
EUROGRAPHICS 2021 / N. Mitra and I. Viola
(Guest Editors)

Volume 40 (2021), Number 2

Restricted Power Diagrams on the GPU

J. Basselin , L. Alonso , N. Ray , D. Sokolov , S. Lefebvre , B. Lévy

Université de Lorraine, CNRS, Inria, LORIA, F-54000 Nancy, France
firstname.lastname@inria.fr

Figure 1: We compute 3D Voronoi diagrams of 10 million points restricted to a mesh in 300 ms on the GPU (Nvidia V100).

Abstract

We propose a method to simultaneously decompose a 3D object into power diagram cells and to integrate given functions in each
of the obtained simple regions. We offer a novel, highly parallel algorithm that lends itself to an efficient GPU implementation. It
is optimized for algorithms that need to compute many decompositions, for instance, centroidal Voronoi tesselation algorithms
and incompressible fluid dynamics simulations.
We propose an efficient solution that directly evaluates the integrals over every cell without computing the power diagram
explicitly and without intersecting it with a tetrahedralization of the domain. Most computations are performed on the fly,
without storing the power diagram. We manipulate a triangulation of the boundary of the domain (instead of tetrahedralizing
the domain) to speed up the process. Moreover, the cells are treated independently one from another, making it possible to
trivially scale up on a parallel architecture.
Despite recent Voronoi diagram generation methods optimized for the GPU, computing integrals over restricted power diagrams
still poses significant challenges; the restriction to a complex simulation domain is difficult and likely to be slow. It is not trivial
to determine when a cell of a power diagram is completely computed, and the resulting integrals (e.g. the weighted Laplacian
operator matrix) do not fit into fast (shared) GPU memory. We address all these issues and boost the performance of the
state-of-the-art algorithms by a factor 2 to 3 for (unrestricted) Voronoi diagrams and a ×50 speed-up with respect to CPU
implementations for restricted power diagrams. An essential ingredient to achieve this is our new scheduling strategy that
allows us to treat each Voronoi/power diagram cell with optimal settings and to benefit from the fast memory.

CCS Concepts
• Theory of computation → Computational geometry; • Computing methodologies → Parallel algorithms;

Introduction

When numerical optimizations involve complex geometric objects,
it is often necessary to discretize them. Voronoi diagrams are in-
teresting for this purpose as tools to discretize geometric objects

because they are controlled by a set of points (seeds). They can
be exploited, for instance, to simulate diffusion processes (Cen-
troidal Voronoi Tessellations/Lloyd) [Wan17], or to model random
yet well-distributed foams [MDL16].

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.142610

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0002-8868-9644
https://orcid.org/0000-0002-1678-2540
https://orcid.org/0000-0002-1805-8310
https://orcid.org/0000-0002-1706-6538
https://orcid.org/0000-0002-9182-3146
https://orcid.org/0000-0002-7007-3219

J. Basselin et al. / Restricted Power Diagrams on the GPU

Power diagrams generalize Voronoi diagrams by adding a weight
to each seed which allows to control the (relative) scale of each cell.
Another advantage of the power diagram is its link with optimal
transport: given a set of seeds and a domain Ω, there exists a set
of weights such that the map that associates each seed to its power
cell restricted to Ω is the optimal transport between the seeds and
Ω. This property was exploited to generate blue noise [dGBOD12,
XLC∗16] and more recently to enforce incompressibility in fluid
dynamics [dGWH∗15a, GM17].

In those applications, the Voronoi/power diagrams are con-
structed only to compute integrals: CVT requires the volume and
the barycenter of Voronoi cells and optimal transport additionally
needs to support power diagrams and to compute the weighted
Laplacian operator matrix [dGBOD12]. Computing those values
is often a bottleneck because they are needed inside a critical loop
of the optimization process. We improve the performance by more
than an order of magnitude with respect to equivalent solutions by
directly computing those integrals on the GPU.

Previous work

Computing Delaunay triangulation (or Voronoi diagram) is a fun-
damental task in computational geometry. In most cases, it is done
by an extension of the Bowyer-Watson algorithm [Bow81, Wat81].
However, when the seed distribution is homogeneous, it is possi-
ble to explore alternative solutions that are easier to implement in
parallel.

Extensions of the Bowyer-Watson algorithm:

Most algorithms extend the classical Bowyer-Watson algorithm
[Bow81, Wat81] (point location and cavity re-triangulation) and
rely on spatial sorting [ACR03, DD18] to speed-up the point lo-
cation phase. Parallel implementations are optimized for specific
settings. To compute huge meshes, it is possible to split the point
set by regions and distribute them on a cluster [Ryc09, ND03,
AR95, DCS99, Gon16]. When the mesh fits into the memory of
a single computer, multi-core processors with tens of threads can
edit the mesh simultaneously with a reasonable proportion of con-
flicts [The18, BMPS10, Inr18, Rem17, MPR18]. GPU implementa-
tion can be derived directly from CPU strategies [CNGT14,Cao14],
but concurrent editing of a global mesh data structure does not
scale-up very well for high number of threads and in particular does
not reach high efficiency on modern GPU architectures.

Computing each Voronoi cell independently

A different approach is to compute each Voronoi cell independently
as the intersection of a set of half-spaces. For a seed Si, we know
that all points closer to another seed S j than to Si do not belong
to the cell. This set is defined by an half-space ax+ by+ cz+ d >
0 where ax + by + cz + d = 0 is the bisector of SiS j. From this
observation, we can define the Voronoi cell Ci as the intersections
of the corresponding half-spaces.

Like the Voronoi diagram, the power diagram, also called a La-
guerre–Voronoi diagram, is generated by a set of points; however,
unlike the Voronoi diagram, these points are weighted, with the
weights influencing the size of the cells. The power diagram is

Figure 2: In two dimensions, a cell of a power diagram can be
seen as the intersection of half-planes generated by radical axes
that are defined by circles centered on the seeds with radii given by
the corresponding weights.

a form of generalized Voronoi diagram, and coincides with the
Voronoi diagram in the case of equal weights. Like for the Voronoi
diagrams, the cells of a power diagram are convex polytopes and
can also be seen as the intersection of half-spaces; the only differ-
ence is that these half-spaces are not generated by bisectors, but by
radical hyperplanes (refer to Fig. 2).

N.B.: note that while cells of a power diagram are convex poly-
topes, their restriction to a domain is not necessarily convex. More-
over, a restriction of a cell to a domain can even have multiple con-
nected components, thus a special care must be taken to compute
the integrals correctly.

To compute (unrestricted) Voronoi cells using this definition,
each cell is initialized as the full space, then is iteratively clipped
by half-spaces generated by the other seeds. Fortunately, it is not
necessary to visit all the other seeds. To do so, we visit the seeds
in order of distance to the current seed. Prior to every clipping, we
compute the minimum radius of a ball centered on the seed point
and containing the cell. If the distance from the seed to the cur-
rently considered neighbor is greater than twice the radius, then the
bisector does not clip the cell and we can stop the process. This
condition is referred to as the security radius criterion [LB13].

