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Abstract
We describe a new method for approximating an implicit s
are as close as possible to equilateral. The main advantage

urface F by a piecewise-flat triangulated surface whose triangles
is improved mesh quality which is guaranteed for smooth surfaces.

The GradNormal algorithm generates a triangular mesh that gives a piecewise-differentiable approximation of F, with angles

between 35.2 and 101.5 degrees. As the mesh size approache

s 0, the mesh converges to F through surfaces that are isotopic to F.

Categories and Subject Descriptors (according to ACM CCS): 1.3.5 [Computational Geometry and Object Modeling]: Curve,

surface, solid, and object representations—

1. Introduction

We study the problem of approximating a surface in R’ by a mesh
that has optimal angle properties. In computations based on mesh
descriptions of a surface, it is often essential to avoid “slivers’, or
triangles with angles close to zero. A random process for selecting
vertices on a surface gives a triangulation with expected minimum
angle approaching zero as the number of points increases [BEY91],
implying that slivers are hard to avoid when creating meshes from
points sampled on a surface.

Badly shaped triangles can cause mesh-based algorithms to
break down for numerical reasons. Avoiding poor quality triangles
is important for a wide variety of applications, including computer
graphics, shape comparison, finite elements, finding numerical so-
Iutions of PDEs, and geometric modeling. In one important area
of applications, a function f : R® — R measures the absorption at
each point of an X-ray or imaging machine, or the density of a
solid object, where a level set F = f -1 (c) represents the surface
of a scanned object, such as an organ, bone, brain cortex or pro-
tein. For purposes of visualization, geometric processing, surface
comparison, surface classification, or modeling of properties of the
surface, it is desirable to have a high quality mesh representing the
surface.

We note that it is possible to construct a sequence of surfaces
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converging to F' pointwise and consisting entirely of flat equilateral
triangles, but with the tangent planes of the triangles not converg-
ing to those of the surface. The search for a regular mesh whose
triangles approximate the tangent spaces of a given surface leads to
two conflicting goals. One goal is to make the triangles as close to
equilateral as possible, and the second is to have the mesh conform
differentiably to the surface, so that its tangent planes approximate
those of the surface.

In this paper we introduce the GradNormal Algorithm, which
produces a mesh whose tangent planes converge to those of a dif-
ferentiable implicit surface F C R?, and whose triangles have an-
gles in the interval [35.2°,101.5°]. These angle bounds are the best
rigorously established. We prove that the GradNormal meshes are
2-dimensional manifolds that converge to F' as the mesh size ap-
proaches zero, and that the convergence is piecewise-smooth, as
explained later.

Example meshes produced by GradNormal for implicit surfaces,
defined as level sets of explicitly given mathematical functions,
are shown in Figure 1 and Figure 2. These are obtained by tiling
the unit cube with 869,652 tetrahedra and displayed using Mesh-
Lab [CCC*08]. See Table 1 for data on how these angles improve
as the tiling becomes finer.

GradNormal meshes can also be produced by inputting non-
smooth surfaces, described as a union of polygonal faces. This al-
lows us to use GradNormal to improve a mesh with poor angle
quality. A mesh produced from the Stanford Bunny [TL94, Bun]
is shown in Figure 3, obtained using GradNormal with a tiling
of the cube with 6,748,416 tetrahedra. A signed-distance-function
can be obtained from the original Stanford Bunny Mesh, after
filling in holes. This defines an implicit surface, computed using
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TriMesh [DH20]. The code used to produce these images is avail-
able on GitLab [HT19].
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Figure 1: The mesh of the sphere has 25,092 triangular faces with
angles in the interval [35.4°,102.7°]. The torus has 35,838 tri-

angular faces with angles in the interval [32.8°,104.7°]. At suf-
ficiently fine scales all angles lie in the interval [35.2°,101.5°].

(a) (b)

Figure 2: These meshes have (a) 10,346 (genus 2) and (b) 55,122
(genus 5) triangular faces. They have angles in the intervals
[22.1°,129.0°] (genus 2) and [29.2°,113.4°] (genus 5).

In Figure 4 we see the range of mesh angles produced by the
GradNormal algorithm at two resolutions and the angles in the orig-
inal Stanford Bunny mesh. Note that the original mesh has holes
and isolated vertices. The holes were filled in prior to remeshing
with the GradNormal algorithm. When applied to a non-smooth
surface that has sharp corners at vertices and folds along edges,
the angle bounds that GradNormal guarantees for smooth sur-
faces do not apply, even in the limit. Nonetheless Figure 4 shows
that the angles are more clustered around 60° than in the origi-
nal mesh. To compare the distribution of angles in one chart, the
counts have been normalized by dividing by three times the num-
ber of triangular faces, or 348,162 for the GradNormal mesh with
6,748,416 tetrahedra and 1,400,310 for the GradNormal mesh with
52,931,340 tetrahedra. The two GradNormal meshes have very
similar distributions, with most angles between 40° and 80°, while
the original Stanford mesh had many angles near 30° and 90°.

Figure 3: The original Stanford Bunny Mesh (with several holes
and isolated points) gave angles in the interval [0.49°,177.6°]. The
mesh of the Stanford Bunny shown here, produced by GradNormal
using a 6,748,416 tetrahedra tiling of the cube, gives angles in the
interval [10.4°,150.4°].

Small angles may be created in the mesh produced by GradNor-
mal when it is applied to a non-smooth or piecewise-flat surface,
such as the Bunny mesh. These can occur near points where ad-
jacent faces in the non-smooth surface meet with sharp dihedral
angles.
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Figure 4: Angle distributions for the original Stanford Bunny mesh
and for GradNormal meshes of the Stanford Bunny at two resolu-
tions.

The GradNormal algorithm proceeds in three steps. The first step
produces a mesh with acute triangles that we call a MidNormal
mesh. While having very good angle properties, and giving a 2-
dimensional manifold that lies close to the implicit surface, its nor-
mal vectors do not align with those of F. The second step involves
a projection of the MidNormal mesh vertices to the implicit sur-
face, so that normal vectors align with those of the surface. This is
followed by a single remeshing operation involving vertices of va-
lence four. A careful analysis of the distortion of angles under this
step establishes the properties claimed for the GradNormal mesh.

