
DOI: 10.1111/cgf.14176 COMPUTER GRAPHICS forum
Volume 40 (2021), number 1 pp. 110–123

Time-Warped Foveated Rendering for Virtual Reality Headsets

Linus Franke,1 Laura Fink,1 Jana Martschinke,1 Kai Selgrad2 and Marc Stamminger1

1Computer Graphics Group, University of Erlangen-Nuremberg, Germany
{linus.franke, laura.fink, jana.martschinke, marc.stamminger}@fau.de

2OTH Regensburg, Germany
kai.selgrad@oth-regensburg.de

Abstract
Rendering in real time for virtual reality headsets with high user immersion is challenging due to strict framerate constraints as
well as due to a low tolerance for artefacts. Eye tracking-based foveated rendering presents an opportunity to strongly increase
performance without loss of perceived visual quality. To this end, we propose a novel foveated rendering method for virtual reality
headsets with integrated eye tracking hardware. Our method comprises recycling pixels in the periphery by spatio-temporally
reprojecting them from previous frames. Artefacts and disocclusions caused by this reprojection are detected and re-evaluated
according to a confidence value that is determined by a newly introduced formalized perception-based metric, referred to as
confidence function. The foveal region, as well as areas with low confidence values, are redrawn efficiently, as the confidence
value allows for the delicate regulation of hierarchical geometry and pixel culling. Hence, the average primitive processing and
shading costs are lowered dramatically. Evaluated against regular rendering as well as established foveated rendering methods,
our approach shows increased performance in both cases. Furthermore, our method is not restricted to static scenes and provides
an acceleration structure for post-processing passes.

Keywords: perceptually based rendering, real-time rendering, rendering, immersive VR, virtual environments

ACM CCS: • Computing methodologies → Perception; Rasterization; Virtual reality

1. Introduction

Rendering photo-realistic images for virtual reality headsets or
head-mounted displays (HMDs) is a demanding task due to the high
computational cost and strict frame-rate constraints [Vla16]. Ex-
ploiting weaknesses in the human visual system (HVS) is an estab-
lished way to loosen constraints and to reduce computation times in
rendering [GFD*12, MDZV18, PSK*16, WRK*16]. One of these
weaknesses is a less accurate perception in the periphery of the
gaze direction; methods targeting this are commonly referred to as
foveated rendering techniques. An extensive summary about the hu-
man visual system and how its weaknesses can be exploited is given
by Weier et al. [WSR*17]. Generally for foveated rendering, the
physiology of the retina (the eye’s sensory system, located at the
opposite side of the lens) is of main interest: It is comparable to a
camera as light is guided by the lens onto the retina, where two kinds
of receptors, cones and rods, produce different stimuli.

Cones are responsible for processing all visible wavelengths of
light [GB16] and are mostly located directly at the fovea, a small

(less than 10◦) area where light from fixated areas is focused to by
the lens. Cones are receptive to colours and are distributed in a dense
pattern allowing sharp and detailed vision. In contrast to that, rods
are colour-indifferent but motion-sensitive sensors and provide gen-
eral information such as brightness or movement [GB16]. Across
the complete retina, their number is about 20 times higher than that
of cones, but their distribution is shifted towards the periphery such
that no rods are present in the fovea and the highest concentration
is at about 17◦ of the main view vector (gaze direction) [CSKH90].
With that, the human field of view can be abstracted by a model with
a foveal region that exhibits sharp, detailed vision and a peripheral
region which is primarily sensitive to brightness and motion.

Foveated rendering methods exploit this difference of perception
in the visual field to accelerate rendering. A common problem in
foveated approaches is geometric aliasing in the peripheral vision,
which occurs as flickering and is thus easily noticeable due to the
high density of rods in this area [WSR*17, GFD*12]. In our ap-
proach, we synthesize the peripheral region in reduced quality using
reprojection (also called warping) from previous frames (similar to

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd
This is an open access article under the terms of the Creative Commons Attribution License, which permits use, distribution and reproduction in any medium,
provided the original work is properly cited.

110

https://diglib.eg.orghttps://www.eg.org

http://creativecommons.org/licenses/by/4.0/


L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets 111

Figure 1: Our time-warped foveated rendering method produces visually plausible results (left, twice at 1280 × 1440 pixels in 4.97ms on a
RTX 2070) as compared to regular rendering (right, 7.81ms). While the fovea (which is tracked, indicated here in white) is rendered regularly,
the periphery is reprojected, and thus less accurate, however without being noticeable to the observer’s eye and in a temporally stable manner.
Consequently, an image perceptually on par is computed with a speed-up of almost 1.6×.

a render cache [WDP99]), while rendering the foveal region in full
detail every frame. For all peripheral pixels, we evaluate a confi-
dence measure (an eye receptor-based formalization of reprojection
quality) and enforce redrawing of peripheral pixels with low con-
fidence. This way, reprojected pixels can survive for many frames,
given that our confidence in them remains stable, resembling filter-
ing for adaptive frame rendering [DWWL05]. The confidence mea-
sure also decides whether unavoidable holes in the reprojection can
be interpolated or are to be filled with new, redrawn samples. Our
method also handles dynamic objects and their reprojection through
adding them into the confidence function.

Our approach is similar in spirit to Weier et al.’s [WRK*16],
who integrated foveated reprojection into a real-time ray-tracing
pipeline, where redrawing single pixels can be done relatively ef-
ficiently. The contribution of our paper is to show how to integrate
temporal foveation into a rasterization pipeline. For that rendering
paradigm, several additional considerations are required to avoid ex-
pensive redrawing operations without visible impact on image qual-
ity, thus the contribution of our paper are the following:

• A high-performance rasterizing foveated temporal rendering
method, achieving stable renderings with reduced, but sufficient
quality in the periphery, see Figure 1.

• The confidence function, a novel perception-based metric to eval-
uate the reprojection quality.

• Applications of the confidence function, allowing efficient hierar-
chical foveation culling and support for a wider range of scenarios
with dynamic objects and ambient occlusion.

We also calibrate and validate our technique with two user stud-
ies, each with over 20 participants.

Following an overview of related work, there is a detailed de-
scription of our time-warped foveated rendering method: After pro-
viding details on our forward reprojection scheme (Section 4), we
present our hole filling method and define our confidence func-
tion (Section 5). Furthermore we describe how its result is used
to efficiently compute the missing image parts and illustrate how
our rendered and reprojected image is composed and made stable
for display in the HMD (Section 6), Additionally, we expand on

how our technique supports dynamic objects and accelerates post-
processing (Section 7). We conclude with an extensive evaluation
(Section 8), presenting our user studies and performance measures
and discussing limitations posed by our method. To outline one im-
portant limitation first, as we are reprojecting the colour of pixels to
the periphery we need to assume some kind of consistency between
images, thus we limit ourselves to non-moving lights in our method,
as will be discussed in the evaluation (Section 8).

2. Related Work

Image Warping. The application of geometric transformations to
an input image is a well established area of research. McMillan
presents a foundation for image warping techniques in his disser-
tation [McM97], which acts as a baseline for techniques presented
here. Generally, two different variants are common: backward and
forward warping. The former, backward warping, denotes methods
that gather information from previous frames based from fixed des-
tination positions, while the latter, forward warping, refers to meth-
ods that scatter information from previous frames starting fromfixed
source positions. Warping techniques are used in many different
scenarios: Nehab et al. [NSL*07] present a technique for caching
shading computations by backward reprojection, reducing overall
computation cost. Lee et al. [LKE18] use backward reprojection
with fixed-point iteration [BMS*12] to predict a new frame’s depth
buffer, e.g. for occlusion culling. Smit et al. [SvLBF09] present an
evaluation of an intermediate frame warping technique in a remote-
rendering setup. Asynchonous time warp [VW16] as used by the
Oculus HMD’s driver warps the image between rendering and dis-
playing to adjust to latest head tracking information. Recent ad-
vances in temporal upsampling techniques using image warping
(called checkerboard rendering [dCI17]) have shown great success
in reducing overall rendering costs.