This approach is easy to parallelize, and it outperforms the ex-
tensions of the Bowyer-Watson algorithm in certain cases (when
the point set has a homogeneous distribution). The implementation
of VORO++ [Ryc09] exploits the versatility of CPU to deal with its
dynamic combinatorial data structure. For a GPU implementation,
it is better to focus on a more compact data structure [RSLL18].
Restriction of this latter algorithm to a tetrahedral mesh was re-
cently done [LY19, LMGY20] by considering the intersection of
each Voronoi cell with each nearby tetrahedron. The choice of the
tetrahedra to intersect with the current Voronoi cell is a complex
one; the authors chose a heuristic based on their respective barycen-
ters, leading to problematic computational errors. Our algorithm is
exhaustive and does not miss pairs of primitives to intersect, thus
avoiding these errors. We avoid tetrahedralizaiton of the domain (it

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

2

J. Basselin et al. / Restricted Power Diagrams on the GPU

is defined as a triangulated surface), what allows us to gain a ×100
speed-up with respect to [LMGY20]. We also outperform CPU im-
plementations for the specific case of homogeneously distributed
seeds.

Note that there also exists a GPU implementation for 2D re-
stricted Voronoi diagrams [FRWW14], but it is restricted to a trian-
gulated domain (not a volume). Their restriction makes it possible
to directly clip each triangle of the domain without explicitly com-
puting the Voronoi cells.

Contributions

The proposed algorithm improves performances over the state of
the art:

• We obtain a× 2–3 speed-up of [RSLL18]’s algorithm, thanks to
our new scheduling strategy for unrestricted Voronoi diagrams.
• Our algorithm is more than 100 times faster than [LMGY20]’s

GPU algorithm for integrating over a constrained domain, thanks
to directly evaluating integrals over the domain, instead of inter-
secting cells with a tetrahedral mesh.

Moreover, it has the following features:

• The simulation domain is bounded by a triangulated surface.
• It supports large and irregular point set distributions (like white

noise) while consuming less memory than previous work.
• Power diagrams are supported, albeit with some limitations on

weight distribution corresponding to our observations on the
simulation of incompressible fluids.
• New integrals are supported: for example, the weighted Lapla-

cian operator that is required for semi-discrete optimal transport
and fluid simulations.

1. Overview

Our algorithm (Alg. 1) takes as an input a set of weighted seeds (3D
points and weights) and a domain defined by a triangulated surface
delimiting its boundary. The output is a set of integrals computed
over the 3D power diagram restricted by the domain. In our ex-
periments, we have tested the integrals necessary for Lloyd’s algo-
rithm and power particles fluid simulation [dGWH∗15a]; these are
the volumes and the barycenters of the restricted power diagram
cells, as well as the weighted Laplacian operator matrix necessary
to compute a semi-discrete optimal transport.

First we precompute on the CPU an acceleration data structure
to speed up local accesses to the domain’s geometry (domain_grid,
Alg. 1, line 1). It allows for a very efficient computation of integrals
restricted to the domain, as explained in §4. Then we initialize on
the GPU the spatial search data structure for the seeds (seed_grid,
Alg. 1, line 2). After that, we start evaluating the integrals: we fetch
the nearest neighbors of each seed (Alg. 1, line 8), then use them to
compute the integrals over the restriction of the cell to the domain
(Alg. 1, line 9).

To process all the seeds, we introduce a new scheduling strategy
that optimizes both the running time and the GPU memory con-
sumption. The overall scheduling process takes place inside two
nested loops:

The outer loop (Alg. 1, line 4). The idea is to tune the algorithm
differently for each pass: the very first iteration is fast, but fails
to integrate over some cells of the power diagram, whereas subse-
quent iterations are increasingly safer (but slower) to process more
complex (but fewer) cases. We place the failed seeds in a stack to
process them in a subsequent pass.

More precisely, in our algorithm, a trade-off between the speed
and the success rate is given by 3 parameters K,P,V introduced
in [RSLL18] and detailed in §6.1. We initialize the parameters ac-
cording to the seed distribution (and the weights for the power di-
agram) to process the majority of the seeds in the first pass. Each
subsequent iteration increases the parameters K,P,V at each itera-
tion until the integrals of all cells are correctly evaluated. We ob-
served that simply scaling K,P,V by a factor 1.5 at each iteration
was efficient in all settings (Fig. 10). Note that it is easier to evaluate
the integrals for the cells that do not intersect the domain bound-
ary (§3), than for the cells intersecting the boundary (§4). Run-
ning these cases at the same time would force executing diverging
branches between threads, which is very inefficient on SIMD ar-
chitectures like GPUs. Therefore, we split the first pass into two
substeps. In the first substep we consider only the cells that are
guaranteed to lie entirely inside or outside the domain and the sec-
ond substep considers the rest of the cells. Note that for the first
substep we compute all the cells, but discard those with the bound-
ing box (DomainGrid in Alg. 1, line 1) intersecting the boundary
of the domain.

The inner loop (Alg. 1, line 7). Computing the integrals over
a cell requires first to get the nearest neighbors of the seed, sec-
ond to construct the cell and to evaluate integrals. While it is pos-
sible to execute all steps in the same thread, it is more efficient
to pre-compute the nearest neighbors of all seeds in a large array
[RSLL18] (Alg. 1, line 8) because more threads can be launched si-
multaneously without forcing access to slow memory (only shared
memory). The construction of the cell and evaluation of integrals
are then computed from this array (Alg. 1, line 9).

A drawback of this solution (observed in [RSLL18]) is that the
nearest-neighbors array does not fit into memory for some settings.
This situation is getting worse with the weighted Laplacian oper-
ator matrix that consumes even more memory. Our solution is to
process the seeds in batches that always fit into the memory. The
number of seeds per batch is determined by the parameter K and
the memory available on the GPU (Alg. 1, line 5).

The rest of the paper is organized as follows: first we revisit
the nearest neighbors query (§2.1) and Voronoi cell computation
(§2.2) as done in [RSLL18]. Then we show how to support power
diagrams (§2.3) and compute the weighted Laplacian operator ma-
trix (§3). Then we show how the integrals can be restricted to the
simulation domain (§4). Finally, §6 presents performances of our
algorithm in representative use cases and discusses the limitations.

2. Unrestricted power diagram computation

In this section we show how to compute unrestricted power dia-
grams. First we revisit the case of Voronoi diagrams obtained by
computing each cell (§2.2) from its neighbor seeds (§2.1). Then we
show how to extend it to power diagrams (§2.3).

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

3

J. Basselin et al. / Restricted Power Diagrams on the GPU

Algorithm 1: Overview
Input: float4 seeds[#seeds]; // seeds: coordinates and

weights
Input: TriangleMesh ∂Ω; // boundary domain
Input: int K, P, V; // initial algorithm settings
Output: float4 result[#seeds]; // integrals (volume,

barycenter, weighted Laplacian etc.)
1 dg← domain_grid(∂Ω); // §4
2 sg← seed_grid(seeds); // §2.1
3 to_process←{1, ..,#seeds};
4 while to_process 6= ∅ do
5 int s← batchsize(K);
6 failed←∅;
7 for batch ∈ split(to_process,s) do
8 int knn[s][k]← get_knn(sg, batch); // §2.1
9 result.update(dg, batch, knn, failed); // §2.2, §4

10 (K,P,V)← 1.5(K,P,V);
11 to_process← failed;
12 sg.permute(result); // Cancel the re-ordering done in §2.1

Figure 3: Left: in order to retrieve quickly all points inside a voxel,
we sort the point-set by corresponding voxel id. Right: to find k
nearest neighbors for a query point S located in the dark blue
voxel, we visit all neighboring voxels in concentric rings.