The first step is similar to the Marching Tetrahedra algorithm,
but with important differences. The underlying idea behind both
algorithms appears in the theory of normal surfaces, a powerful
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tool used to study surfaces in 3-dimensional manifolds that goes
back to work of Kneser in 1929 [Kne29]. The GradNormal algo-
rithm begins by tiling space with tetrahedra of a fixed shape. It uses
a tetrahedral tiling chosen to optimize the angles appearing in the
final mesh. Intersecting a surface F' with these tetrahedra tiles gen-
erates an approximation of F' by triangles and quadrilaterals, as in
Figure 5.

A normal surface with respect to a 3-dimensional triangulation T
is an embedded surface S C M whose intersection with any tetrahe-
dron in 7 has the simplest possible form, cutting across each tetrahe-
dron in the same way as a flat plane. The surface intersects a single
tetrahedron in one of two types of elementary disk. An elementary
disk is either a single flat triangle or two flat triangles meeting along
a common edge and forming a quadrilateral. The vertices of each
triangle of an elementary disk are located at the midpoints of differ-
ent edges of the tetrahedron, as in Figure 5. The MidNormal mesh
consists of such elementary disks.

Given an implicit surface F, the GradNormal algorithm first pro-
duces a MidNormal mesh. It then projects the mesh vertices to the
closest point on the surface F, and finishes with a single remeshing
step that removes valence four vertices.

Figure 5: Elementary disks forming part of a normal surface. A
triangle separates one vertex from the other three. A quadrilateral
that separates pairs of vertices is split into two triangles by adding
a diagonal. There are four possible types of triangle and three pos-
sible types of quadrilaterals in each tetrahedron.

The quadrilaterals of a normal surface are divided along a di-
agonal to produce a mesh. The mesh consists of flat triangles that
separate the vertices of a tetrahedron in the same way as F. The
MidNormal mesh locates the vertices of the triangles on the mid-
points of the tetrahedron edges. In contrast Marching Tetrahedra in-
terpolates these vertex positions along the edges of the tetrahedron.
This interpolation results in angles that can be arbitrarily close to
zero [NH91], so that Marching Tetrahedra is often combined with
further algorithms that improve mesh quality [CDS12].

The tiling of R that we use is obtained by optimizing angles
among a family of tetrahedra discovered by Goldberg [Gol74]. A
particular Goldberg tiling is determined, up to isometry, by a pair
of positive constants a,e that determine a tetrahedron Tge, as in
Figure 6. Isometric copies of T4 fill R® with no gaps, with pairs
of tetrahedra matching along faces. In our setting e is a scale pa-
rameter that determines the size of the tetrahedron, and we fix a
to have the value a = ev/2/4. This choice gives the optimal an-
gles for our method. It turns out that this choice of tetrahedral
shape coincides with the tetrahedra in a tiling described by Som-

(© 2020 The Author(s)
Computer Graphics Forum (© 2020 The Eurographics Association and John Wiley & Sons Ltd.

merville [Som23]. A straightforward computation then shows that
the MidNormal mesh has angles in the interval [45°,90°].
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Figure 6: (a) A tetrahedron Tq.e, one of a family that tiles R. The
scale independent parameter a € (0,00) determines the shape. (b)
These tetrahedra stack to tile a vertical column over an equilateral
triangle of length e (center). (c) A surface in R? divides the vertices
of these tetrahedra, leading to a triangular mesh. Part of a normal
surface is also shown.
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The MidNormal mesh gives a continuous approximation to the
surface F. A differentiable approximation is achieved in the second
part of the GradNormal Algorithm. It starts with a MidNormal
mesh and then projects each of the vertices to the closest point
on the surface F. We will see that all angles are then as claimed,
with the exception of a collection of valence-four vertices. These
can have arbitrarily small angles, and are removed in a remeshing
step which deletes four triangles adjacent to a common valence
four vertex and triangulates the resulting quadrilateral by adding a
diagonal. Properties of the resulting mesh M ! (f,e) are given in the
following theorem, proven in Section 4.

Theorem 1.1 Let F = f~'(0) € R® be a compact level surface of
a smooth function f and let M' (£, e) be the mesh produced by the
GradNormal algorithm with tetrahedra of scale e. Then as e — 0,
(1) The triangular mesh M'(f,e) is a 2-dimensional manifold
homeomorphic to F' under the nearest point projection map.

(2) The surface M ! (f,e) converges to F piecewise-differentiably.
(3) The mesh angles lie in the interval [35.2°,101.5°].

Piecewise-differentiable convergence means that (1) as e — 0 the
mesh converges pointwise to F' and that (2) for any € > 0, when e is
sufficiently small the distance between a unit normal vector on the
mesh at some point and the unit normal at the nearest point on F' is
less than €. Note that while normal vectors are not uniquely defined
at a point which is a vertex or on an edge of a mesh, this property
holds for any of the finite number of choices for a normal.



32 J. Hass & M. Trnkova / Approximating isosurfaces

2. Related Work

A large number of algorithms has been written for representing sur-
faces given by an implicit function and almost all of them orig-
inate from Marching Cubes [LC87]. Marching cubes applied di-
rectly does not give good angle bounds, since a plane cutting close
to an edge will intersect in a triangle containing an arbitrarily small
angle. A relatively recent survey on implicit surface meshing tech-
niques by Araujo [dALJ*15] gives an overview of different ap-
proaches to isosurface meshing. The article classifies and compares
techniques for fast visualization of isosurfaces based on different
features of meshes including quality of meshes but does not dis-
cuss provable bounds on angles. Recent results in this direction
can be found at [Wenl3, CPS19]. Labelle and Shewchuk devel-
oped an “Isosurface Stuffing” procedure that achieves dihedral an-
gle bounds for tetrahedra filling a 3-dimensional region, along with
angle bounds for the 2-dimensional mesh formed by the region’s
boundary [LS07]. It achieves angles in the interval [16°,145°] for
the boundary surface mesh. Liang and Zhang used a related oc-
tree method to find meshes of regions bounded by smooth curves
in the plane that are guaranteed to have angles in the interval
[19.47°,141.06°] [LZ14]. P. Chew gave a procedure based on point
insertion and remeshing to achieve a Constrained Delaunay trian-
gulation for a surface in the plane or in R? that gives angles be-
tween 30° and 120° [Che93]. A recent remeshing algorithm by Hu
et. al. [HYB*17] gives experimental evidence for mesh regularity
comparable to the GradNormal algorithm.

The problem of finding meshes with good angle properties has
been extensively studied for subregions of the plane with fixed
boundary. We refer to the survey articles by Bern and Eppstein
[BE92] and Zamfirescu [Zam13]. Some approaches create Delau-
nay Triangulations for planar regions, which give various forms of
optimal regularity for a given vertex set [CDS12]. However Delau-
nay Triangulations can produce triangles with small angles.