Warping is also used for creating new images in full. Yang
et al. [YTS*11] use bidirectional reprojection, i.e. forward and
backward reprojection, to reconstruct an intermediate frame
in-between two frames at the cost of a slight delay. Didek
et al. [DRE*10] use forward reprojection for new frames and
present an acceleration technique for this reprojection variant. They

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



112 L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets

Figure 2: Our time-warped foveated rendering pipeline: Last frame’s colour and world position images are reprojected into this frame and
hole-filled (blue). After that, a redraw map is computed based on our confidence in the reprojection. With that, geometry is culled (orange,
objects fully in black areas in the map are culled) and missing areas (white in the redraw map) are rendered. Following, reprojected and
redrawn images are composed (green), which results in the colour input for next frame. A final TAA and motion smoothing pass is applied to
stabilize the image before sending it to the HMD. Note that the redraw-pass includes G-buffer rendering, shading and post-processing.

group pixels with an adaptive grid, based on depth disparity, thus
larger areas will be warped if their depth is similar. Schollmeyer
et al. [SSB*17] improve on this concept with a tighter grid and sup-
port for transparency with an A-buffer [Eng14] based data structure,
where transparent, rasterized fragments are stored and subsequently
ray-traced from the new view. Without that, transparent fragments
are difficult to warp as they are usually accumulated (alpha-blended)
and have no distinct depths.

Foveated Rendering. In recent years, several foveated rendering
approaches were introduced. Guenter et al. [GFD*12] generate
three images for each frame, with progressively lower resolution
for larger eccentricities, and combine them with bilinear upsam-
pling, thus creating an image with full resolution in the fovea and
low resolution in the periphery. With that, they reduce shading rates
by up to 50%, but need to employ strong anti-aliasing methods to
combat flickering, which is especially noticeable in the periphery.
Patney et al. [PSK*16] circumvent this problem by decoupling vis-
ibility detection (which is always done in full resolution) from shad-
ing in their variable-rate shading-based foveated rendering method
which they combine with temporal anti-aliasing [Kar14]. Inspired
by coarse pixel shading [VST*14], the periphery is shaded at lower
rates (such as one shading computation for 4 × 4 pixels) thus re-
ducing shading rates by up to 75%. With both approaches, special
care needs to be taken with artefacts caused by undersampling (such
as shadow map aliasing) as lower resolution sampling rates in the
periphery can contribute to the undersampling becoming more no-
ticeable.

Adaptive sampling based on gaze is also used with foveated
ray-tracing techniques. The general idea is to use more samples
for foveal regions and minimal samples for the periphery to cut
down the potentially high cost of ray tracing [FRS19, SGEM16,
WRK*16]. Stengel et al. [SGEM16] create a saliency map and de-
cide sampling rates based on it. This leads to more samples in vi-
sually important areas, including the fovea. Friston et al. [FRS19]
exploit foveated rendering in a low-latency renderer for rolling dis-
plays in HMDs.Weier et al. [WRK*16] use a reprojection scheme to
accelerate foveated ray tracing. While tracing the fovea in full, they
use a lower-resolution G-buffer and reproject coarse pixel blocks

to peripheral regions. Areas in the reprojection with strong depth
differences are deemed problematic and error-prone and are thus
resampled. For light field displays, where real-time performance is
even more challenging, Sun et al. [SHK*17] investigated foveation
in 3D perception, reducing the number of required rays by up to
84%. Tursun et al. [TAKW*19] propose a contrast-aware foveation
concept for use in ray tracing and rasterization based methods, esti-
mating required sample numbers. Meng et al. [MDZV18] present a
different, analytical approach, where they use log-polar mappings to
parameterize foveated rendering based on the receptor distribution
on the retina and thus reducing cost of the rendering step.

Further supporting research aims to better understand influences
on foveated rendering. To reduce perception of artefacts, Weier
et al. [WRHS18] propose adding depth of field to hide inaccura-
cies and noise, which showed promising results in their user study.
Swafford et al. [SIGK*16] introduce a foveated perceptual im-
age metric, based on HDR-VDP2 [MKRH11], and parameterize
it based on a desktop user study. Saliency in VR is explored by
Sitzmann et al. [SSP*18], presenting that users tend to explore
VR scenes very differently from each other, thus indicating that
foveation without eye-tracking is challenging to predict accurately.
Hoffmann et al. [HMT18] study the peripheral acuity in partici-
pants, concluding that lower resolution images shown in the periph-
ery were not noticeable for up to 40 ms. This presents a possibility
for other perception-based performance improvements for render-
ing, as e.g. exploited by Denes et al. [DMAM19] by interleaving
frames rendered at full resolution with lower resolution ones. Albert
et al. [APLK17] explore latency requirements of eye-tracking hard-
ware. Their research suggests that a maximum latency of 50–70 ms
from eye movement to displaying the image is tolerable to avoid no-
ticeability, especially since the HVS omits information during fast
eye movements (such as saccades).

3. Algorithm Overview

The general idea of our algorithm is to leverage information from
previous frames for peripheral regions. The naive approach of re-
projecting and only redrawing the fovea has problems though, as
reprojection inherently produces artefacts. One class of artefacts are

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets 113

Frame 1 Frame 2 Frame 3

Figure 3: Reprojection based on screen space depth (top row): Loss
of exact subpixel position during rasterization (frame 2) leads to
wrong reprojection in following frames (frame 3). Keeping fragment
world space positions (bottom row, blue dot) allows correct raster-
ization in frame 3. This inaccuracy is avoided in the reprojection
and exploited in our motion smooth pass to identify fragments likely
flipping between two pixel footprints.

so-called disocclusions, i.e. areas hidden in previous frames that be-
come visible in the new frame. A second class of artefacts is caused
by mismatches in exact pixel locations for the reprojected data, i.e.
small holes or inaccuracies in warping with coarse grid reprojec-
tion [WRK*16, SSB*17, DRE*10]. While some of the arising arte-
facts can be handled with cheap hole filling schemes, others must
be solved by expensive redrawing. When targeting rendering for
HMDs, deciding when to redraw or to fill holes is crucial, both in
terms of performance, but even more in terms of image quality as
artefacts are easier to notice in HMDs due to the larger perceived
pixel sizes. For Weier et al.’s foveated ray tracing [WRK*16], this
decision is easier, as resampling comes at a lower cost with ray trac-
ing. In our rasterizing approach though, we need to avoid expensive
pixel-perfect resampling, without compromising on perceived im-
age quality. Therefore, we introduce a general confidence function,
which is used to compute the confidence in the unnoticeability of
the reprojection to formalize decision making.

Furthermore with our method, we strive to avoid these artefacts
while still reprojecting as much information as possible from pre-
vious frames. Figure 2 displays our full pipeline. We start out with
colour and position data from the previous frame, reproject and fill
holes in the resulting image. Based on that we estimate how confi-
dent we are that the reprojection quality suffices, resulting in a set
of screen space areas that need redrawing (the redraw map). We
then render the thusly selected areas to obtain up-to-date pixel val-
ues, while further exploiting the redraw map to cull geometry (and
subsequently fragments) not required for the indicated areas while
rendering. Finally, the rendered and the reprojected pixel values are
composed and undergo temporal anti-aliasing (TAA) [Kar14] and
motion smoothing to provide a stable input to the HMD.

4. Reprojection

After retrieving the HMD’s tracking information we use a uniform
grid with a resolution equal to that of the input image for warping.
Each cell of this grid is represented by a pixel-sized point sprite,
which can be moved individually. This can be thought of as using
the last frame’s rasterized version of the scene for a second rasteri-

0° 20° 40° 60° 80°20°40°60°80°

R
ec

ep
to

r D
is

tri
bu

tio
n

Eccentricity

ec
ne

dif
no

C

1

0

0

160K

Figure 4: Distribution of receptors (per square millimeter) and
confidence: Low brightness areas target cones (blue), thus confi-
dence (red) is closely matched to them. For high brightness areas,
the confidence (green) additionally relies on rod distribution. Note
that the confidence axis is inverted (confidence is zero at 0◦ eccen-
tricity) for demonstration. Receptor distribution adapted fromWeier
et al. [WSR*17] and Goldstein [GB16].

zation, with each point sprite containing colour (tonemapped 8-bits
RGBA) and world positions (32-bits XYZW). In contrast to Weier
et al. [WRK*16] using rasterized depth values for reprojection, we
keep exact world pixel positions to ensure that our reprojection sam-
ples do not become inaccurate over time which otherwise can hap-
pen due to loss of sub-pixel positions (see Figure 3).