2.1. k-NN query

To compute a Voronoi cell of a given seed S, we need to find its k
nearest neighbors. To do so, we use an algorithm [RSLL18] that is
based on two ideas (Fig. 3):

• If we suppose a homogeneous seed distribution in space, it is
possible to have an efficient spatial search structure that we call
seed_grid (Alg. 1–line 2). The idea is to define a regular (voxel)
grid in space, so we can efficiently visit all the seeds in the given
voxel. In practice, it is done by reordering the points and com-
puting a voxel offsets array. We also need an indirection map to
restore the original order of the seeds.
• Equipped with the spatial search structure, we can find the k-

nearest neighbors of a given seed S. The idea is to get the seeds
from the voxel that contains S, then visit neighboring voxels in
concentric rings until we are guaranteed to obtain the k nearest
neighbors. The search is stopped when the closest unvisited ring
is further than k neighbors we have already found. In this algo-
rithm, the neighboring points array is sorted by the distance to
the seed S.

The difference of our implementation with [RSLL18] is the way

to perform our requests: instead of requesting the k nearest neigh-
bors for all seeds at once, we perform several smaller requests. It
allows to request different numbers of neighbors (outer loop) to
better fit the difficulty of computing each cell and to keep the result
stored in fast shared memory (inner loop).

2.2. Convex cells

A Voronoi (power diagram) cell is a convex polyhedron that can
be seen as an intersection of a number of halfspaces. To repre-
sent a convex polyhedron, we use the data structure introduced
in [RSLL18]. The data structure is compact and well-suited for a
GPU implementation: it consists of an array of halfspace equations
(float4) and an array of triplets of integers representing the poly-
hedron vertices. Each triplet stores the indices of three halfspace
equations incident to the vertex, enumerated in clockwise order.

Following [RSLL18], to compute a Voronoi cell of the seed S,
we initialize it as the bounding box of all the seeds. Then, we visit
the neighboring seeds and iteratively clip the cell by the corre-
sponding bisector halfspaces. Since the neighbors are sorted by the
distance to the seed S, we can stop the clipping process when the
security radius criterion is met, i.e. the closest unvisited neighbor is
further to S than twice the maximum distance of cell vertices to S
(then the bisector is guaranteed to not intersect the cell).

The key routine here is the clipping of the convex cell by a half-
space, it can be done in 3 steps (Fig. 4):

1. detect vertices to be removed by simply evaluating the new half-
space equation on each vertex,

2. iteratively remove them from the array of vertices. They are re-
moved in an order that allows to maintain a representation of
the hole (Fig. 4–red arrows) produced in the mesh by removing
vertices. This representation is a circular list of halfplane indices
(stored in an array) such that two consecutive elements defines
a dangling edge.

3. add the new halfspace equation to the array and add a new vertex
for each dangling edge, the new vertex being simply the triplet
composed by the new halfspace id and two consecutive half-
plane ids in the circular list.

This algorithm is efficient on the GPU because it manipulates static
arrays only and the relations between elements are easy to update:
they are directly encoded in the representation of the vertices.

2.3. Power diagram extension

A power diagram can be computed as an intersection of halfspaces
just like a Voronoi diagram. However, the halfspaces are now de-
limited by the chordale equation [Aur87]: the point q is on the
chordale of seeds Si and S j with respecting weights w(Si) and
w(S j) if 2q · (S j−Si) = w(Si)−w(S j)+‖S j‖2−‖Si‖2.

Changing the halfspace equation implies that the security radius
criterion is not sufficient anymore to guarantee the correctness of
the clipping. In fact, in absence of any priors on the weights, using
local computations is not a viable option: for example, a seed with
a very high weight can cover the entire domain.

Fortunately, in most applications (e.g., fluid dynamics), power

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

4

J. Basselin et al. / Restricted Power Diagrams on the GPU

Figure 4: Clipping a convex polyhedron (in gray) by a halfspace
delimited by a plane (in blue). The clipping is done in three steps.
First we detect the vertices to be removed (a and b). Then we it-
eratevely remove the vertices, thus creating a hole with dangling
edges: we remove the vertex a and and initialize the hole boundary
(red arrows) as the dual of the dangling edges. Then we remove the
vertex b and update the boundary of the hole accordingly. Finally,
we create the new facet and generate vertices for each dangling
edge (in orange).

diagrams are often very similar to Voronoi diagrams, with this extra
degree of freedom (the seed weights) that allows to translate the
cells or adjust the volume of some cells. In both cases, the weights
of neighboring seeds are very similar. To formalize this prior, we
can assume that two seeds S0,S1 of weights w0,w1 are such that
‖w0 −w1‖ < 2ε‖S0S1‖. Under this assumption, adding ε to our
security radius guarantees that the cell is completely computed.

Once the result is computed, we can check that ε was large
enough by a simple volume comparison. If a cell was computed
without taking into account a neighbor that should have partici-
pated, its volume will be too large. This allows to detect that ε is
too low when the sum of the cell volumes is greater than the volume
of Ω §6.3.

In our experiments on fluid simulation, setting ε to 0.2 times the
security radius was sufficient to always succeed in computing all
cells.

3. Integration over unrestricted cells

The previous section shows how to compute an unrestricted power
diagram cell-by-cell. In this section, we recall how integrals Ray
et al. evaluate the integrals. The principle is to compute the inte-
gral on each cell by a signed sum integrals over tetrahedra [LK84],
where tetrahedra are obtained by orthogonal projections as in
[MMdGD11].

Let us say we have a function f (x) : R3→ R and for the cell C
we want to compute the integral

∫
C

f dV . The main idea is to decom-

pose the polyhedron C into a set of tetrahedra V(C) and to evalu-
ate the integral for each tetrahedron. The difficulty lies in the fact
that the lightweight data structure used to represent the polyhedron
does not allow for an efficient inference of connectivity between
the edges and the faces. Fortunately, since we are not interested in
the connectivity, but only in integrals over the cell, there is a way
to compute them efficiently.

Assume that we split the polyhedron into pyramids having a cell

Figure 5: Top row: to decompose the convex cell into tetrahedra,
first we decompose it to pyramids associated with each Voronoi face
(left image). Then we project the seed S onto the face (point H) and
produce a tetrahedron per edge (middle image). These tetrahedra
are split into two tetrahedra each by projecting S on the facet edge
(point I, right image) Bottom row: if the seed S (or the projection
H, or the projection I) is outside of the cell (resp. the face or the
edge) some tetrahedra will have negative volume, thus balancing
the extra volume from other tetrahedra. Note that seed S can be
outside of the cell only with power diagrams.

face as the base and the seed S as the tip, as illustrated in Fig. 5.
This pyramid can in turn be decomposed into a set of tetrahedra by
creating a tet per edge ViVi+1 of the base of the pyramid. In this
case, the tetrahedron vertices are the edge vertices Vi and Vi+1, the
seed S and its orthogonal projection H on the base of the pyramid.

With this approach, the problem of the connectivity still persists:
we need to know that Vi,Vi+1 is an edge. There is a way to circum-
vent the problem: if we introduce I, the orthogonal projection of
the seed onto the edge ViVi+1; then the tetrahedron (Vi,Vi+1,H,S)
can be seen as a composition of two tetrahedra (Vi, I,H,S) and
(I,Vi+1,H,S).