In some settings acute triangulations can be realized. Work of
Burago and Zalgaller shows that any polyhedral surface has a sub-
division that is acute [BZ60] (see also [Sar09], [HUO7]). Colin de
Verdiere and A. Marin showed that any smooth Riemannian sur-
face admits a sequence of geodesic triangulations with vertices
on the surface and angles that, in the limit, lie in the intervals
[31/10,2m/5] for the case of genus zero, [t/3,7/3] for genus one,
and [2m/7,5m/14] for the case of genus greater than one [dVM90].
By Gauss-Bonnet, these bounds are optimal for smooth surfaces.
Their results use the Uniformization Theorem and constructing
triangulations on an appropriate conformal model in the Moduli
Space associated to the surface. We are not aware of algorithms
based on these approaches.

3. Dimension two

In this section we explain the idea behind the GradNormal al-
gorithm in the simpler setting of curves in the plane. The 3-
dimensional setting will be presented in the next section. The planar
algorithm takes as input an implicit curve given by a function f :
R? — R with domain containing the unit square > = [0,1] x [0, 1]
and outputs a piece-wise linear curve that approximates the level
curve F = f~!(0) within the unit square.

Step 1 (lower-dimensional analog of producing the MidNormal
mesh): A neighborhood of the unit square is tiled by triangles.
The algorithm evaluates the function f on a triangle’s vertices and
checks if all function values have the same sign. If not then it takes
midpoints of two edges with endpoints of opposites signs and con-
nect them by a straight line segment. This becomes an edge of the
resulting polygonal curve o as in Figure 7.

oL
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Figure 7: In the planar version of the MidNormal mesh, a curve
F passing through three triangles is approximated by a polygo-
nal “normal” curve o, which passes through midpoints of triangle
edges.

Note that in contrast to Marching Tetrahedra in this dimension,
the vertices are not interpolated along the edge, but are always taken
at midpoints. See Figure 8.

-/ + —

Figure 8: In the planar version of the Marching Tetrahedra mesh,
the curve F is approximated by a polygonal curve B that meets
triangle edges where the curve does.

Step 2 (lower-dimensional analog of the projection step of Grad-
Normal): Each vertex v € o is projected to the closest point on the
isocurve F' to give a polygonal curve approximating F that has ver-
tices on F. For differentiable functions f, GradNormal computes
the gradient V f of the function f at vertices of the polygonal curve
v and uses a first order method to estimate the closest point. This
takes a vertex vto v =v— f(v)V.f/||V f||%, with 7 a vertex of the fi-
nal mesh. Alternate methods to find the closest point are used when
the gradient function is not available. See Figure 9.

Figure 9: In the second step of the GradNormal algorithm, each
vertex of Q. is projected to the closest point on the level curve, re-
sulting in the polygonal curve Y.

Step 3: The 3-dimensional version of the GradNormal algorithm re-
quires an additional operation to achieve the claimed angle bounds.
After the projection step, small angles can appear in one particu-
lar configuration. The corrective operation involves removing four
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triangles meeting at a valence four vertex and adding a diagonal to
the resulting quadrilateral, as in Figure 10.

Figure 10: Poor angles are eliminated by removing the four edges
meeting each valence four vertex (as in the outlined quadrilateral
in (a)) and adding a diagonal to the resulting quadrilateral (see

(b)).

The GradNormal algorithm has a superficial resemblance to the
Dual Contouring Algorithm, where every edge intersecting the iso-
curve gives an edge of the final mesh and every cell intersected by
the curve gives a vertex, Figure 11 [AFOS5]. But there is little actual
overlap between them.

Figure 11: In the Dual Contouring Algorithm, the curve F is ap-
proximated by a polygonal curve & whose normals agree with those
of F along intersections with triangle edges.

4. The GradNormal Algorithm

In this section we describe in detail the two steps of the GradNor-
mal Algorithm. We first describe the tiling by tetrahedra used to
generate the intermediate mesh in Step 1 of the algorithm. We then
describe the projection used to obtain the finial mesh.

4.1. Goldberg tetrahedra

The classification of tilings of R’ by tetrahedra is still not com-
pletely understood. An interesting historical note is that Aristotle
falsely claimed that regular tetrahedra can meet five-to-an-edge and
fit together to tile space [Sen81]. In fact, the dihedral angle of a
regular tetrahedron is somewhat less than 27t/5 = 72°, so they do
not fit evenly around an edge. The search for tetrahedra that do
fit together led Sommerville to find four tetrahedral shapes that tile
R. Baumgartner found a further example and Goldberg discovered
three infinite families. Eppstein, Sullivan and Ungor constructed
tilings of space by acute tetrahedra, with all dihedral angles less
than 90° [ESUO04]. It might seem that tetrahedra that are acute, or
as close to regular as possible, are preferable for producing regu-
lar triangulations, but that turns out not to be the case. A search
through the infinite family of tilings discovered by Goldberg was
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carried out and led to the tiling that gives the best mesh angles for
our method.

A tetrahedron in the Goldberg family, shown in Figure 6, is con-
structed by first tiling the xy-plane with equilateral triangles of unit
length. Three edges of the tetrahedron are graphs over edges of one
of these equilateral triangles, each rising by a distance of a from
its initial to its final vertex. The other edges connect pairs of the
resulting four vertices. The vertical edge AB has length 3a. If we
rescale by a factor of e then the equilateral triangle has edge length
e and the edge AB has length 3ae. We call this tetrahedron Tse.
Every Goldberg tetrahedron has two edges with dihedral angle /2
and one with dihedral angle ©t/3. In our application, e determines
the size of the tetrahedron and we take a = ev/2/4. This choice
of a optimizes the resulting mesh angles among those obtained by
Goldberg tetrahedra, and can be proved to give a near optimal mesh
when our method is applied to any tetrahedral shape. The result-
ing tetrahedron shape coincides with a tiling described by Som-
merville [Som23] and has vertices located along the body-centered
cubic lattice.

4.2. Step 1 of the GradNormal Algorithm

Algorithm 1 Step 1 of the GradNormal Algorithm - the MidNor-
mal Procedure

1: procedure MIDNORMAL(e)

2: Input a function f : P — R, a choice of scale e = 1/N.