In general, small head movements and noise in the sensor data
cause considerable motion between two images, thus two or more
sprites frequently get warped to the same pixel footprint. This col-
lision is resolved via hardware depth testing, thus discarding oc-
cluded pixels. When doing so, the resulting image likely has holes
of varying sizes, which either need to be filled or redrawn (see next
section). It is important to note that we are not limiting our method
to always have a fresh, fully rendered image as input (as, e.g., with
Yang et al. [YTS*11] or Denes et al. [DMAM19]). Thus, the input
for reprojection (the previous frame) will have been partly created
by reprojection as well, allowing pixels to survive as long as they
are accurate enough (see Section 5.2). For pixels that have been
subject to hole filling, the world position buffer is not filled and,
consequently, those pixels are never warped to subsequent frames
(the point sprite’s vertex will be clipped). Note that, to increase per-
formance, point sprites reprojected to the new frame’s foveal re-
gion are discarded at this stage, leaving a fovea-sized hole to be
redrawn later.

5. Identifying Missing Information

Reprojection does naturally not guarantee to find a one-to-one map-
ping for each pixel in the next frame. Consequently, there are holes
with information missing afterwards. As we reproject in the periph-
ery only, we try to fill these holes by using information present in
their vicinity (see Section 5.1). We introduce a confidence function
that expresses the adequacy of the reprojected and potentially hole-
filled information from previous frames in Section 5.2.

5.1. Hole Filling

Using a ray tracing approach [WRK*16], hole filling is easily
done by resampling the holes with adaptive ray generation. For our

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



114 L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets

rasterization-based approach, this would be equivalent to redrawing
large and irregular parts of the scene, impacting performance heav-
ily. Thus, we aim to cut down on redrawing as much as possible.
For this, we use hole filling via information extrapolation. This
way, especially small holes can be filled with slightly inaccurate
information without being noticeable in the periphery. We use a
push-pull filter [GGSC96, SGEM16] which works by creating a
mip-map pyramid of existing colours (and depths with max) which
is then used to fill holes at a mip-map level chosen relative to the
hole’s size. The quality of the filled hole is fed into our confidence
function as well (see following section), thus hole-filled pixels are
resampled after all in case their quality is not sufficient.

5.2. Confidence Function

Our confidence function is comprised of three simple terms, de-
scribed in the following. Each term captures different aspects de-
rived from the properties of the eye’s receptors. The first factor,
eccentricity confidence, is based on the falloff in the eye’s visual
acuity (spacial distinguishability) with larger eccentricity [Adl65],
due to the lower receptor density distribution mapped to periph-
eral vision. This is the property that foveation methods [GFD*12,
PSK*16, WRK*16, MDZV18] generally exploit, having especially
the cones in mind [PSK*16]. We use

ce(φ) = S1

(
φ − φF

φ0 − φF

)
,

with S1 the smooth-step function, φ the eccentricity of the current
sample, φF the angle covered by the fovea and φ0 the angle we ex-
pect to be fully into the periphery. Therefore, our confidence func-
tion, by construction, rapidly converges to zero when approaching
the foveal region. As shown in Figure 4 (red graph in relation to
the cone distribution in blue) our parameter setting is φF = 10◦ and
φ0 = 30◦. Note that even though the eye has finer granularity in cone
receptors densities than our graph suggests, as well as a blind spot
in the visual field, the precision of our eye-tracking hardware did
not suffice to exploit these features. With more reliable gaze infor-
mation, we are convinced this can be included in the eccentricity
falloff function to further decrease ambiguous areas.

The second factor, contrast confidence, is relevant for pixels that
were subject to hole filling. Since the periphery, where eccentricity
confidence is high, is mostly composed of rods which are highly
sensitive to brightness, contrast shapes are easily perceived in the
periphery and need to be similar to their actual appearance in our
method. Reprojection itself does not introduce blur, but the push-
pull filter produces slight inaccuracies. Therefore we rate the con-
fidence for hole-filled high contrast areas (high luminance differ-
ence) lower, as seen in Figure 4 (the green graph in relation to the
black rods distribution). This factor is computed along with the mip-
map for the push-pull filter, where the alpha-channel holds the con-
fidence. For each interpolation step, we set the confidence of the
mip-mapped pixel to

cc(p0, . . . , p3) = 1 − 0.5(max(L0, . . . ,L3) − min(L0, . . . ,L3)),

where pi are the the four contributing input pixels and Li is the
pixel’s luminance.

The third factor, hole-size confidence, also pertains to pixels re-
sulting from hole filling. It is a factor that lowers the confidence with
respect to the size of the hole that was filled to obtain a value for the
pixel in question, i.e. cs(m) = Am, where m is the mip-map level
used to fill a hole and we empirically found A = 0.6 to be a good
fit. This confidence attenuation catches two classes of artefacts that
can arise due to hole filling: Firstly, holes are filled with an extrapo-
lated colour which can change if the hole size changes in subsequent
frames. This can result in high frequency colour changes in the re-
projection (which is easily perceptible by rods [Adl65]). Secondly,
larger holes are more likely caused by disocclusions, which we need
to redraw to avoid objects popping into view once the gaze direc-
tion changes.

We tested incorporating additional physical factors into the con-
fidence function, such as the wider distribution of receptors sensi-
tive to blue light or decreased differentiation of red-green colours
in the outer regions, but this showed to be a costly option in terms
of performance, with little perceptual benefit. This is likely the case
because colour- and receptor-based differentiation is implicitly fac-
tored in via the usage of luminance for our contrast confidence.

Our computed confidence value, c = ce(φ)cc(p0, . . . , p3)cs(m),
allows us to catch several problematic configurations that can arise
from reprojection and hole filling. Unless otherwise stated, we use
a threshold ε = 0.2 (see evaluation in Section 8 for details on
the confidence threshold) as the cutoff between keeping the repro-
jected/synthesized pixel and redrawing it. The result of this decision
(the value 1 for ‘needs to be redrawn’ and 0 ‘keep as is’) is stored,
per pixel, in the redraw map.

6. Image Generation

Based on the redraw map, it is clear which pixels have to be recom-
puted. In the following, we describe how this is accomplished in an
efficient manner (Section 6.1) and how the thusly recomputed data
is composed with the reprojected data to provide a stable input for
the HMD (Section 6.2).

6.1. Culling and Redrawing

Our foveation culling scheme based on the redraw map is two-fold:
It works by discarding geometry in a prepass before the vertex stage
(similar to z-culling) where bounding boxes are completely covered
by sufficient information as well as by discarding pixels after ras-
terization (similar to early z-testing) to further thin out the data.

To cull geometry, inspired by hierarchical z-culling [GKM93,
ZMHHI97], we compute a mip-map of the redraw map (using the
or operator). This allows us to efficiently query larger screen-space
areas for whether there is any pixel that needs redrawing. Using this,
we can project the axis-aligned bounding boxes of our scene’s ob-
jects to screen space and query the redraw map at the level corre-
sponding to the object’s screen-space footprint. This query at the
four bounding box corners returns if any pixel of the object needs
to be redrawn or if the whole object can be culled.

The models in our scenes are subdivided into objects (submod-
els); for us at most 500 faces per object provided the best results.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets 115

Additionally, all objects are set up for indirect drawing [EM14]. Us-
ing this with command buffers [Wor16] allows cheap and efficient
culling of objects, as render buffers can be manipulated directly on
the GPU. Thus, each compute shader invocation tests whether a sub-
model needs to be redrawn and flags or unflags the submodel for
rendering.

After that, rendering proceeds with pixels not marked for redraw-
ing being discarded both while creating the G-buffer and in the shad-
ing step. The first part causes the G-buffer to only be filled where
output pixels are necessary, the second one ensures that no unnec-
essary shading computations are done.