In this way, we can compute a decomposition V(C) without
restoring the connectivity: for each vertex of the polyhedron we
issue six tetrahedra. To compute the tetrahedra we only need to
know the seed S and three plane equations incident to the vertex.
This is not the minimal decomposition, but it can be generated di-
rectly from our lightweight data structure. Note that the orthogonal
projections H and I can lie outside the pyramid’s base and the cor-
responding edge, but signed volumes balance each other.

Thus, having the decomposition V(C), the integral can be com-
puted as follows:∫

C

f dV = ∑
v∈V(C)

sgn(vol(v))
∫
v

f dV, (1)

where vol(v) is the signed volume of the tetrahedron v. This is a

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

5

J. Basselin et al. / Restricted Power Diagrams on the GPU

direct consequence of the divergence theorem applied to a radial
vector field centered at S. For example, if f ≡ 1, i.e. we want to
compute the volume of the cell, we can take the field equal to ~SP/6
at point P. Indeed, the signed volume of v is equal to the flux of this
field throw the triangle of v that is opposite to S.

In Section 5, we detail the evaluation of the integrals needed for
Lloyd’s algorithm and fluid simulation: the cell’s barycenter and
volume and the area of the frontier between two cells.

4. Integrate over restricted cells

In the previous section we have shown how to integrate a function
f over the intersection of a polyhedron C (the power diagram cell)
and the bounding box of the pointset. Now, we are interested in
more complex simulation domains: we want to replace the bound-
ing box by a domain Ω represented by its triangulated boundary.
The problem is to integrate the function f over the domain Ω∩C.

We want to do this without changing our base framework, which
computes the integral within regions defined as the intersections of
half-spaces. The difficulty is how to define such half-spaces from
an arbitrary enclosing surface mesh. To achieve this, we propose a
decomposition exploiting signed integrals that combine and cancel
out to provide the correct result.

The section is organized as follows: first we present in §4.1 the
idea of our method without any optimization, and then in §4.2 we
explain how to speed up the process by performing local computa-
tions only.

4.1. Without optimizations

Our goal is to compute the integral of a function f over the intersec-
tion C ∩Ω, i.e.

∫
Ω∩C

f dV . We want to avoid the direct computation

of Ω∩C, so first let us study how to compute the integral
∫
Ω

f dV .

The domain Ω is represented by a triangulated surface ∂Ω; let
us choose an arbitrary point O and define a set of tetrahedra U as
follows: each triangle of ∂Ω creates a tetrahedron defined by three
points of the triangle and the point O.

Using the same argument as for Eq. (1), we can write the integral
as follows: ∫

Ω

f dV = ∑
u∈U

sgn(vol(u))
∫
u

f dV.

This decomposition is illustrated in Fig. 6, where we compute
the total volume of the bunny as the sum of volumes of blue tetra-
hedra (sgn(vol(u)) > 0) generated by triangles in ∂Ωin minus the
sum of the (unsigned) volumes of red tetrahedra (sgn(vol(u))< 0)
generated by ∂Ωout (red).

This decomposition of Ω can also be used to integrate over the
intersection C ∩Ω:∫

C∩Ω

f dV = ∑
u∈U

sgn(vol(u))
∫
C∩u

f dV.

Figure 6: An example of volume computation: when the normal of
the triangle t points towards the point O (left), the volume of the
tetrahedron is removed from the sum, otherwise (right) it is added.

Figure 7: The volume of the domain can also be computed as a sum
of signed volumes of truncated cones generated by the triangles and
the point O.

Note that all the tetrahedra u ∈ U are convex polyhedrons, there-
fore, it is straightforward to compute the intersection C ∩u: it sim-
ply means 4 halfspace intersections to add to the clipping procedure
described in §2.2, and the integral itself can be computed with the
Eq. (1):∫
C∩Ω

f dV = ∑
u∈U

sgn(vol(u)) ∑
v∈V(C∩u)

sgn(vol(v))
∫
v

f dV. (2)

While the Eq. (2) allows us to compute the integral over the re-
stricted convex cell Ω∩C with the aid of the set of tetrahedra U , it is
often computationally heavy. The simulation domain Ω is typically
defined by thousands of triangles, making it impractical to intersect
each power diagram cell with all the tetrahedra in U . The main idea
of the optimization is to early discard the empty cells C ∩ u in the
Eq. (2). The problem is that the set U does not allow us for a trivial
detection.

To this end, we introduce a modified set U ′. If we consider the
cone of tip O /∈Ω that would be split in two regions by the triangle
t ∈ ∂Ω: the tet u ∈ U was the first half that contains O, and now we
consider the other (infinite) half u ∈ U ′.

It may be less intuitive to work with U ′ than with U , but they
share the key property: any point (in general position) outside the
domain Ω belongs to an even number of polytopes (where integrals

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

6

J. Basselin et al. / Restricted Power Diagrams on the GPU

cancel each other), whereas points inside the domain belong to an
odd number of polytopes contributing to the integral.

Fig. 7 illustrates the volume computation (f ≡ 1) with the set U ′.
The total volume of the bunny is equal to the signed sum of volumes
of truncated cones u generated by the point O and the triangles in
∂Ω.

Thus, we can plug U ′ instead of U in the Eq. (2):∫
C∩Ω

f dV = ∑
u∈U ′

sgn(vol(u)) ∑
v∈V(C∩u)

sgn(vol(v))
∫
v

f dV. (3)

Note that unbounded truncated cones u ∈ U ′ have infinite volume,
however the sign is well-defined: for a truncated cone u generated
by the triangle (t0, t1, t2) and the point O we have sgn(vol(u)) =
−sgn(det3x3(t0−O, t1−O, t2−O)). Also note that the Eq. (3) sup-
poses O /∈ Ω; if this is not the case, we need to add the volume of
the cell to the result, it is equivalent to creating an infinitesimal hole
in Ω to exclude O from it.

From the computational point of view, the polytopes in U ′ are
convex and bounded by 4 planes, thus it is straightforward to com-
pute the intersection u∩C for u ∈ U ′. If used as is, the Eq. (3) does
not bring a direct gain over the Eq. (2), however it opens a window
for an optimization.

4.2. Optimization for complex domains

The main goal of this section is to optimize the computations by
doing them localy, i.e. using only the triangles situated near the
cell C. The key element to this optimization is to early discard the
empty cells C ∩u in the Eq. (3).

To do so, we compute the bounding box box(C) for each cell
C (not necessarily a tight one). The point O is chosen to be the
minimum coordinate corner of the box and thus the set U ′ is defined
per cell. Note that any triangle t ∈ ∂Ω that does not intersect the
box (t ∩ box(C) = ∅) produces a polytope u that does not intersect
the cell (u∩C = ∅). Fig. 8 provides an illustration. Therefore, we
can compute the Eq. (3) only for the polytopes generated by the
triangles intersecting box(C).

In practice, we pre-compute on the CPU the acceleration data-
structure dg← domain_grid(∂Ω) (Alg. 1, line 1). We place the
domain Ω inside a regular grid of size N3. The resolution is chosen
to have only few triangles at most intersecting each voxel. For each
voxel in the grid we pre-compute the list of the triangles in ∂Ω

that intersect the voxel, as well as a boolean indicating whether the
minimum coordinate corner of the voxel is inside Ω or not. We
store the data in a compressed row storage matrix and in a vector
of boolean values.

With this data structure, we compute integrals over restricted
power cells with Alg. 2. First (Alg. 2, line 1), we choose the box(C)
to be the minimal bounding box of C composed of the voxels of dg.
Next (Alg. 2, lines 2–3), we merge the list of the triangles intersect-
ing box(C) and we set the point O.