3: for i =11t0 6N* do

4: Compute the sign of f at the four vertices
‘E,-l ,‘c,-27‘c,'3 ,’t,-4 of tetrahedron t; in a tiling of the unit
cube I° by Goldberg tetrahedra isometric to T.. If the value of
f at a vertex is exactly zero, take the sign to be positive.

5: If the sign of f is different at one vertex of T; from the
sign at the remaining three vertices, add to a list of triangles
T the elementary normal triangle in t; that separates that ver-
tex from the remaining three. The vertices of this triangle are
located at midpoints of edges of 7;.

6: If the sign of f is different at two vertices from the
sign at the remaining two vertices of T;, add to 7 two trian-
gles formed by taking the normal quadrilateral in 7; that sep-
arates the two pairs of vertices and adding a diagonal as fol-
lows: For quadrilateral LMNQ add diagonal MN. For quadri-
lateral KM PN add diagonal MN. For quadrilateral KLPQ add
diagonal LQ. Again position the vertices of these triangles at
midpoints of edges of 7;. See Figure 6(a) for notation.

7: Output 7.

It is straightforward to compute the edge lengths and angles in
the triangular meshes obtained by applying the MidNormal pro-
cedure to the tetrahedral tilings of R produced by the Goldberg
tiling.

Lemma 4.1 The MidNormal mesh produced using the Goldberg
tiling is a 2-dimensional manifold mesh that has angles in the inter-
val [45°,90°].

Remark. When applied to a smooth compact implicit surface F =
£~ 1(0) that has an embedded e-tubular neighborhood Ne(F), or
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equivalently having reach €, and given a positive constant e < €/2,
the MidNormal algorithm produces a mesh M(f,e) satisfying

1. M(f,e) is an embedded 2-dimensional manifold.

2. The triangles around a given vertex are graphs over a common
plane.

3. The surface M(f,e) converges to F in Hausdorff distance as
e— 0.

4. The surface M(f,e) is isotopic to F in Ne(F).

5. The nearest neighbor projection from the mesh M(f,e) to F is
a homeomorphism for e sufficiently small.

The faces of the approximating meshes have normal vectors that
lie in a fixed finite set of 18 normal directions, and therefore the ap-
proximation is continuous, but not piecewise-differentiable. How-
ever the geometry of the approximating surfaces is uniformly bi-
Lipschitz equivalent to the limiting surface F.

4.3. The GradNormal algorithm: Steps 2 and 3

The second step of the GradNormal algorithm moves the vertices
of the MidNormal mesh so that they lie on the implicit surface F.
A vertex of the MidNormal mesh is moved to the closest point on
F'. This point is unique when F is differentiable and the mesh lies
sufficiently close to F'. The current implementation uses the gra-
dient of the function f defining F in this step. In the case of a
linear function it exactly projects each vertex to the nearest point
on F. In general it produces a first-order approximation of F, im-
proving the zeroth-order approximation given by the MidNormal
procedure. An alternative to using the gradient projection would be
to call a function that returns for each point the coordinates of the
nearest point on F.

Unfortunately the mesh resulting from the projection process can
have sliver triangles with arbitrarily small angles, so a corrective
step 3 is needed. An analysis of the badly behaving triangles shows
that they all result from a particular phenomenon that can be easily
corrected. We will show that small angles in the projected mesh can
only arise from projecting angles that lie in one of four triangles
that are adjacent in the MidNormal mesh to a vertex of valence
four. The GradNormal algorithm corrects this by removing any set
of four triangles that meet at a common valence-four vertex and
adding a diagonal to the resulting quadrilateral, as in Figure 10.

This valence-four vertex move will be shown to eliminate all
sliver triangles and to give a high quality mesh with the claimed
angle bounds of [35.2°,101.5°]. We now state the algorithm.

The proof of the resulting properties claimed in Theorem 1.1 is
rather lengthy, and is given in full in the Appendix. In this section
we sketch the general idea.

A smooth compact surface F has bounded curvature and as
e — 0, its intersection with a tetrahedron t(e) is closely approxi-
mated by a plane Q. This plane can be chosen to be the plane that
intersects the edges of the tetrahedron at the points where F inter-
sects these edges. Thus the angles of the nearest point projection
of an elementary normal disc in T of diameter less than e onto F
has angles that converge as e — 0 to the angles determined by the
nearest point projection onto the plane Q.

Algorithm 2 GradNormal Algorithm

1: procedure GRADNORMALC(e, f)
2: Input a differentiable function f : I* — R with level set
F = £~1(0) and a choice of scale e = 1/N.
3: Apply the MidNormal procedure with size parameter e to
obtain a mesh M(f,e).
4 Compute the gradient V f at the vertices of M(f,e).
5: Remove each vertex of valence 4 and its four adjacent trian-
gles. Add a diagonal to the resulting quadrilateral, giving two
new triangles in the mesh.
Relocate each vertex v to v— f(v)V.f/||V ]|
Output the resulting list of triangles 7.

B2

When the surface F separates vertices of a tetrahedron 7 it de-
fines elementary normal discs which are very close to flat triangles
or quadrilaterals. The MidNormal procedure produces a normal
surface that intersects a tetrahedron T along one of four triangles or
one of three quadrilaterals. Four triangles AKLM, AKNQ, ALNP
and AMPQ come from elementary triangles. The quadrilaterals
are divided into two triangles, leading to six additional triangles,
AKLQ and ALPQ, AKMN and AMNP, and ALMN and AMNQ.
We need to consider the angles obtained when these 10 triangles are
projected onto F', which as noted can be assumed to be a plane.

To capture all possible projections we consider all possible
planes that could represent F. We describe such a plane by its
unit normal vector, a point on the unit sphere. The space of such
planes is given by certain regions on the unit sphere. We prove that
the smallest angles of a projected triangle must happen along the
boundary of one of these spherical regions. Each boundary segment
is parameterized and its minimal angle values are evaluated. This
computation gives the desired angle bounds except for triangles that
meet a valence-four vertex. It is essential for the achievement of the
angle bounds to remove these triangles.

Altogether there are 12 triangles with 36 angles projecting to
four edges each, or 144 angle functions in total, each defined on an
interval of normal directions connecting two points on the sphere
along a spherical arc. The union of all these angle functions is
graphed in Figure 18. Computations carried out in Mathematica
show that all angles are between 35.25° and 101.45°.

Vertices of valence-four come from an intersection with an edge
of type AD in a Goldberg tetrahedron, as shown in Figure 6. This
edge has a dihedral angle of 90° in each of the four adjacent tetra-
hedra, and the four adjacent tetrahedra combine to form an octa-
hedron as in Figure 12. The removal of triangles meeting vertices
of valence-four and their replacement by two triangles gotten by
adding a diagonal improves the angle bounds of the resulting trian-
gles to lie between 35.25° and 101.45°.

