z. (p).
Similarly, the weight n¢{¢, (p) measures the similarity of such vec-

tors, according to their orientations and magnitudes:
nére, = Ang(VE,, VO5) Mag (VL , VEE,) . (30)

The orientation similarity is given by dot product

Ang(vi,v2) = LAl (1)
and the magnitude similarity by
_ 2
Mag(vy,v2) = exp (3 Llohzln) (32)