If O belongs to Ω, we add the integral over C to the result. Note
that, in our scheduling strategy, the first substep of the first pass
exits at this point and reports a failure if the list of triangles is not
empty.

Figure 8: When integrating over the orange polyhedron restricted
to the bunny, any triangle (red) that is outside the black box (con-
taining the polyhedron), generates a (red) polytope that does not
intersect the orange polyhedron.

The rest of the algorithm iterates over each triangle t, clips C
by the 4 halfspaces that define the truncated cone created by the
triangle t and O, and adds the corresponding integral if the normal
of t points towards O, otherwise subtracts it.

Algorithm 2: Integrals over Ω∩C
Input: dg; // Domain grid
Input: C; // Power diagram cell
Output: I; // Integrals

1 box(C)← dg.bounding_subgrid(C);
2 T ←

⋃
(i, j,k)∈box(C)

dg[i, j,k].triangles;

3 O← min
(i, j,k)∈box(C)

(i, j,k);

4 I← 0;
5 if O ∈Ω then I← integrate(C);
6 for t ∈ T do
7 Cclip←C∩ truncated_cone(O, t);
8 I← I− sgn(det3x3(t0−O, t1−O, t2−O))×

integrate
(
Cclip

)
;

The precomputation of the domain_grid(Ω) is only reasonable
if we need to compute multiple power diagrams restricted to a static
domain, in this case it introduces a small overhead largely compen-
sated by the gain during the integration phase.

Thus, Liu et al. evaluate integrals over each cell/tet intersection
with a prunnng strategy to reduce unnecessary computations (at
the expense of missing some intersections), whereas our algorithm
needs to perform clipping for each boundary triangle intersecting a
cell (typically zero or one per cell), thus offering a huge gain.

5. Applications

We show how to use our method in two applications: Lloyd’s al-
gorithm and incompressible fluid simulation. Each case requires to
evaluate specific integrals.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

7

J. Basselin et al. / Restricted Power Diagrams on the GPU

5.1. Cell barycenter and volume

For Lloyd’s algorithm, only the barycenter of each cell needs to be
computed. It is equal to the integral of the coordinates x, y and z
over the volume, divided by the volume of the cell. In practice, for
each tetrahedron v∈V(Cclip), we compute its signed volume vol(v)
and barycenter bary(v), and accumulate them on the fly. Then the
barycenter of the polyhedron Cclip is given by:

bary(Cclip) =

∑
v∈V(Cclip)

vol(v)bary(v)

∑
v∈V(Cclip)

vol(v)
.

The barycenters and the volumes of all polyhedra Cclip are, in their
turn, accumulated on the fly to produce the barycenter and the vol-
ume of the cell C (Alg. 2, line 8).

5.2. Weighted Laplacian operator matrix

Power particles-like fluid simulations [dGWH∗15b,GM17] enforce
incompressibility of the fluid by computing a semi-discrete optimal
transport. The integration over a power diagram is the bottleneck of
the simulation.

In addition to the cell’s barycenter and volume, semi-discrete op-
timal transport [dGBOD12,Mér11,Lév15,KMT16,LS18] requires
evaluation of the weighted Laplacian operator. To evaluate this ma-
trix, for every pair of adjacent cells, we need the area of the frontier,
its barycenter and the distance between the corresponding seeds.

We can represent this information by a sparse matrix, providing
all necessary values for each pair of seeds. In order to compute this
matrix, we keep track of the neighboring seeds every time we gen-
erate a halfspace equation. This requires us to maintain an array of
seeds synchronized with the array of halfspace equations. Having
the array, once the cell is computed, the distance from the seed to its
neighbors is straightforward to compute. Just as before, the decom-
position of the cells into tetrahedra allows to compute the area of
the frontiers as well as the corresponding barycenters. In practice,
the symmetry of the matrix allows to compute only the upper part
of the matrix (when the neighbor seed id is larger than the current
seed id). The output matrix is stored by a fixed size array of non
null coefficient for each seed.

6. Experiments and discussion

The efficiency of our algorithm strongly relies on the regularity of
the distribution of seeds and weights. This section is organized as
follows. First we explain how we have tuned the algorithm param-
eters (§6.1). Then we evaluate the performance of our algorithm
(§6.2) in different settings, by varying the integration domain, the
type of seed distribution and Voronoi diagram / power diagram. Fi-
nally, we conclude by presenting the limitations and some possible
future improvements (§6.3).

6.1. Parameters tuning

To run the algorithm, we need to choose three parameters; for max-
imum performance we vary them as a function of priors on data we
have:

• The parameter K is the number of neighbors that are computed
for each seed. If K is large, the running time and the memory
consumption increase, but if there are no enough neighbors to
reach the security radius, the algorithm fails to compute the cell.
• The parameter P is the maximum number of halfspaces that in-

tersect a cell during its construction. It affects the memory al-
lowed per thread and therefore the maximum number of threads
that can access simultaneously to shared memory.
• The parameter V is the maximum number of vertices of the cell.

It also impacts the memory usage per thread, with the same con-
sequences on performances.

The best situation for our algorithm would be a blue noise with
a constant weight per seed (i.e. a Voronoi diagram), but in prac-
tice inputs are not always that convenient. For Lloyd’s algorithm,
the seed distribution in the first iterations may be a white noise.
For fluid simulations, the noise is closer to blue, but the difference
of neighbor seed weights requires us to consider larger neighbor-
hoods.

For each situation, the parameters K,P,V should be tuned for
optimal performances. Their values must be large enough to fail
only on a small percentage of Voronoi cells, and as low as possible
to minimize the time to query all neighbors (with parameter K) and
the memory consumption (for all parameters).

We found our settings by an experimental approach: we run our
algorithm with values of K,P,V that compute all cells without fail-
ure and register the required value of K,P,V for each cell. It gave
us a distribution of K,P and V for each configuration and we set
K,P,V to succeed in ≈ 95% of the cells. In practice, K varies a lot
according to the type of seed and weight distribution, but P and V
are just a bit lower for the blue noise.

Our test cases are using the 3 seed distributions introduced in
[RSLL18] (blue noise, white noise and something in-between ob-
tained by a perturbed grid) with 10M seeds. Fig. 9 provides the
histograms of K,P,V for each distribution for both Voronoi dia-
grams and power diagrams. The weights of the power diagrams
were computed to produce the equal volume for all the cells in the
diagram.

6.2. Timings

This work extends the state of the art of Voronoi Diagrams compu-
tation on the GPU [RSLL18] that assumes a reasonable seed distri-
bution.

Our OpenCL implementation uses 64-bit floating-point num-
bers. In this article we present experiments performed on an Nvidia
Tesla V100 ; note that it can be perfectly done on a consumer range
GPU (ex. GTX1080) which does not have rapid double type. On
a GTX1080 our choice of 64-bit floating-point numbers roughly
doubles the running time w.r.t 32-bit floats, but it reduces dras-
tically (virtually eliminates) the number of CPU fallbacks (when
in-sphere predicate fails).