6.2. Final Composition

With the partially redrawn image as well as the reprojected image
at hand, we can then compose the final image. When doing so, the
redrawn pixels are also subjected to temporal anti-aliasing [Kar14]
(redrawing is done with a jittered viewport). We also apply a motion
smoothing pass for the reprojected pixels. This is necessary as small
head movement or sensor noise will cause point sprites to change
their pixel coordinates temporally (and not uniformly) while raster-
izing the reprojection, thereby introducing swirling in the periphery.
The motion smoothing exploits the previously mentioned inaccu-
racy of depth-based reprojection (see Figure 3), as it uses the new
depth and pixel coordinate to reproject to the previous frame and
looks up the pixel’s history colour. Thus, only point sprites prone
to flickering between pixel footprints get a different history sam-
ple, which is then used in the same way as with TAA to smooth
the pixel, with colour box clipping and accumulation with α = 0.1.
The motion smoothing pass using this implicit noise generation in
the shader follows the same execution path as the TAA pass, thus
there is no performance impact compared to TAA of regular ren-
dering methods. It is important to note that the input for the next
frame’s reprojection pass must be without TAA/motion-smoothing,
as the slight blur introduced would be propagated and accumulate
to noticeable artefacts after dozens of frames.

7. Dynamic Objects and Post-Processing

While the steps described above complete the basic pipeline, our
design allows for additional features, namely dynamic objects and
post-processing passes. These can be achieved by further extending
and exploiting the confidence function.

Dynamic objects are managed by having an object-unique id
(stored in the world position buffer’s W-component), which is used
to retrieve the change in position in this frame for the object. Then
each point sprite associated with the object is moved based on
this change while reprojecting to its new, corresponding position
(holes left behind are handled the usual way). This point sprite
based version of the dynamic object is an approximation of the
actual object and especially rotations can lead to a distorted ap-
pearance over a few frames. As such, we adjust the general con-
fidence by a fourth factor, an empirically chosen dynamic confi-
dence cd (t ) = Dt , where t is the time in frames since the last redraw
of the pixel and D is an empirically chosen factor of 0.75. There-
fore, the confidence for pixels reprojected from dynamic objects

(a) (b) (c) (d)

Figure 5: Different confidence thresholds: (a) ε = 0.05. (b) ε =
0.1. (c) ε = 0.2. (d) Non-foveated. The white circle indicates the
foveal region. Note that details (fork, knife and chair) are fuzzier
with lower ε, as emphasized with the difference map between
foveated and regular rendering (bottom).

is c = ce(φ)cc(p0, . . . , p3)cs(m)cd (t ). The newly introduced term
lowers confidence over time for pixels belonging to dynamic ob-
jects, eventually enforcing a redraw (in contrast to pixels of static
objects, which will only be redrawn if the reprojection becomes in-
accurate unrelated to the pixel’s age).

Our method also supports acceleration for post-processing
passes, which in general aim to increase visual quality after ren-
dering and can be quite costly. Our foveated reprojection scheme
re-uses final colours from previous frames, therefore there are areas
in the image that do not need the recomputation of post-processing
effects. In our case, we re-use tonemapping [RSSF02] and screen-
space ambient occlusion [Mit07, BSD08] results implicitly by re-
projecting final colours. By using the redraw map to skip compu-
tations for pixels already covered by reprojected data, we acceler-
ate the passes considerably. Note that, usually, ambient occlusion is
blurred and not computed at full resolution, thus the redraw map is
sampled at a lower mip-map level to account for the larger relative
screen space area of SSAO pixels.

As an example for post-processing, we chose SSAO as it pro-
vides a large visual impact and poses difficulties due to its tendency
to be computed at different resolutions (which we solve by the mip-
mapped redraw map). For different post-processing passes, manip-
ulating the redraw map (or the confidence function itself) provides
a clear way for inclusion into the pipeline, i.e. for lens flares to in-
clude confidence function constrains to force redrawing of bright
areas even more often or for bloom to extend redraw areas by the
blur radius size. While we technically accelerate TAA (as we only
compute it for redrawn pixels) we included our motion smoothing
pass in the same step, thus resulting in virtually no difference in
overall pass performance (see Section 8.4).

8. Evaluation

In this section, we first evaluate the visually important factors of
our time-warped foveated rendering algorithm and present our

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



116 L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets

Figure 6: Performance with different confidence thresholds: With
higher thresholds, computation times (in ms) increase steeply in ev-
ery category except reprojection (Times measured for Figure 1 with
an Nvidia RTX 2070).

conducted calibration and verification user studies. Then, based
on the parameter set best suited for the algorithm, we evaluate the
performance against regular, non-foveated rendering, as well as
foveated variable rate shading [PSK*16, Bho18]. To conclude, we
present limitations posed by our algorithm as well as interesting
directions for future work.

8.1. Visual Quality

Visual quality of our approach is highly dependent on the aforemen-
tioned confidence threshold ε. Confidence is computed on a scale
from zero (must be redrawn) to one (good to display). As an ex-
treme case, if ε is set to zero, no redraws would happen, thus every
hole in the data is filled with extrapolated, inaccurate colours, im-
pacting visual quality drastically. In contrast, ε = 1 always forces
a redraw of the whole image every frame, losing any performance
benefit of our foveated rendering.

For a showcase of the visual quality see Figure 5, where pe-
ripheral cutouts with different thresholds are displayed. In general,
lower ε leads to more push-pull holefilling, thus fuzzier edges at ob-
jects. But while ε = 0.05 displays this strongly (with especially the
chair loosing much of its sharp edges), with ε >= 0.1, the distinc-
tion is less visible.

Regarding performance, a higher confidence threshold increases
computation times strongly (as seen in Figure 6), as it causes more
pixel redrawing. Apart from increased shading cost, our foveation-
based culling method is not able to cull as many objects, nega-
tively impacting rendering performance. Thus, confidence thresh-
olds higher than ε = 0.25 are deemed to have too high of an im-
pact on performance for no distinct visual improvement, while ε =
{0.05, 0.1, 0.2} are good parameters to investigate perceived qual-
ity with.

8.2. Calibration User Study

To better evaluate perceived quality of our foveation we conducted
two user studies. We based our study design on previous VR
user studies, such as those by Patney et al. [PSK*16] and Fink
et al. [FHMV*19]. With the first study, we try to calibrate our

Figure 7: Results of the calibration 2AFC user study, in percent of
choices (in orange) for our foveated rendering method with different
parameter sets (ε: confidence threshold, φF : fovea angle) compared
to regular rendering. The green area indicates the 95% confidence
interval of the binomial test.

method with a suitable parameter set of confidence threshold ε and
fovea angle φF .

Hardware. For the study, we used a FOVE [FOV17] HMD, a VR
headset with integrated eye tracker, and ran the accompanying driver
for gaze tracking calibration, followed by a manual verification of
gaze tracking correctness. Rendering was done on a mobile setup
with lower geometric complex scenes (low-poly San Miguel and a
bedroom scene, see Figure 8(a)). During the study, frame rates were
monitored and frame drops did not occur.

Study Design. Before the study, participants were only told the
setup of the study (use of a VR headset, eye tracking calibrations
and multiple decisions) but no specifics, and only subjects with no
background in computer graphics were chosen. For the main part
of the study, we used a two-alternative forced choice (2AFC) test
method between the scene rendered regularly and in a foveated
manner. Participants were asked to decide for one of the options
based on visual factors of their choosing (which mode they pre-
ferred). The participants were allowed to freely switch between
the two options. When switching, a gray fade was displayed for
half a second. The parameters used in the setups were confi-
dence threshold (ε = 0.2, ε = 0.1, ε = 0.05) and fovea angle (φF =
17◦, φF = 10◦, φF = 6◦) in full factorial design (9 decisions per
person).

Before and after the 2AFC test block, a scene was randomly
shown either rendered regularly or with foveation (with parame-
ters ε = 0.1 and φF = 10◦, previously thought of as a good com-
promise), with the other setup being used after the 2AFC test. Both
times, participants were encouraged to take their time and rate the
scene visually on a scale from 1 to 10 based on factors of their
own choosing.

Results. The study included 21 participants (12 male, nine fe-
male) between 23 and 35 years (μ = 27.48, σ = 2.86), which
reported a mix of previous VR experiences (seven never be-
fore, eight infrequent, six often), resulting in 20 valid rating
pairs and 170 choices (one rating pair and 19 choices were dis-
carded due to eye-tracking malfunctions or failure to look at both
options).