The nearest point projection from mesh M(f,e) to F is a home-
omorphism for e sufficiently small. When f is linear, the projected
triangle is contained in F, and gives a C ! approximation for e suffi-
ciently small. In the argument above, the angle bounds established
for F' a plane also hold for e sufficiently small, since ' N7 con-
verges smoothly to the intersection of a plane with T as e — 0.
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5. Remarks
5.1. Other Surface Descriptors

The GradNormal algorithm takes as input an implicit surface, given
as a level set of a function on R®, but is amenable to other forms
of surface input. For example, if the input is a triangulated sur-
face F having poor mesh quality, then there exist procedures to
produce a function on R® that computes distance from the sur-
face. Such signed distance functions have been extensively stud-
ied [Sym98,PT92]. If the input describing a surface is a point cloud,
methods such as the Moving Least Squares and Adaptive Moving
Least Squares produce a function giving a level set description of
the surface [Dey06,SOS04]. This function can then be used as input
to the GradNormal algorithm.

5.2. Convergence and curvature

When we have bounds on the principle curvatures of F we can get
angle bounds on the mesh for a given value of e. We investigate
these bounds here, as they are relevant to whether the GradNormal
algorithm can be used effectively. The bounds of Theorem 1.1 are
guaranteed to apply as the scale size e — 0. To test them at a given
size, we can fix ¢ = 1 and consider how the angle bounds on the
mesh are affected by curvature bounds on the surface F. Though
this can be done rigorously, we present here some experimental re-
sults obtained as a preliminary step. These give some preliminary
evidence that the GradNormal algorithm is fast in practice and con-
verges at reasonable scale.

We set e = 1 and consider the angles attained by a mesh approx-
imating a surface F' whose principle curvatures are bounded above
in absolute value by a constant ky. We estimate these angles by
modeling F' with a sphere. Since spheres of the appropriate radius
have maximal principal curvatures and since they realize all tan-
gent directions, this gives a reasonable approach to modeling the
worst case for an angle bound. We obtain in this way experimental
bounds for the angles obtained in the GradNormal algorithm. In Ta-
ble 1 the result of applying the GradNormal algorithm to surfaces of
genus zero (sphere), genus two and genus five. These surfaces are
scaled to exhibit the effect of varying curvature on the quality of
the output mesh. Computations at four different scales were carried
out for each surface on a 2014 MacBook Pro. The number of tetra-
hedra used to tile the cube in the four runs was 113,100, 869,652,
6,748,416 and 52,931,340. Each run took at most 1,141 seconds
on a 2014 MacBook Pro with a 2.5 GHz Quad-Core Intel Core i7.
After rescaling to fix the size of the tetrahedra, the principle curva-
tures of the implicit surfaces are bounded above by ks, shown in
the second column. The following columns show the minimum 6,,
and maximum angles in the resulting mesh 6y, .

5.3. Running time

The GradNormal algorithm as implemented runs in linear time in
the number of tetrahedra used in the 3-dimensional tiling. This fol-
lows from the same arguments used to establish this bound for
Marching Cubes [Wen13]. There are no point insertion or remesh-
ing steps, other than a single round involving valence four vertex
removal in Step 3. While the python code in the implementation

(© 2020 The Author(s)
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Genus | ky Om Oy vertices faces
0.23 | 33.0° | 102.8° 1,082 1,988
0 0.09 | 34.2° | 101.3° 6,782 12,564
0.05 | 35.4° | 102.7° 27,104 50,300
0.03 | 35.2° | 101.1° | 433,208 | 866,412
0.57 | 10.9° | 153.8° 1,336 2,540
2 0.29 | 22.2° | 129.0° 5,438 10,306
0.15 | 27.8° | 118.8° 21,880 41,600
0.08 | 31.7° | 108.9° 87,802 | 166,898
0.8 26.6° | 122.0° 7,318 14,652
5 0.4 29.2° | 113.4° 29,348 55,122
0.2 30.8° | 109.4° | 117,878 | 235,772
0.1 33.4° | 104.4° | 471,696 | 943,408

Table 1: A tetrahedral tiling with scale given by e = 1 is inter-
sected with surfaces whose principle curvatures are bounded above
by ky. The Om and ©yp columns show the minimal and maximal
mesh angles. The vertex and face columns indicate the number of
vertices and faces in the mesh. As ky — O the surface becomes
flatter, and the angles converge to lie within the predicted interval
[35.2°,101.5°].

has not yet been optimized for speed, the code that produced the
genus-two surface in Figure 2 ran in 15.8 seconds on a 2014 Mac-
Book Pro.

5.4. Computational Methodology

The proof of Theorem 1.1 involves extensive angle computations
with trigonometric functions. These were carried out with the soft-
ware package Mathematica 12. The GradNormal Algorithm has
been implemented in Python. Files are available at [HT19]. The val-
ues obtained for the angle bounds depend on the accuracy of Math-
ematica floating point functions. It is possible to calculate these
bounds using interval arithmetic, but this has not yet been done.

6. Conclusion

We present a novel algorithm for meshing an isosurface. The main
advantages include simplicity of the algorithm, fast running time,
low space usage and guaranteed triangles of high quality when ap-
plied to a smooth surface. Experiments with surfaces defined by
simple mathematical functions indicate that the resulting mesh has
reasonable angle bounds even with a coarse tetrahedral tiling, and
that the guaranteed limiting angle bounds of [35.2°,101.5°] for
meshes approximating smooth surfaces are approached using prac-
tical sized tilings of space. A drawback of the GradNormal algo-
rithm, as with other methods based on regular meshes, is that it is
not adapted to local surface features. In particular, sharp features,
angles and corners may not be captured by the procedure, and the
guaranteed angle bounds do not apply when GradNormal is applied
to non-smooth surfaces.
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7. Appendix A.

In this Appendix we present the details of the proof of Theorem 1.1.
We first state a result on the distortion of angles under projections
to a rotated plane.

Lemma 7.1 Suppose that v = (vq,1),v; > 0 is a vector in the first
quadrant of the xy-plane and that w = (w1, w;) # 0 and subtends an
angle o <  with V. Rotate the xy-plane around the x-axis through
an angle of 6, 0 < 8 < 7t/2 and denote the orthogonal projections
of the rotated vectors ¥, w back to the xy-plane by ¥(0)), w(8). Then
as 0 increases from O to /2 the angle a/(8) between ¥(0) and w(8)
satisfies:

(1) If w is parallel to the positive x-axis or to the negative y-axis
then o(0) is monotonically decreasing.