The results are summarized in Fig. 10. We have perfomed the
computations on three datasets (10M seeds) with different types of
point distributions (blue noise, perturbed grid, white noise). The

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

8

J. Basselin et al. / Restricted Power Diagrams on the GPU

Blue noise Perturbed grid White noise
Number of neighbors K required to define a cell:

Voronoi

0 100 200 300
required K

0

10

20

30

pe
rc

en
ta

ge

0 100 200 300
required K

0

10

20

30

pe
rc

en
ta

ge

0 100 200 300
required K

0

10

20

30

pe
rc

en
ta

ge

Power diagram

0 100 200 300
required K

0

10

20

30
pe

rc
en

ta
ge

0 100 200 300
required K

0

10

20

30

pe
rc

en
ta

ge

0 100 200 300
required K

0

10

20

30

pe
rc

en
ta

ge

Maximum number of clipping planes P:

Voronoi

0 20 40
required P

0

10

20

30

pe
rc

en
ta

ge

0 20 40
required P

0

10

20

30
pe

rc
en

ta
ge

0 20 40
required P

0

10

20

30

pe
rc

en
ta

ge

Power diagram

0 20 40
required P

0

10

20

30

pe
rc

en
ta

ge

0 20 40
required P

0

10

20

30

pe
rc

en
ta

ge

0 20 40
required P

0

10

20

30

pe
rc

en
ta

ge

Maximum number of vertices V in a cell:

Voronoi

0 25 50 75
required V

0

10

20

30

pe
rc

en
ta

ge

0 25 50 75
required V

0

10

20

30

pe
rc

en
ta

ge

0 25 50 75
required V

0

10

20

30

pe
rc

en
ta

ge

Power diagram

0 25 50 75
required V

0

10

20

30

pe
rc

en
ta

ge

0 25 50 75
required V

0

10

20

30

pe
rc

en
ta

ge

0 25 50 75
required V

0

10

20

30

pe
rc

en
ta

ge

Figure 9: Statistics on 10M Voronoi and 10M power diagram cells. The columns correspond to three datasets generated with the blue noise,
perturbed grid and the white noise. Top: the histograms of the distribution of the number of neighbors before reaching the security radius
criteria. Middle: maximum number of planes during the clipping of a cell. Bottom: maximum number of vertices during the clipping. Red
lines show the parameter values we have chosen for the first pass of the algorithm.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

9

J. Basselin et al. / Restricted Power Diagrams on the GPU

leftmost column provides the performances of [RSLL18] (with 32-
bit floating-point); the second column gives the running times of
our algorithm without the new features: we have computed Voronoi
diagrams without domain restrictions. Our scheduling strategy al-
lows to use better parameters for most cells, resulting in a speedup
factor of 2 to 3 according to the type of seed distribution.

The 6 rightmost columns correspond to the Voronoi diagrams re-
stricted to different domains. We observe that adding the restriction
introduces a reasonable overhead (typically inferior to 15%). Note
that the first pass is performed in two substeps: in the first substep
we compute only the cells that are guaranteed to lie entirely inside
or outside the domain and the second substep computes the rest of
the cells. The bar chart shows the first substep in solid blue and the
second substep in hatched blue.

For computing power diagrams we need to increase the security
radius, in our experiments we increased it by a factor 1.2 for fluid
simulations [dGWH∗15a, GM17]. It may seem like a minor differ-
ence, but it basically scales the number of neighbors to consider
by 1.23 which almost doubles the region where neighbor seeds can
participate to a power cell. We observe (Fig. 11) an impact on per-
formances that is proportional to the neighborhood size increment:
almost a factor of two. For higher variation of weights, a more com-
plex strategy would be required to avoid crushing the performances.

6.3. Discussion

Compared to other GPU algorithms. For computing unrestricted
Voronoi diagrams, our algorithm provides a speed up factor of two
over [RSLL18] in the worst case. The recent GPU implementation
of restricted Voronoi diagrams [LMGY20] processes 60K seeds per
second (30K seeds in 0.52 seconds) in the most favorable case. The
fact that we work directly with the boundary of the domain allows
us to process 4300K seeds per second (10M seeds in 2.31 seconds)
in the worst case, with a similar domain restriction. Moreover, our
algorithm does not suffer from missing Voronoi cell-tet pairs to
intersect, thus providing accurate results.

In addition to that, we provide all the features needed for com-
puting a semi-discrete optimal transport in a domain (power cells,
restriction to Ω and new integrals).

Compared to CPU algorithms. Our solution is an order of mag-
nitude faster for our use cases. However, we exploit priors on seed
distribution and power diagram weights. For a general purpose us-
age, CPU implementations remain a better option.

On a 3.40GHz, 12 cores Intel i7-6800K CPU a multithreaded
Geogram implementation takes 41.9 seconds to compute the power
diagram from the Fig. 11, right (against 0.79 seconds on the Tesla
V100). 26.6 seconds were spent computing the Laguerre diagram
and 15.3 seconds to clip it. CGAL timings are similar.

Predicate robustness. This is a common issue in power diagram
algorithms. As in [RSLL18], a CPU fallback is always possible. In
practice, we observed numerical failures only with 32-bit floating-
point and upgrading to 64-bit solved all our problems.

Figure 10: Statistics on 10M Voronoi seeds with blue noise distri-
bution (top), located on a perturbed grid (middle) and white noise
(bottom). The leftmost column corresponds to the running time of
the algorithm [RSLL18]; the second column is our result without
clipping; 6 rightmost columns correspond to different clipping do-
mains.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

10

J. Basselin et al. / Restricted Power Diagrams on the GPU

Figure 11: Overhead necessary for computing a power diagram.
Left: Voronoi diagram computed on 10M seeds (blue noise), re-
stricted to the bunny snowglobe. This diagram has≈ 4M non-empty
Voronoi cells, the seeds are shown in green in the bottom image.
The seeds producing empty cells are shown in red. Right: Power
diagram, the weights of the 4M seeds are computed to produce an
equal volume for all cells.

Floating-point integration precision. It might seem that our al-
gorithm fundamentally suffers from what is called “catastrophic
cancellation” arising from the sum and subtraction from partitioned
volume elements. Indeed, if the point O (refer to Fig. 8) was badly
chosen (e.g. the origin), it might be the case. For each cell, we
choose the point as the minimum coordinate corner of the bound-
ing box of the cell, thus the point it is not far from the cell, greatly
improving the precision.

To validate the precision of our results, we have performed a test
where we compare our results with the results computed on a CPU.
We have computed the volume and the barycenter for each power
diagram cell for the dataset shown in Fig. 11. This computation was
made both on the CPU (with a Geogram implementation) and on
the GPU (with our method) with 64-bit floating point numbers.

So, we have two sets of double values
{

vCPU
i

}n

i=1
and{

vGPU
i

}n

i=1
, that correspond to the volume of non-empty cells com-

puted on the CPU and the GPU respectively, where n stands for
the number of non-empty cells. We also have two sets of dou-

ble3 values
{

bCPU
i

}n

i=1
and

{
bGPU

i

}n

i=1
corresponding to the cell

barycenters.