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets 117

Table 1: Overview of the six tests conducted in the verification user study. For each test and setup (A/B), the table reports rendering modes (foveated/regular)
for static and dynamic objects, scenes used, and indication of SSAO usage. Non-changing modes between setups are underlined. Participants were asked to
choose between setup A and B on each scene per test, resulting in 12 decisions.

setup A setup B
static objects dynamic objects static objects dynamic objects scenes AO?

main tests I - static foveated – regular – SunTemple1 & Rungholt1 ×
II - static & dynamic foveated foveated regular regular BistroInterior & LostEmpire ×
III - static, with AO foveated – regular – SunTemple1 & Rungholt1 �
IV - static & dynamic, with AO foveated foveated regular regular SunTemple2 & Rungholt2 �

support tests V - foveated vs. mixed foveated foveated foveated regular BistroInterior & LostEmpire ×
VI - mixed vs. regular foveated regular regular regular BistroInterior & LostEmpire ×

The results of the 2AFC test are shown in Figure 7. The confi-
dence threshold showed to have a bigger impact on preference than
the fovea angle. Tested for significance (binomial test with 95% con-
fidence), only in setups with parameters set to ε = 0.05, a clear pref-
erence for regular rendering can be seen (percent of choices fall out-
side the confidence interval). For the other options, no clear prefer-
ence is indicated by the data (all lie inside the confidence interval),
which is consistent with comments made by participants after the
study, as many reported only being able to find differences in about
half the options. On average more than five switches between op-
tions were made before a decision was reached, indicating an inde-
cisiveness in the choices.

The second test (rating the scenes) was designed to test if arte-
fact detection could be learned through our 2AFC test. Of our
participants, 11 were randomly shown the foveated scene first, the
other nine the regular. Both groups rated the visual quality of the
first shown scene similar: Foveated-first with μ = 6.36 (σ = 1.5)
and regular-first with μ = 6.33 (σ = 2.0). After the 2AFC test,
the foveated-first group rated the regular rendering as the second
scene on average higher by 0.45, while the regular-first group chose
a rating 0.89 points lower for the foveated one. While the first
is not statistically significant (p-value = 0.096), the second one is
(p-value = 0.009) when tested using a t-test with 95% confidence.
This shows, that even if visual quality of our foveated method is
perceived similar in isolation, the differences found can impact per-
ceived quality negatively.

We conclude from our calibration study that confidence threshold
set to the lower limits seems to have impact on preference. From
the remaining parameter sets, we chose ε = 0.2 and φF = 10◦ as a
conservative parameter set. Furthermore, we suggest using such a
parameter set (even though the impact on performance), as we saw
tendencies that users would negatively rate foveated renderings once
differences through foveation were noticed.

8.3. Verification User Study

To verify the parameter set found in the first study, we conducted a
second user study. It is designed to provide proof for the following
three claims we presented in this paper:

1. Our parameter set generalizes on different kinds of static scenes
and VR hardware.

2. Our handling of dynamic objects with dynamic falloff is suffi-
cient.

3. Ambient occlusion is reprojectable in our method, even with dy-
namic objects.

Hardware. We chose to use the HTC Vive Pro Eye [HTC19], an-
other VR headset with eye tracking hardware. Rendering was done
on an NVIDIA RTX2070 and the frame rate limit of 90Hz was hit
throughout the study in all setups.

Study Design. We recruited a new set of participants for the sec-
ond study, and they were again only told its outlines. The verifica-
tion user study followed the same paradigm as the main part of the
calibration user study (2AFC, decision for which mode participants
preferred) and was composed of six tests, four main tests and two
supporting tests (see Table 1 for reference). Each of the tests was
conducted on two different scenes, respectively, giving a total num-
ber of twelve 2AFC decisions for each study participant. The pairs
of scenes used for each test consisted of one more realistic and one
Minecraft-style scene, as the latter should provide a stronger chal-
lenge for our method due to the prevalence of sharp edges. Param-
eters for our method were set up as discussed before (ε = 0.2 and
φF = 10◦). For all tests, participants were asked to switch back and
forth between two setups (see columns ”setup A” and ”setup B”
in Table 1). Participants were encouraged to take their time and to
choose the visually more pleasing mode. After each decision, par-
ticipants were also asked to rate both setups on a scale from 1 to 10.

The first test (I) comprised only static scenes (SunTemple1 and
Rungholt1, see Figure 8(b)), with participants switching between
our method and regular rendering. This enabled direct testing of the
parameters found in the calibration user study on new scenes.

To test our method on dynamic content (test II) and thus sup-
port the second claim, dynamic objects of varying speeds and dis-
tances to the user were added to two other scenes (paper planes on
BistroInterior and pigs on LostEmpire, see Figure 8(c)). In this test,
participants were again asked to compare our method extended with
dynamic objects (as described in Section 7) against regular render-
ing.

To better understand the effect of dynamic objects on our method,
we also did two supporting tests with the same scenes. In them we
fused foveated and regular rendering in one setup, rendering static

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



118 L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets

(a) (b) (c) (d)

Figure 8: Scenes used in the user studies: (a) SanMiguel (top, low poly) and Bedroom (bottom), used for the calibration study. (b) SunTemple1
(top) and Rungholt1 (bottom) used for parameter verification and SSAO. (c) BistroInterior (top) and LostEmpire (bottom) used for assessing
dynamic objects. (d) SunTemple2 (top) and Rungholt2 (bottom) used for our full feature set. Models downloaded from Morgan McGuire’s
Computer Graphics Archive [McG17] and the Nvidia ORCA library [Epi17, Lum17].

Figure 9: Results of the verification user study, in percent of choices
for setup A (foveated) as seen in Table 1. The green area indicates
the 95% confidence interval of the binomial test.

objects in a foveated fashion and dynamic objects regularly (called
the mixed mode in the rest of the paper). One supporting test (V)
was set up comparing all-foveated rendering with this mixed mode
(thus only changing the rendering mode of dynamic objects), the
other test (VI) examined the mixed mode set up against all-regular
rendering (only switching modes for static objects). Both support-
ing tests should provide insights if perception of foveation changes
with dynamism in scenes and if coherency in the rendering modes
is preferred.

The last two main tests included SSAO (as described in Sec-
tion 7), once without dynamic objects (test III, on SunTemple1 and
Rungholt1, see Figure 8(b)) and once with dynamic objects (test IV,
on SunTemple2 and Rungholt2, see Figure 8(d)). The task was to
compare fully foveated and fully regular renderings in these tests.

Results. The study included 22 participants (17 male, five female)
between 20 and 27 years (μ = 23.73, σ = 2.97), with the majority
having no prior VR experience (12 never before, seven infrequent,
three often).

The results of the 2AFC tests are shown in Figure 9, showcasing
no significant difference in choices for the four main tests. Between
32% and 68% chose our method (with 50% being the expected ran-
dom guess value), which lies in the confidence interval for our N. In
setup rating no significant difference is present. Also no significant

impact of scene type (realistic or Minecraft) on decisions could be
identified (p-value = 0.091)

The oddity in the data is the test on the BistroInterior scene in
test V (the first support test; column 9 in Figure 9): On this particu-
lar combination of test and scene (the LostEmpire scene showed no
significant difference, see column 10) users preferred the more de-
tailed regularly rendered dynamic objects to our foveated version.
Setup ratings also showed significant (p-value = 0.012) preferences
in favor of the mixed mode (rendering static objects foveatedly and
dynamic objects regularly) compared to rendering all foveated. The
logical assumption would be that users also prefer all regular render-
ing to all foveated rendering on the same scene, but this claim is not
supported by the data (test II, column 3) as there is no significant dif-
ference. Our interpretation of this test is that the mixed mode guides
the user to notice accurately rendered dynamic objects in the periph-
ery (as we render them regularly on-top of foveated static objects),
leading to a clearer decision when comparing to all foveatedly ren-
dered, where all of the periphery is exhibiting more fuzziness. Thus
the lack of coherent render modes in the mixed mode seems to be
the main reason for this strong discrepancy in choices, which clearly
favor the mixed mode’s more accurate dynamic objects. Our sum-
mary from this test is that once participants noticed inaccuracies in
moving objects, they preferredmore accuracy and thus, in some sce-
narios tightening dynamic confidence or using a mixed mode could
provide better perceptual results. But in our suggested setups (i.e.
coherent render modes), even if users might choose different con-
strains on dynamic objects, no significant preference for regular ren-
dering when compared to foveated rendering is present (as seen in
tests II and IV).

Takeaways. We conclude from our verification study, that for a
conservatively chosen parameter set (ε = 0.2 and φF = 10◦), gen-
erally no preference towards one of the options in our suggested
feature sets could be identified. For the rest of this paper, this pa-
rameter set is used for evaluation.