(2) If w is parallel to the negative x-axis or to the positive y-axis
then o(0) is monotonically increasing.

(3) If w lies in the interior of the second quadrant then () is
monotonically increasing.

(4) If w lies in the interior of the fourth quadrant then o(8) is mono-
tonically decreasing.

(5) If w lies in the interior of the first quadrant then () achieves
its minimum at an endpoint of the interval [0,7/2].

(6) If w lies in the interior of the third quadrant then c(0) achieves
its maximum at an endpoint of the interval [0,7/2].

Proof Rotation about the x-axis through an angle of 0 takes the
point (x,y,0) to (x,ycos8,ysin®). Thus ¥(6) = (v;,cos0) and
w(0) = (w1, wycosB). The angle between each vector and the x-
axis is decreasing with 0, implying the claims in Cases (1) — (4).
The last two cases needs a more detailed investigation. In Case (5)
each of wy,wy is positive, and we can assume that wy = 1 by scal-
ing. The angle o.(8) between ¥(0) and w(0) satisfies

viwy + cos>®
V12 +cos20)y/ (w12 +cos28)

cosa(0) =
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For given vectors v and w the cosine of () has first derivative

inOcosO(v; — wl)z(vlwl — cos? 0)
cosa(0)) = s
( ©)) (v +cos20)3/2(w? +cos? 0)3/2

A computation shows that the critical points of cos a(0) lie either at
the boundary of the interval [0,7/2], or in the case where viw; < 1,
at an interior point where 6 = arccos /viwj. A further computation
shows that the second derivative at the interior critical point is pos-
itive, so there is no interior local maximum. Thus the cosine of o is
maximized at the endpoints of 8 € [0,7t/2], implying that the angle
0.(0) is minimized at one of these two endpoints.

For Case (6), where the angle between ¥ and w is greater than 7t/2,
we note that this angle is complementary to that between vV and
—w, which was studied in Case (5). Thus a maximum in this case
coincides with a minimum in Case (5), and this again occurs at an
endpoint of the interval as claimed. []

Corollary 7.1 Suppose two vectors in R are orthogonally pro-
jected to a family of rotated planes that begins with the plane con-
taining them and contains planes rotated about a line through an
angle of at most ©/2. If the vectors subtend an angle smaller or
equal to 7t/2 then the minimum angle between the projected edges
occurs at either the initial or final projection. If they subtend an an-
gle greater than 7/2 then the maximum angle between the projected
edges occurs at either the initial or final projection.

Let M(f,e) be the mesh produced by the MidNormal procedure
and M'(f,e) a projection of M(f,e) along gradient vectors of f
towards the surface F as in the GradNormal algorithm. Since F is
smooth and compact it has bounded curvature and as e — 0, its in-
tersection with a tetrahedron 7 is increasingly closely approximated
by the plane that intersects the edges of the tetrahedron at points
where F intersects these edges. When the surface F separates the
vertices of T so as to define an elementary normal disk £, then the
plane Q separating the same vertices and intersection the edges of
7T at points where F intersects these edges smoothly converges to F'
on a neighborhood of 7 of radius e. Thus the angles of the nearest
point projection of an elementary normal triangle in T of diameter
less than e onto F' gives angles that converge as e — 0 to the angles
determined by the nearest point projection onto the plane Q.

We note that in the GradNormal projection we do not project
vertices onto the surface F', but rather onto the plane where F would
be if f was a linear function. This plane smoothly converges to F'
in a neighborhood of T, as ¢ — 0. We conclude that in computing
the angles of a projection of an elementary normal triangle in T,
whose three points have been projected to F, we can assume, with
arbitrarily small error as e — 0, that F is a plane that separates the
vertices of T in the same way as the normal surface F.

We now classify the various cases of how a plane F can intersect
a tetrahedron 7. There are four cases where F N7 is a triangle and
three where it is a quadrilateral that is divided into two triangles
along a diagonal. A special case occurs when four adjacent tetra-
hedra meet along an edge of valence four and produce a rhombus
which is then divided into two triangles. Counting cases, we see that
there are altogether 12 triangles and 36 angles that can be projected
onto some plane. Due to symmetry, some of these are equivalent.
The case of a valence-four vertex in M(f,e) includes two triangle
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shapes up to isometry, and requires special treatment and we con-
sider it first because it affects projections of the remaining cases.
Valence-four come from an intersection with an edge of type AD in
a Goldberg tetrahedron, as in Figure 6.

We now consider the valence-four vertices. A vertex of valence-
four appears in the mesh M(f,e) when four elementary normal tri-
angles meet the edge AD at its midpoint M. This edge has a dihedral
angle of 90° in each of the four adjacent tetrahedra, and the four
adjacent tetrahedra combine to form an octahedron as in Figure 12.

Ko

Figure 12: Four adjacent tetrahedra meet along AD, forming an
octahedron. The mesh surface meets this octahedron in four trian-
gles, with a common valence-four vertex at M.

We consider first the case where F' is a plane that intersects the
octahedron separating vertex A from vertices B,C,D. We denote
by X the closure of the set of unit vectors perpendicular to such
planes, oriented to point towards A. We denote by Y the subset of
X consisting of normals to planes separating vertex A from vertices
B,C,D,B;,C,. We want to study angle bounds of projected trian-
gles described by the set Y after a valence-four vertex has been re-
moved and a new edge have been inserted in the remaining quadri-
lateral.

For a plane separating vertex A from vertices B,C,D, B, C,, the
induced mesh has a valence-four vertex where it intersects edge
AD. The GradNormal algorithm removes the four triangles adja-
cent to the edge AD: AKLM, AKL;M, AK,LM and AK>LyM.
Note that the four vertices B,C, By,C, are coplanar, since there is a
reflection through M preserving the octahedron and interchanging
A and D, B and B;, and C and C,. These four triangles form a pyra-
mid MKLK,L, whose base is a flat thombus parallel to rhombus
BCB>C,. For a = ey/2 /4, the thombus is a square that realizes di-
hedral angles of 45° with the faces ABC, ABC», AB,C and AB,C,
of the octahedron, as indicated in Figure 12. We now analyze the
location of the set Y in the unit sphere.