In addition to that, we have computed on the CPU the volume
of the domain V (double) and its barycenter B (double3). This
computation was made directly over the domain. First we recom-
pute the invariants from the GPU data and we compare the preci-
sion: ∣∣∣∣∑

i
vGPU

i −V
∣∣∣∣

V
≈ 3 ·10−15

Then for each coordinate c we check the difference between both
ways to compute the barycenter of the domain:

max
c∈x,y,z

∣∣∣∣∑
i

vGPU
i bGPU

i [c]
V −B[c]

∣∣∣∣
B[c]

≈ 3 ·10−14

Next we compare two power diagrams. First we compare ex-
treme values of discordance:

max
i

∣∣∣vGPU
i − vCPU

i

∣∣∣
V/n

≈ 6 ·10−11

max
c∈x,y,z

max
i

∣∣∣bGPU
i [c]−bCPU

i [c]
∣∣∣

B[c]
≈ 2 ·10−6

We terminate the evaluation by computing the average discordance:

∑
i

∣∣∣vGPU
i − vCPU

i

∣∣∣
V

≈ 3 ·10−12

max
c∈x,y,z∑i

∣∣∣bGPU
i [c]−bCPU

i [c]
∣∣∣

nB[c]
≈ 2 ·10−11

Thus, our GPU algorithm offers a fair precision in numerical
computation of integrals.

Prior on power diagram weights. To compute power diagram
cells, we can ensure that enough neighbors are visited by simply
increasing the security radius criteria used for Voronoi cells. This
strategy has proven to be efficient for our tests on fluid simulations,
but it relies on a strong assumption on bounds of weights variations.
Other applications may need heuristics to locally adapt this secu-
rity radius, or use other strategies according to their own variation
of weights.

Note that there is a way to assert the correctness of the power di-
agram computation. If the security radius criterion does not reflect
the variation of weights, it means that some halfspace intersections
will be missed. In this case the sum of volumes of the power di-
agram cells will be greater than the volume of the domain. It is
possible to narrow down the problematic zone and increase the se-
curity radius locally.

Conclusion

Being able to optimize a mesh by numerical methods opens new
perspective to scale up key applications. We have explored the ef-
fectiveness of our technique in sampling problems and for solv-
ing semi discrete optimal transport. This work makes it possible to
evaluate integrals over the volume enclosed by a mesh much faster
than equivalent CPU solutions and requires less priors on seed and
weight distributions than previous works on GPU.

The source code is available on github: basselin7u/GPU-
Restricted-Power-Diagrams.

References
[ACR03] AMENTA N., CHOI S., ROTE G.: Incremental constructions

con BRIO. In Proceedings of the 19th ACM Symposium on Computa-

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

11

J. Basselin et al. / Restricted Power Diagrams on the GPU

tional Geometry, San Diego, CA, USA, June 8-10, 2003 (2003), pp. 211–
219. URL: http://doi.acm.org/10.1145/777792.777824,
doi:10.1145/777792.777824.

[AR95] ALEXANDER S., RAINALD L.: Three-dimensional parallel un-
structured grid generation. International Journal for Numerical Methods
in Engineering 38, 6 (1995), 905–925.

[Aur87] AURENHAMMER F.: Power diagrams: Properties, algorithms
and applications. SIAM Journal on Computing 16, 1 (1987), 78–96.
doi:10.1137/0216006.

[BMPS10] BATISTA V. H., MILLMAN D. L., PION S., SINGLER J.: Par-
allel geometric algorithms for multi-core computers. International Jour-
nal for Numerical Methods in Engineering 43, 8 (2010), 663–677.

[Bow81] BOWYER A.: Computing dirichlet tessellations. Comput. J.
24, 2 (1981), 162–166. URL: http://dx.doi.org/10.1093/
comjnl/24.2.162, doi:10.1093/comjnl/24.2.162.

[Cao14] CAO T.-T.: Fundamental computational geometry on the gpu,
2014.

[CNGT14] CAO T.-T., NANJAPPA A., GAO M., TAN T. S.: A GPU
accelerated algorithm for 3d delaunay triangulation. In Symposium on
Interactive 3D Graphics and Games, I3D ’14, San Francisco, CA, USA
- March 14-16, 2014 (2014), pp. 47–54. URL: http://doi.acm.
org/10.1145/2556700.2556710, doi:10.1145/2556700.
2556710.

[DCS99] DE COUGNY H. L., SHEPHARD M. S.: Parallel refinement and
coarsening of tetrahedral meshes. International Journal for Numerical
Methods in Engineering 46, 7 (1999), 1101–1125.

[DD18] DELAGE C., DEVILLERS O.: Spatial sorting. In CGAL
User and Reference Manual, 4.12.1 ed. CGAL Editorial Board, 2018.
URL: https://doc.cgal.org/4.12.1/Manual/packages.
html#PkgSpatialSortingSummary.

[dGBOD12] DE GOES F., BREEDEN K., OSTROMOUKHOV V., DES-
BRUN M.: Blue noise through optimal transport. ACM Trans. Graph. 31,
6 (Nov. 2012). URL: https://doi.org/10.1145/2366145.
2366190, doi:10.1145/2366145.2366190.

[dGWH∗15a] DE GOES F., WALLEZ C., HUANG J., PAVLOV D., DES-
BRUN M.: Power particles: an incompressible fluid solver based
on power diagrams. ACM Trans. Graph. 34, 4 (2015), 50:1–
50:11. URL: http://doi.acm.org/10.1145/2766901, doi:
10.1145/2766901.

[dGWH∗15b] DE GOES F., WALLEZ C., HUANG J., PAVLOV D., DES-
BRUN M.: Power particles: An incompressible fluid solver based
on power diagrams. ACM Trans. Graph. 34, 4 (July 2015), 50:1–
50:11. URL: http://doi.acm.org/10.1145/2766901, doi:
10.1145/2766901.

[FRWW14] FEI Y., RONG G., WANG B., WANG W.: Par-
allel l-bfgs-b algorithm on gpu. Computers & Graphics 40
(2014), 1 – 9. URL: http://www.sciencedirect.com/
science/article/pii/S0097849314000119, doi:https:
//doi.org/10.1016/j.cag.2014.01.002.

[GM17] GALLOUËT T. O., MÉRIGOT Q.: A Lagrangian scheme
à la Brenier for the incompressible euler equations. Founda-
tions of Computational Mathematics (May 2017). URL: https:
//doi.org/10.1007/s10208-017-9355-y, doi:10.1007/
s10208-017-9355-y.

[Gon16] GONZALEZ R. E.: Paravt: Parallel voronoi tessellation
code. Astronomy and Computing 17 (2016), 80–85. URL:
http://www.sciencedirect.com/science/article/
pii/S2213133716300609, doi:https://doi.org/10.
1016/j.ascom.2016.06.003.

[Inr18] INRIA P. A.-P.: Geogram: a programming library of geometric
algorithms. http://alice.loria.fr/software/geogram/
doc/html/index.html, 2018.

[KMT16] KITAGAWA J., MÉRIGOT Q., THIBERT B.: A newton al-
gorithm for semi-discrete optimal transport. CoRR abs/1603.05579

(2016). URL: http://arxiv.org/abs/1603.05579, arXiv:
1603.05579.

[LB13] LÉVY B., BONNEEL N.: Variational anisotropic surface meshing
with voronoi parallel linear enumeration. In Proceedings of the 21st
International Meshing Roundtable (Berlin, Heidelberg, 2013), Jiao X.,
Weill J.-C., (Eds.), Springer Berlin Heidelberg, pp. 349–366.

[Lév15] LÉVY B.: A numerical algorithm for l2 semi-discrete optimal
transport in 3d. ESAIM: Mathematical Modelling and Numerical Analy-
sis 49, 6 (2015), 1693–1715.

[LK84] LIEN S., KAJIYA J. T.: A symbolic method for calculating the
integral properties of arbitrary nonconvex polyhedra. IEEE Computer
Graphics and Applications 4, 10 (1984), 35–42.