8.4. Performance

In this section, we evaluate the performance of our algorithm in
contrast to regular, non-foveated rendering as well as against a

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets 119

Table 2: Times in ms, rendered on an Nvidia RTX 2070 (1280 × 1440 per eye) and averaged over 1000 frames, for time-warped foveated rendering (Ours),
foveated variable rate shading (fVRS) [PSK*16] and regular, non-foveated rendering. For our algorithm, the Reproj-column includes reprojection, hole-filling
and confidence computation; Render includes G-buffer creation and foveation culling; and TAA includes composition and motion smoothing. Also note that
fVRS uses a forward rendering pipeline, thus rendering and shading are combined in the Render-column.

Scene Method Reproj Render SSAO Shade Tonemap TAA Overall

Bistro, Ours 1.62 2.11 0.23 0.40 0.10 0.51 4.97
(Figure 1) Regular 4.12 1.03 2.05 0.20 0.51 7.91

fVRS 6.30 0.11 0.77 7.18

San Miguel, Ours 1.77 4.10 0.74 0.63 0.11 0.51 7.86
(Figure 11(a)) Regular 7.11 1.52 2.02 0.17 0.53 11.35

fVRS 8.72 0.13 0.72 9.57

Sponza, Ours 1.61 0.40 0.21 0.33 0.15 0.51 3.21
(Figure 11(b)) Regular 0.95 0.83 0.67 0.18 0.51 3.14

fVRS 0.90 0.13 0.78 1.81

Figure 10: Times in ms for other common HMD per-eye resolu-
tions: Our method (front) has diminishing speedups compared to
regular rendering (back, grey tone), down to about 1.25× with 8K
devices.

state-of-the-art technique, foveated variable rate shading
(fVRS) [PSK*16], which accelerates rendering by reducing
the shading rate in the periphery (to 2 × 2 with eccentricities
between 10 and 20 degrees and 4 × 4 beyond), which is especially
efficient due to hardware support on recent GPUs [Bho18].

Setup. We evaluate the methods with a FOVE HMD (also used in
the calibration user study), with a resolution of 1280 × 1440 pixels
per eye, on an Nvidia RTX 2070. We used three scenes for evalua-
tion: Crytek’s Sponza scene (Figure 11(b)), an atrium with a low
number of triangles (262K) and small texture memory footprint,
San Miguel (Figure 11(a)), a courtyard with a high number of trian-
gles (8.8M) including small, expensive to render leaves with alpha
testing, and Amazon’s Lumberyard Bistro scene (Figure 1), a well-
balanced scene with moderately high triangle count (3.9M), similar
to modern video game scenes [LA19]. For Bistro and San Miguel,
one directional light and 20 point lights illuminate the scene, while
for Sponza (as an overall less complex example) only one directional
light is used.

Unless otherwise noted, our algorithm as well as the regular ren-
dering use a deferred renderer with a 144-bit G-buffer, frustum

(a) (b)

Figure 11: Scenes used in the evaluation: (a) San Miguel (De-
signer: GuillermoM. Leal Llaguno). (b) Sponza (Designers: Marko
Dabrovic, Frank Meinl). Also used: Bistro [Lum17] (Figure 1).
Models downloaded from Morgan McGuire’s Computer Graphics
Archive [McG17].

culling, normal mapping, alpha testing and 16-bit HDR GGX shad-
ing [Kar13]. Time-warped foveated rendering additionally uses a
128-bit world-position buffer as well as the previously mentioned
foveation culling. As additional post-processing, we use screen
space ambient occlusion (SSAO) at half resolution with 32 sam-
ples per pixel. Foveated VRS uses a forward renderer with the same
attributes as regular rendering, but with texture-baked ambient oc-
clusion and without alpha testing, as it is not supported [PSK*16].

Results. The times for the scenes can be seen in Table 2, averaged
over 1000 frames. In general, our method compares favourably on
both Bistro and San Miguel as we achieve speedups of 1.6× and
1.4× compared to regular rendering. Compared with fVRS, perfor-
mance gains are smaller, but still speedups of 1.4× and 1.2× are
measured. On Sponza, our method performs considerably slower
than both regular and fVRS due to scene layout: Our method has
a constant overhead of around 1.7 ms for reprojecting, thus on
low-cost scenes such as Sponza, our increased performance, which
comes from geometry processing, shading and post-processing, is
not as relevant. Following is a detailed evaluation of these three parts

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



120 L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets

Figure 12: Primitives over 1000 frames in the Bistro scene (Fig-
ure 1). Ours (red) only processes 1.8 million primitives on average,
in contrast to regular and fVRS (blue) with 2.7 million.

Figure 13: Amount of fragments shaded per eye over 1000 frames:
With regular rendering, all 1.84M fragments per eye (resolution of
1280 × 1440) need to be shaded (blue), for our approach on aver-
age 108K fragments (6%) are shaded (red).

as well as the impact of dynamic objects and resolution on perfor-
mance.

Geometry Processing. Our algorithm reduces vast amounts of ge-
ometry transformation with our foveation culling scheme. A graph
of this can be seen in Figure 12, which shows that our method cuts
down primitives by roughly one third on the Bistro scene (similar
as with the other scenes, with reductions of 27% on San Miguel
and 35% on Sponza). This is vital for our method’s performance,
as without it, creating the G-Buffer (see Render column in Table 2)
would only be slightly faster than with regular rendering through the
ability to discard pixels in confident areas. It is important to note that
the cost of performing the culling itself (as described in Section 6.1)
is consistently very low at about 0.02 ms in our scenes (included in
the Render column in Table 2).

Shading. We use the redraw map to discard pixels already repro-
jected and exhibiting a confidence value above the threshold, thus
reducing the amount of shaded pixels drastically. An overview of
this can be seen in Figure 13. On average (computed over 1000
frames), we shade only 108K fragments (σ = 10.6K) per frame,
a reduction of 94% in contrast to regular, full resolution rendering
and exceeding fVRS’ reduction of 75%. Thus our method achieves
great shading performance in complex shading scenarios (speedups
of 5.1× (Bistro) and 3.2× (San Miguel), see column Shade in Ta-
ble 2) while also reducing computation times in simple shading se-
tups by about half (Sponza).

Post Processing. We can avoid recomputing post-processing
passes (such as SSAO) for reprojected pixels, resulting in good

Figure 14: Computation time in relation to total footprint of dy-
namic objects on screen: With a larger dynamic object footprint,
computation times increase noticeably. In the worst case (100% dy-
namic object screen footprint) our method slows down by about
25%.

speedups of 2.1× to 4.5× based on scene complexity. We chose to
not compare a fVRS-adjusted SSAO implementation with our algo-
rithm, as it would require vast changes to a lower-resolution SSAO
pass to fit with different shading rates efficiently and would diverge
far from the original publication. For colour adjustment passes (e.g.
used here: tone mapping with fixed luminance), recomputations can
also be skipped, with possible speedups of around 1.2× to 2.0×.
However these reductions are less significant due to the low overall
cost of these passes.

Dynamic Objects. Our method handles inaccuracies stemming
from reprojecting dynamic objects by lowering confidence with the
dynamic confidence falloff. This forces dynamic objects to be re-
drawn more often on average. The confidence computation is done
on pixels, thus the screen-space size of dynamic objects is of rele-
vance here. The performance impact can be seen in Figure 14, with
times for different amounts of dynamic falloff present in the scene.
Generally, the more pixels are covered by dynamic objects, the more
pixels are necessary to be redrawn, thus all parts of our algorithm
except reprojection take longer to compute, with our method’s com-
putation time increasing by about 25% in the worst case (100% of
pixels subject to dynamic confidence falloff).

Render Resolution. So far, our method’s performance was eval-
uated using the FOVE’s resolution. For times comparing different
resolutions of our method and regular rendering, refer to Figure 10.
With HTC Vive Pro Eye’s resolution of 1440 × 1600 pixels per
eye, our overall speedup is in a similar range with 1.45×, while for
higher targeted resolutions the overall speedup decreases to only
about 1.25× with 8K devices (3840 × 1440 pixels per eye). This
is due to our reprojection computation cost scaling almost linearly
with resolution, taking an overall larger percentage of the render
times with higher resolution settings. It it important to note however
that higher-resolution HMDs usually target a larger field of view
than the FOVE or HTC Vive Pro Eye, thus we are optimistic that
our method (and especially the confidence function) can be tuned
to reduce rendering cost in the far peripheral regions further (due to
even lower receptor densities), once high-resolution, high field-of-
view HMDs with eye trackers are available.