Claim 7.1 Suppose F is a plane separating vertex A from vertices
B,C,D,B;,C;. Then the unit normal vector of the plane F lies in
the interior of a spherical quadrilateral ¥ C X. The vertices of Y are
normal to the faces ABC, ABC,, AB,C and AB,C;.

Proof The set of planes with these separation properties is a sub-
set of the 3-dimensional set of planes in R®, and their unit normal
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vectors Y form a 2-dimensional subset of the unit sphere. If a plane
with normal vector in ¥ does not meet a vertex of the octahedron
then it is in the interior of an open disk contained in Y, since it can
be rotated in any direction while remaining in Y. The same is true
for planes that meet only one vertex of the octahedron, since they
too can be rotated in all directions while still passing through only
this vertex. Planes in Y meeting two vertices of the octahedron can
be rotated only in one circular direction, and lie along a geodesic
arc on the 2-sphere that forms part of dY. Planes that meet three
or more vertices of the octahedron cannot be rotated while main-
taining their intersection with these points, and thus form vertices
of Y. To understand Y we consider which planes separating vertex
A from vertices B,C, D, B;,C, meet three or more vertices, giving
a vertex of dY on the unit sphere, or meet two vertices, giving an
edge of 9Y.

Figure 13: The spherical quadrilateral Y indicates normal direc-
tions to planes that separate vertex A from vertices B,C,D,B;,C,.

Moreover any plane separating A from B,C,D,B;,C, can be dis-
placed through parallel planes towards A till it contains A. It fol-
lows that the vertices of Y are determined by triples of vertices that
include A and are limits of planes with the right separation prop-
erty. These are given by normals 7iapc,7iaBc, Vecnap,c:fiAB,c, tO
the faces ABC, ABC;, AB,C and AB, (5, each of which gives a ver-
tex of dY. These four points on the unit sphere are vertices of a
spherical quadrilateral forming Y. All planes that separate vertex
A from the other vertices of the octahedron with normal pointing
towards A have unit normal vectors lying inside Y. See Figure 13.

O

In the GradNormal algorithm we replace the four triangles adja-
cent to edge AD with the thombus BCB, (5, divided into two trian-
gles along a diagonal. We need to estimate the angles of these two
triangles after they are projected onto a plane F with normal in the
spherical quadrilateral Y. Lemma 7.1 implies that the largest and
smallest angles among projections of the thombus KLK>L, onto F'
occur either in the thombus KLK, L itself or at a plane whose nor-
mal lies in dY. This rhombus is a square and a diagonal divides it
into a pair of 45°,45°,90° triangles.

We project these two triangles onto planes with normals on 9Y .
The rthombus KLK5L, projects to a parallelogram, so the two tri-
angles project to congruent triangles, and it suffices to consider the
angles of one, say KLK>. We investigate what angles result from
projecting triangle KLK; onto a plane normal to dY. Each point in
an arc of dY is normal to a plane obtained by rotating one face of

the octahedron to another through an edge containing A. One set
of angles results from projecting each of the three angles of tri-
angle KLK; to planes determined by the spherical arc from 7iapc,
to 7iap,c,. We parameterize an arc of normal vectors V() passing
from ¥(0) = fiapc, to V(1) = fiap,c, and compute the angles result-
ing from projecting triangle KLK> to planes normal to ¥(¢). These
angles are then given by a collection of functions of a parameter
t € [0, 1]. The three angle functions from triangle KLK, are plotted
in Figure 14. The absolute minimum of the three angle functions
on this arc of Y is & 35.3004° > 35.25°, and the absolute maxi-
mum is &~ 101.445° < 101.45°. We then do a similar computation
for each of the other arcs on dY . Figure 15 shows the angles result-
ing from projecting AKLK, onto the boundary arc of ¥ running
between 7ispc and 7iapc,. Again each curve lies above 35.25° and
below 101.45°, showing that all projected angles are between these
two bounds. The remaining two boundary arcs give the same angle
functions, due to a symmetry of the octahedron.
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Figure 14: (a) Angles of AKLK, after projection onto the bound-
ary arc from figpc 10 Tiap,c of 9Y, parametrized by t € [0,1]. De-
tailed views of these graphs near (b) t =0 and (c) t = 0.5 indicate
that each curve lies above 35.25° and below 101.45°.
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Figure 15: Angles of AKLK, after projection onto the boundary
arc from iapc 10 fiapc, of OY. Again each curve lies above 35.25°
and below 101.45°.

We conclude that all projections of the triangles obtained from
the diagonally divided rhombus in the GradNormal algorithm have
angles between 35.25° and 101.45°.

There is a symmetric case involving a rhombus where F is
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a plane that separates vertex D from A,B,C. A symmetry inter-
changes A and D, and it follows that this case gives the same angle
bounds.

There are 10 remaining cases to consider for projecting along a
gradient besides the valence-four case considered above. Four of
them involve angles obtained by projecting triangles AKLM and
AKNQ with edge lengths (b/2,b/2,¢/2), and ALNP and AMPQ
with edge lengths (3a/2,b/2,¢/2). Six remaining cases involve
quadrilaterals divided into pairs of triangles: KLPQ is divided into
triangles KLQ and LPQ, KMPN is divided triangles KMN and
MNP, and LMNQ is divided into triangles LMN and MNQ. Pro-
jections of each of these follows the same procedure therefore we
describe it here only for one of the triangles, AKLM.

We compute the smallest angle that can occur from a projection
of AKLM onto a plane F that cuts off vertex A from the other
vertices of the tetrahedron, and for which AKLM is an elementary
normal disk. The closure of the set of possible unit normal vectors
for the plane F, oriented to point towards A, belongs to a spherical
triangle 7. Vertices of T are unit normal vectors 7iggc,fiagp, iacD
to the faces ABC, ACD and ABD.

We compute the minimal and the maximal angles that can occur
from a projection of AKLM onto a plane F that cuts off vertex A
from the other vertices of the tetrahedron, and for which AKLM
is an elementary normal disk. The closure of the set of possible
unit normal vectors for the plane F, oriented to point towards A,
belongs to a spherical triangle 7. Vertices of 7' are unit normal
vectors #iagc, HABD, iacp to the faces ABC, ACD and ABD.

The dihedral angles between AKLM and its three adjacent faces
are either 60° or 90°, and F can be nearly parallel to one of these
faces. A projection of AKLM to a nearly perpendicular plane can
return a triangle with angles close to 0 or T, giving very poor angle
bounds. Fortunately, the elimination of valence-four vertices in the
GradNormal algorithm resolves this problem.