[LMGY20] LIU X., MA L., GUO J., YAN D.-M.: Parallel computation
of 3d clipped voronoi diagrams. IEEE Transactions on Visualization
and Computer Graphics PP (07 2020), 1–1. doi:10.1109/TVCG.
2020.3012288.

[LS18] LÉVY B., SCHWINDT E. L.: Notions of optimal transport theory
and how to implement them on a computer. Computers & Graphics
72 (2018), 135–148. URL: https://doi.org/10.1016/j.cag.
2018.01.009, doi:10.1016/j.cag.2018.01.009.

[LY19] LIU X., YAN D.-M.: Computing 3d clipped voronoi diagrams on
gpu. In SIGGRAPH Asia 2019 Posters (New York, NY, USA, 2019), SA
’19, ACM, pp. 9:1–9:2. URL: http://doi.acm.org/10.1145/
3355056.3364581, doi:10.1145/3355056.3364581.

[MDL16] MARTÍNEZ J., DUMAS J., LEFEBVRE S.: Procedural Voronoi
Foams for Additive Manufacturing. ACM Transactions on Graphics 35
(2016), 1 – 12. URL: https://hal.archives-ouvertes.fr/
hal-01393741, doi:10.1145/2897824.2925922.

[Mér11] MÉRIGOT Q.: A multiscale approach to optimal transport. Com-
put. Graph. Forum 30, 5 (2011), 1583–1592.

[MMdGD11] MULLEN P., MEMARI P., DE GOES F., DESBRUN M.:
Hot: Hodge-optimized triangulations. In ACM SIGGRAPH 2011 Papers
(New York, NY, USA, 2011), SIGGRAPH ’11, Association for Comput-
ing Machinery. URL: https://doi.org/10.1145/1964921.
1964998, doi:10.1145/1964921.1964998.

[MPR18] MAROT C., PELLERIN J., REMACLE J.-F.: One machine,
one minute, three billion tetrahedra. https://arxiv.org/abs/
1805.08831, 2018.

[ND03] NIKOS C., DAMIAN N.: Parallel delaunay mesh generation ker-
nel. International Journal for Numerical Methods in Engineering 58, 2
(2003), 161–176.

[Rem17] REMACLE J.-F.: A two-level multithreaded delaunay kernel.
Computer-Aided Design, 85 (2017), 2–9.

[RSLL18] RAY N., SOKOLOV D., LEFEBVRE S., LÉVY B.: Mesh-
less voronoi on the gpu. In SIGGRAPH Asia 2018 Technical Papers
(New York, NY, USA, 2018), SIGGRAPH Asia ’18, ACM, pp. 265:1–
265:12. URL: http://doi.acm.org/10.1145/3272127.
3275092, doi:10.1145/3272127.3275092.

[Ryc09] RYCROFT C.: Voro++: A three-dimensional voronoi cell library
in c++. 041111.

[The18] THE CGAL PROJECT: CGAL User and Reference Manual,
4.12.1 ed. CGAL Editorial Board, 2018. URL: https://doc.cgal.
org/4.12.1/Manual/packages.html.

[Wan17] WANG L.: Algorithms and Criteria for Volumetric Centroidal
Voronoi Tessellations. PhD thesis, 01 2017.

[Wat81] WATSON D.: Computing the n-dimensional delaunay tessella-
tion with application to voronoi polytopes. Comput. J. 24, 2 (1981),
167–172.

[XLC∗16] XIN S.-Q., LÉVY B., CHEN Z., CHU L., YU Y., TU C.,
WANG W.: Centroidal power diagrams with capacity constraints:
computation, applications, and extension. ACM Trans. Graph. 35, 6
(2016), 244:1–244:12. URL: http://dl.acm.org/citation.
cfm?id=2982428.

© 2021 The Author(s)
Computer Graphics Forum © 2021 The Eurographics Association and John Wiley & Sons Ltd.

12

http://doi.acm.org/10.1145/777792.777824
https://doi.org/10.1145/777792.777824
https://doi.org/10.1137/0216006
http://dx.doi.org/10.1093/comjnl/24.2.162
http://dx.doi.org/10.1093/comjnl/24.2.162
https://doi.org/10.1093/comjnl/24.2.162
http://doi.acm.org/10.1145/2556700.2556710
http://doi.acm.org/10.1145/2556700.2556710
https://doi.org/10.1145/2556700.2556710
https://doi.org/10.1145/2556700.2556710
https://doc.cgal.org/4.12.1/Manual/packages.html#PkgSpatialSortingSummary
https://doc.cgal.org/4.12.1/Manual/packages.html#PkgSpatialSortingSummary
https://doi.org/10.1145/2366145.2366190
https://doi.org/10.1145/2366145.2366190
https://doi.org/10.1145/2366145.2366190
http://doi.acm.org/10.1145/2766901
https://doi.org/10.1145/2766901
https://doi.org/10.1145/2766901
http://doi.acm.org/10.1145/2766901
https://doi.org/10.1145/2766901
https://doi.org/10.1145/2766901
http://www.sciencedirect.com/science/article/pii/S0097849314000119
http://www.sciencedirect.com/science/article/pii/S0097849314000119
https://doi.org/https://doi.org/10.1016/j.cag.2014.01.002
https://doi.org/https://doi.org/10.1016/j.cag.2014.01.002
https://doi.org/10.1007/s10208-017-9355-y
https://doi.org/10.1007/s10208-017-9355-y
https://doi.org/10.1007/s10208-017-9355-y
https://doi.org/10.1007/s10208-017-9355-y
http://www.sciencedirect.com/science/article/pii/S2213133716300609
http://www.sciencedirect.com/science/article/pii/S2213133716300609
https://doi.org/https://doi.org/10.1016/j.ascom.2016.06.003
https://doi.org/https://doi.org/10.1016/j.ascom.2016.06.003
http://alice.loria.fr/software/geogram/doc/html/index.html
http://alice.loria.fr/software/geogram/doc/html/index.html
http://arxiv.org/abs/1603.05579
http://arxiv.org/abs/1603.05579
http://arxiv.org/abs/1603.05579
https://doi.org/10.1109/TVCG.2020.3012288
https://doi.org/10.1109/TVCG.2020.3012288
https://doi.org/10.1016/j.cag.2018.01.009
https://doi.org/10.1016/j.cag.2018.01.009
https://doi.org/10.1016/j.cag.2018.01.009
http://doi.acm.org/10.1145/3355056.3364581
http://doi.acm.org/10.1145/3355056.3364581
https://doi.org/10.1145/3355056.3364581
https://hal.archives-ouvertes.fr/hal-01393741
https://hal.archives-ouvertes.fr/hal-01393741
https://doi.org/10.1145/2897824.2925922
https://doi.org/10.1145/1964921.1964998
https://doi.org/10.1145/1964921.1964998
https://doi.org/10.1145/1964921.1964998
https://arxiv.org/abs/1805.08831
https://arxiv.org/abs/1805.08831
http://doi.acm.org/10.1145/3272127.3275092
http://doi.acm.org/10.1145/3272127.3275092
https://doi.org/10.1145/3272127.3275092
https://doc.cgal.org/4.12.1/Manual/packages.html
https://doc.cgal.org/4.12.1/Manual/packages.html
http://dl.acm.org/citation.cfm?id=2982428
http://dl.acm.org/citation.cfm?id=2982428