Performance Conclusion. Our method provides a solid perfor-
mance increase with complex scenes, as shown with the San Miguel
and Bistro scenes. Foveation culling allows our redrawing pass to

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets 121

ignore large amounts of geometry and the shading rate is reduced
to below 10% through redraw-map-based pixel discards, especially
promising due to the overall high shading cost of modern video
games [SG16, LA19]. Furthermore, post-processing passes such as
SSAO also profit from the decrease in pixels to be processed. This
results in speedups for the pipeline of up to 1.6×, which allows the
additional time to be put towards increasing visual quality or using
more complex setups in VR (such as San Miguel, which is regularly
rendered over the 90 Hz/11.1 ms VR threshold).

8.5. Limitations and Future Work

Our algorithm is subject to a small but significant set of limitations:
Firstly, transparency presents a problem not solvable by our ap-
proach, it is only possible to add a transparent pass after our pipeline
finishes (resulting in no speedup for transparent objects compared
to regular rendering). Transparent fragments lack a distinct position
after rendering (as they are commonly blended), thus reprojecting
will yield wrong results under movement. We recommend follow-
ing Schollmeyer et al.’s [SSB*17] A-buffer method if translucent
materials are to be reused.

Secondly, moving lights are not supported in our method, as they
drastically change shading of fragment between frames. Though it
should be possible to heuristically evaluate noticeability of colour
changes in fragments and thus lower confidence in them, this will
probably have a considerable impact on performance due to the pos-
sibly high numbers of pixels to redraw.

Thirdly, view-dependent post-processing effects (e.g. reflections)
may present problems. Even though our scenes heavily use specular
highlights, our consideration of brightness in the confidence com-
putation eliminates strong discrepancies in highlights through head
or gaze movement. However, we cannot rule out that reprojected
reflections can cause distracting artefacts, thus, in its current form,
for our time-warped foveated rendering method, reflections must be
seen as a limitation and an interesting opportunity for future work.

As for additional future work, our verification user study (as seen
in Section 8.3) provides hints that perception of dynamic objects in
the periphery can still be improved. For that, extending the confi-
dence function with more dynamic-focused perceptual terms would
be an interesting avenue for future work, both algorithmically and
from a perceptual modelling standpoint, as our method’s perfor-
mance is impacted noticeably by scene dynamism.

9. Conclusion

With this paper we have presented a novel time-warped foveated
rendering technique well suited for current HMD hardware with in-
tegrated eye tracking. While it lacks the simplicity in implementa-
tion compared to established work [PSK*16, Bho18], our algorithm
outperforms them on scenes similar to real-world use cases and in-
troduces an effective perceptual formalization of reprojection qual-
ity allowing a larger feature set. Though our method fails in some
common scenarios such as transparency, moving lights and reflec-
tions, we believe that our approach strikes a promising compromise
between performance and features, well suited for modern real-time
VR rendering.

Acknowledgements

Open access funding enabled and organized by Projekt DEAL.

References

[Adl65] Adler F. H.: Physiology of the eye. Academic Medicine
40, 7 (1965), 720.

[APLK17] Albert R., Patney A., Luebke D., Kim J.: Latency re-
quirements for foveated rendering in virtual reality. ACM Trans-
actions on Applied Perception (TAP) 14, 4 (2017), 25.

[Bho18] Bhonde S.: NVIDIA Developer Blog: Turing Variable
Rate Shading in VRWorks, 2018. https://devblogs.nvidia.com/
turing-variable-rate-shading-vrworks/.

[BMS*12] Bowles H., Mitchell K., Sumner R. W., Moore J.,
Gross M.: Iterative image warping. Computer Graphics Forum ,
31, (2012), 237–246.

[BSD08] Bavoil L., Sainz M., Dimitrov R.: Image-Space
horizon-based ambient occlusion. In ACM SIGGRAPH 2008
Talks (2008), ACM, p. 22.

[CSKH90] Curcio C. A., Sloan K. R., Kalina R. E., Hendrick-
son A. E.: Human photoreceptor topography. Journal of Com-
parative Neurology 292, 4 (1990), 497–523.

[dCI17] de Carpentier G., Ishiyama K.: Decima engine: Ad-
vances in lighting and aa. SIGGRAPH, Advances on Real-time
Rendering Course (2017).

[DMAM19] Denes G., Maruszczyk K., Ash G., Mantiuk R.
K.: Temporal resolution multiplexing: Exploiting the limitations
of spatio-temporal vision for more efficient VR rendering. IEEE
Transactions on Visualization and Computer Graphics 25, 5
(2019), 2072–2082.

[DRE*10] Didyk P., Ritschel T., Eisemann E., Myszkowski K.,
Seidel H.-P.: Adaptive image-space stereo view synthesis. In
15th International Workshop on Vision, Modeling, and Visualiza-
tion (2010), Eurographics Association, Darmstadt, pp. 299–306.

[DWWL05] Dayal A., Woolley C., Watson B., Luebke
D.: Adaptive frameless rendering. In ACM SIGGRAPH 2005
Courses. 2005, pp. 24–es.

[EM14] Everitt C., McDonald J.: Beyond Porting— How
Modern OpenGL Can Radically Reduce Driver Overhead, 2014.
https://developer.nvidia.com/content/how-modern-opengl-can-
radically-reduce-driver-overhead-0.

[Eng14] EngelW.: Per-pixel lists for single pass A-buffer. InGPU
Pro 5. AK Peters/CRC Press, Natick, MA, 2014, pp. 18–25.

[Epi17] Epic Games: Unreal engine sun temple, open research con-
tent archive (orca), October 2017. http://developer.nvidia.com/
orca/epic-games-sun-temple.

[FHMV*19] Fink L., Hensel N., Markov-Vetter D., Weber C.,
Staadt O., Stamminqer M.: Hybrid mono-stereo rendering in

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://devblogs.nvidia.com/turing-variable-rate-shading-vrworks/
https://devblogs.nvidia.com/turing-variable-rate-shading-vrworks/
https://developer.nvidia.com/content/how-modern-opengl-can-radically-reduce-driver-overhead-0
https://developer.nvidia.com/content/how-modern-opengl-can-radically-reduce-driver-overhead-0
http://developer.nvidia.com/orca/epic-games-sun-temple
http://developer.nvidia.com/orca/epic-games-sun-temple


122 L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets

virtual reality. In 2019 IEEE Conference on Virtual Reality and
3D User Interfaces (VR) (2019), IEEE, Piscataway, NJ, pp. 88–
96.

[FOV17] FOVE: FOVE Specifications, 2017. https://www.getfove.
com/.

[FRS19] Friston S., Ritschel T., Steed A.: Perceptual rasteriza-
tion for head-mounted display image synthesis. ACM Transac-
tions on Graphics (TOG) 38, 4 (2019), 1–14.

[GB16] Goldstein E. B., Brockmole J.: Sensation and Percep-
tion. Cengage Learning, Boston, MA, 2016.

[GFD*12] Guenter B., Finch M., Drucker S., Tan D., Snyder
J.: Foveated 3D graphics. ACM Transactions on Graphics (TOG)
31, 6 (2012), 164.

[GGSC96] Gortler S. J., Grzeszczuk R., Szeliski R., Cohen
M. F.: The lumigraph. SIGGRAPH, 96, (1996), 43–54.

[GKM93] Greene N., Kass M., Miller G.: Hierarchical Z-buffer
visibility. In Proceedings of the 20th Annual Conference on Com-
puter Graphics and Interactive Techniques (1993), ACM, pp.
231–238.

[HMT18] Hoffman D., Meraz Z., Turner E.: Limits of periph-
eral acuity and implications for VR system design. Journal of the
Society for Information Display 26, 8 (2018), 483–495.

[HTC19] HTC: HTC Vive Pro Eye Specifications, 2019. https:
//www.vive.com/de/product/vive-pro-eye/.

[Kar13] Karis B.: Real shading in unreal engine 4. Proceedings of
Physically Based Shading Theory Practice 4 (2013).