If the plane F' is almost parallel to the face ABC and thus nearly
perpendicular to AKLM, then F cuts off the vertex A from the other
vertices of octahedron ABCDB,C,. This case results in a valence-
four vertex in the MidNormal mesh. The GradNormal algorithm re-
moves the vertex M in this case and thus avoids projecting AKLM
to a near perpendicular plane. The same will apply for planes with
normals in a neighborhood of the vertex 7iggc of T. We now in-
vestigate exactly how T is truncated in the unit sphere when we
eliminate planes for which MidNormal leads to valence-four ver-
tices at M

Call a plane allowable if it separates vertex A from vertices
B,C,D. Denote by X the closure of the set of unit normal vectors
to allowable planes, oriented to point towards A. Then X forms a
spherical triangle in the unit sphere with vertices 7igpc, iapp, HacD-
Inside X is a subset Y C X corresponding to normals of allowable
planes that separate A from the vertices By, C, of the octahedron.
All normals to planes for which MidNormal gives valence-four ver-
tices at M are in Y, but some of these are also normal to planes that
lead to higher valence vertices at M. This leads us to define another
subset Z C Y whose points are in the closure of normals v with the
property that if the normal to an allowable plane is in Z, then any
parallel allowable plane separates A from vertices B,C,D,B,,C;. It
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can be seen from Figure 12 that a neighborhood of 7igpc in X lies
in Z, so this set is non-empty. We now determine the precise shapes
of Y and Z C Y on the sphere, determining the configuration shown
in Figure 16.

We first consider what points lie in Y. Planes normal to vectors in
Y can be moved to a parallel allowable plane that separates A from
vertices By,C,, B,C, D. Any such plane can be pushed through par-
allel planes in Y towards A, until it hits A, since it separates A from
the other five vertices. The boundary of the set of such planes con-
taining A is a spherical quadrilateral with vertices corresponding to
the normals to the four faces of the octahedron meeting A, namely
ﬁABCz , ﬁABzCz = ﬁBCD’ ﬁACBz y ﬁAgc. Then Y consists of pOil’ltS inside
the spherical quadrilateral with these four vertices, a subset of the
spherical triangle X.

Next we consider what points lie in Z. An allowable plane nor-
mal to a vector in Z must separate A from By, C,, B,C, D. This plane
can be pushed away from A through parallel planes until it first hits
one or more of the other five vertices. It cannot first hit D, as no
allowable plane through D separates A from B;,C5,B,C.

This set of vertices that it hits must include some subset of B,C
since if it hits only one or both of B;,(, then a parallel plane in
Xwould not separate A from vertices By,C,,B,C,D and thus its
normal would not lie in Z. We consider which sets of three or more
vertices may be reached by planes in Z when these planes are trans-
lated away from A through parallel planes. These form some of
the vertices of the spherical polygon Z. Note that the four vertices
B,,C,, B, C are coplanar, and form one plane defining a vertex of Z.
Thus this is the only vertex hit by pushing a plane in Z away from
A. Other vertices are found by planes in Z that contain A and two or
more additional vertices, giving vertices of Z at 7iiapc, fiapc,» iAB,C
(but not 7igp,c,, a neighborhood of which lies in ¥ — Z). The re-
sulting region Z C Y is shown in Figure 16. It is the interior of the
spherical quadrilateral formed by spherical geodesic arcs joining
the four vertices 7igpc, ﬁABCZ’ ﬁABzC’ ﬁBCBzCz'

Figure 16: The spherical triangle X consists of normals to planes
separating vertex A from vertices B,C,D. The region Y C X consists
of directions for which at least one normal plane gives a vertex of
valence-four at M. The region Z C Y consists of directions where
all normal planes in X give a a vertex of valence-four at M.

The region X — Z is a spherical quadrilateral, since the vertices
7iABC,» BCB,C, and iiap,c lie on a single spherical geodesic. This
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holds for all a and follows from the fact that lines BC; and B,C are
parallel to a line of intersection of planes ABC, and AB,C. There-
fore unit normal vectors for planes BCB,C,, ABC, and AB,C are
coplanar. Moreover X — Z is contained in a hemisphere, since all
vectors in X have positive inner product with A.

Each vertex of the spherical quadrilateral X — Z has distance at
most 7t/2 from gz, as seen by computing dihedral angles of the
faces of the tetrahedron T. The maximum distance of a bound-
ary point from rigcp occurs at a vertex of X — Z, since X —Z
is a spherical polyhedron contained in a hemisphere. It follows
that each boundary point of X — Z has distance at most 7/2 from
fikem = figry- Corollary 7.1 implies that extreme angles for the
projection of AKLM in the GradNormal algorithm are realized ei-
ther by the triangle itself or by a projection to a plane with normal
vector lying on one of the boundary edges of X — Z. There are three
angles for AKLM and four boundary edges of X — Z determining
planes onto which they can project. The three angle functions given
by AKLM when projected onto the arc from 7igcp to 7igp,c are
shown in Figure 17, as are angles along each of the other three arcs
of (X —Z).

(a) (b)

d
(c) @

Figure 17: Angles of AKLM after projection onto an arc of (X —
Z) running from (a) fiacp to Tiap,c, (b) fipcp 10 fiap,c, (¢) Hiapp
to figcp, and (d) fiapp to fiapc,. Graphs repeat due to symmetries.
Again all angles are in [35.25°, 101.45°].

We now consider projections of triangles after the removal of
valence-four vertex.

Triangles AKNQ, ALNP and AMPQ, as well as the triangles
coming from dividing elementary quadrilaterals along a diagonal,
all give rise to similar angle functions for each edge of a corre-
sponding quadrilateral spherical region. Altogether there are 12 tri-
angles with 36 angles projecting to four edges each, or 144 an-
gle functions in total, each defined on an interval of normal direc-
tions connecting two points on the sphere along a spherical arc. The
union of all these angle functions is graphed in Figure 18.

This completes the proof of Theorem 1.1.

degrees

100 |

90

80

70+

60

50

4L

0.2 0.4 0.6 0.8 1.0

Figure 18: Angles of all triangles in the GradNormal mesh are
bounded above and below by the maximum and minimum values
obtained in these graphs. A total of 144 angles are graphed over the
boundary of spherical regions to produce these functions. Because
of symmetries and coinciding functions, there are only 12 distinct
graphs resulting from these 144 angles. All curves lie above 35.25°
and below 101.45°,
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