[Kar14] Karis B.: High-quality temporal supersampling. Ad-
vances in Real-Time Rendering in Games, SIGGRAPH Courses
1 (2014), 1–55.

[LA19] Lejdfors C., Aguaviva R.: Advanced Graphics
Techniques Tutorial: Efficient Rendering in ’The Di-
vision 2’, 2019. Games Developers Conference. https:
//schedule.gdconf.com/session/advanced-graphics-techniques-
tutorial-efficient-rendering-in-the-division-2/864612.

[LKE18] Lee S., Kim Y., Eisemann E.: Iterative depth warping.
ACM Transactions on Graphics (TOG) 37, 5 (2018), 177.

[Lum17] Lumberyard Amazon: Amazon Lumberyard Bistro,
Open Research Content Archive (ORCA), 07 2017. http://
developer.nvidia.com/orca/amazon-lumberyard-bistro.

[McG17] McGuire M.: Computer Graphics Archive, 07 2017.
https://casual-effects.com/data.

[McM97] McMillan L.: An Image-Based Approach to Three-
Dimensional Computer Graphics. PhD thesis, Citeseer, 1997.

[MDZV18] Meng X., Du R., Zwicker M., Varshney A.: Ker-
nel foveated rendering. Proceedings of the ACM on Computer
Graphics and Interactive Techniques 1, 1 (2018), 5.

[Mit07] Mittring M.: Finding next gen: Cryengine 2. In ACM
SIGGRAPH 2007 Courses (2007), ACM, pp. 97–121.

[MKRH11] Mantiuk R., Kim K. J., Rempel A. G., Heidrich W.:
Hdr-vdp-2: A calibrated visual metric for visibility and quality
predictions in all luminance conditions. ACM Transactions on
Graphics (TOG) 30, 4 (2011), 1–14.

[NSL*07] Nehab D., Sander P. V., Lawrence J., Tatarchuk
N., Isidoro J. R.: Accelerating real-time shading with reverse
reprojection caching. Graphics Hardware 41, (2007), 61–62.

[PSK*16] Patney A., Salvi M., Kim J., Kaplanyan A., Wyman
C., BentyN., Luebke D., LefohnA.: Towards foveated render-
ing for gaze-tracked virtual reality. ACM Transactions on Graph-
ics (TOG) 35, 6 (2016), 179.

[RSSF02] Reinhard E., Stark M., Shirley P., Ferwerda J.:
Photographic tone reproduction for digital images. ACM Trans-
actions on Graphics (TOG) , 21, (2002), pp. 267–276.

[SG16] Sousa T., Geffroy J.: The devil is in the details: idTech
666. Advances in Real-Time Rendering in Games, SIGGRAPH
Courses (2016).

[SGEM16] Stengel M., Grogorick S., Eisemann M., Magnor
M.: Adaptive image-space sampling for gaze-contingent real-
time rendering.Computer Graphics Forum, 35, (2016), 129–139.

[SHK*17] Sun Q., Huang F.-C., Kim J., Wei L.-Y., Luebke D.,
Kaufman A.: Perceptually-guided foveation for light field dis-
plays. ACM Transactions on Graphics (TOG) 36, 6 (2017), 192.

[SIGK*16] SwaffordN. T., Iglesias-Guitian J. A., Koniaris C.,
Moon B., Cosker D., Mitchell K.: User, metric, and computa-
tional evaluation of foveated rendering methods. In Proceedings
of the ACM Symposium on Applied Perception (2016), pp. 7–14.

[SSB*17] Schollmeyer A., Schneegans S., Beck S., Steed A.,
Fröhlich B.: Efficient hybrid image warping for high frame-rate
stereoscopic rendering. IEEE Transactions on Visualization and
Computer Graphics 23, 4 (2017), 1332–1341.

[SSP*18] Sitzmann V., Serrano A., Pavel A., Agrawala
M., Gutierrez D., Masia B., Wetzstein G.: Saliency in VR:
How do people explore virtual environments? IEEE Transactions
on Visualization and Computer Graphics 24, 4 (2018), 1633–
1642.

[SvLBF09] Smit F., van Liere R., Beck S., Fröhlich B.: An
image-warping architecture for VR: Low latency versus image
quality. In 2009 IEEE Virtual Reality Conference (2009), IEEE,
Piscataway, NJ, pp. 27–34.

[TAKW*19] Tursun O. T., Arabadzhiyska-Koleva E.,
Wernikowski M., Mantiuk R., Seidel H.-P., Myszkowski
K., Didyk P.: Luminance-contrast-aware foveated rendering.
ACM Transactions on Graphics (TOG) 38, 4 (2019), 1–14.

[Vla16] Vlachos A.: Advanced VR rendering performance. In
Game Developers Conference (2016), vol. 2016.

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://www.getfove.com/
https://www.getfove.com/
https://www.vive.com/de/product/vive-pro-eye/
https://www.vive.com/de/product/vive-pro-eye/
https://schedule.gdconf.com/session/advanced-graphics-techniques-tutorial-efficient-rendering-in-the-division-2/864612
https://schedule.gdconf.com/session/advanced-graphics-techniques-tutorial-efficient-rendering-in-the-division-2/864612
https://schedule.gdconf.com/session/advanced-graphics-techniques-tutorial-efficient-rendering-in-the-division-2/864612
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
http://developer.nvidia.com/orca/amazon-lumberyard-bistro
https://casual-effects.com/data


L. Franke et al. / Time-Warped Foveated Rendering for VR Headsets 123

[VST*14] Vaidyanathan K., Salvi M., Toth R., Foley T.,
Akenine-Möller T., Nilsson J., Munkberg J., Hasselgren
J., Sugihara M., Clarberg P., et al.: Coarse pixel shading. In
Proceedings of High Performance Graphics (2014), Eurograph-
ics Association, Darmstadt, pp. 9–18.

[VW16] VanWaveren J.: The asynchronous time warp for virtual
reality on consumer hardware. In Proceedings of the 22nd ACM
Conference on Virtual Reality Software and Technology (2016),
ACM, pp. 37–46.

[WDP99] Walter B., Drettakis G., Parker S.: Interactive ren-
dering using the render cache. In Rendering Techniques’ 99.
Springer, New York, 1999, pp. 19–30.

[Wor16] Worcester M.: Command Buffers and Pipelines, 2016.
https://www.khronos.org/assets/uploads/developers/library/
2016-vulkan-devday-uk/2-Command_buffers_and_pipelines.
pdf.

[WRHS18] Weier M., Roth T., Hinkenjann A., Slusallek P.:
Foveated depth-of-field filtering in head-mounted displays. ACM
Transactions on Applied Perception (TAP) 15, 4 (2018), 26.

[WRK*16] Weier M., Roth T., Kruijff E., Hinkenjann A.,
Pérard-Gayot A., Slusallek P., Li Y.: Foveated real-time ray
tracing for head-mounted displays. Computer Graphics Forum,
35, (2016), 289–298.

[WSR*17] Weier M., Stengel M., Roth T., Didyk P., Eise-
mann E., Eisemann M., Grogorick S., Hinkenjann A.,
Kruijff E., Magnor M., et al.: Perception-driven acceler-
ated rendering. Computer Graphics Forum, 36, (2017), 611–
643.

[YTS*11] Yang L., Tse Y.-C., Sander P. V., Lawrence J., Nehab
D., Hoppe H., Wilkins C. L.: Image-based didirectional scene
reprojection. ACM Transactions on Graphics (TOG), 30, (2011),
150.

[ZMHHI97] Zhang H., Manocha D., Hudson T., Hoff III K.
E.: Visibility culling using hierarchical occlusion maps. In Pro-
ceedings of the 24th Annual Conference on Computer Graphics
and Interactive Techniques (1997), ACM Press/Addison-Wesley
Publishing, New York, NY, pp. 77–88.

Supporting Information

Additional supporting information may be found online in the Sup-
porting Information section at the end of the article.

Data S1

Data Video S2

© 2020 The Authors. Computer Graphics Forum published by Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd

https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/2-Command_buffers_and_pipelines.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/2-Command_buffers_and_pipelines.pdf
https://www.khronos.org/assets/uploads/developers/library/2016-vulkan-devday-uk/2-Command_buffers_and_pipelines.pdf



