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Figure 1: Neural denoisers for Monte Carlo path tracing provide impressive reconstruction from low sample counts. However, in challenging
scenarios, with significant noise in both shading and visibility, denoisers working on accumulated pixel values sometimes struggle. Our
layered denoiser improves image quality over per-pixel denoisers at a fraction of the computational cost of a per-sample denoiser.

Abstract

We propose a novel approach for denoising Monte Carlo path traced images, which uses data from individual samples rather
than relying on pixel aggregates. Samples are partitioned into layers, which are filtered separately, giving the network more
freedom to handle outliers and complex visibility. Finally the layers are composited front-to-back using alpha blending. The
system is trained end-to-end, with learned layer partitioning, filter kernels, and compositing. We obtain similar image quality
as recent state-of-the-art sample based denoisers at a fraction of the computational cost and memory requirements.

CCS Concepts

e Computing methodologies — Ray tracing; Neural networks;

1. Introduction

Monte Carlo (MC) path tracing is a rendering technique to ac-
curately simulate light transport in computer graphics, by tracing
multiple ray paths, here denoted samples, within each pixel. For
a noise-free radiance estimate, 10k—100k samples per pixel (spp)
are not uncommon, depending on the complexity of the scene and
lighting configuration. To remove residual noise from this stochas-
tic rendering process, a common technique is to filter, or denoise,
the image, by gathering samples in a spatial neighborhood around
each pixel, often with edge-preserving filter kernels. This process
introduces some bias but can reduce residual noise to acceptable
levels, even from low sample counts, e.g., 8-64 spp. Denoising
is most often applied to the accumulated pixel values, but recent
work shows that by denoising from individual samples, reconstruc-
tion quality can be improved, but at an increased computational
cost [GLA*19].
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In this article, we evaluate the benefits of using per-sample in-
formation over pixel aggregates in a machine learning denoiser for
Monte Carlo (MC) path tracing. We are seeking compact repre-
sentations to capture the information discovered by individual path
samples. There are two extremes: either keeping all individual sam-
ples or compressing them to a single value, e.g., the mean, or mo-
ments (e.g. mean and variance). We carefully analyze and evaluate
the quality differences of these approaches within a single frame-
work. In our evaluation, the per-sample denoiser is more robust
against high intensity outliers, but the quality differences are subtle.

Per-sample denoisers come with high computational costs; de-
noising times are measured in seconds or minutes. Both runtime
performance and memory scale linearly with sample count. The
main computational cost stems from the fact that the network need
to produce kernel weights and apply a large kernel for each sample
in each pixel. Paradoxically, this means that resource consumption
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grows as input quality increases, even though the denoising task
becomes easier with higher-quality input. This somewhat limits
usefulness as per-sample denoisers are too expensive for real-time
rendering, and may not scale up to the sample counts required for
photo-realistic production rendering. In this work, we strive to ex-
tract a compact representation of per-sample information. We take
data-driven approach, and let a neural network learn this represen-
tation. We constrain the denoiser to use a fixed number of partitions,
that we denote layers. This results in a middle ground: a practical
denoiser that strikes a good trade-off between cost and quality.

We propose a novel architecture that learns to partition samples
into layers, learns unique kernels weights for each pixel in each
layer, and learns how to composite the filtered layers. This gives
us similar benefits of a recent per-sample denoising architecture of
Gharbi et al. [GLA*19], but with considerably better performance
characteristics. The partitioning of samples into layers provides ad-
ditional flexibility for the network to robustly handle outliers/fire-
flies and cases with complex primary visibility, including defocus
blur and motion blur. Furthermore, it gives us an efficient way to
control performance and memory characteristics, as our algorithm
scales with the number of layers rather than the number of samples.
In our evaluation, we note that two layers are sufficient to get most
of the benefits of a per-sample denoiser. Additionally, we design an
efficient, pruned, denoiser that runs at interactive rates while pro-
ducing image quality similar to the larger networks.

The main contributions of this work are:

e Robust denoising by exploiting sample information from the ren-
derer instead of only pixel aggregates.

e A novel layered denoising architecture with learned layer parti-
tions, filters and alpha compositing.

e An analysis of different layer partitioning strategies.

e Significant runtime performance improvements over previous
sample-based denoisers.

2. Previous Work

There has been substantial recent progress in denoising for offline
rendering. A great overview is available in the survey from Zwicker
et al. [ZIL*15]. Below, we will mainly discuss machine learning
(ML) denoising techniques. Recent ML denoisers use large convo-
lutional neural networks (CNN) to reconstruct noisy Monte Carlo
renderings with the help from additional feature guides (surface
normals, depth, albedo, ...). Xu et al. [XZW*19] use feature guides
combined with an adversarial loss function to retain more high-
frequency details. Wong and Wong [WW19] let a deep residual
network directly predict the denoised colors.

Several recent denoisers let the network predict unique fil-
ter kernels per pixel, for single frames [BVM™*17] or time se-
quences [VRM* 18], by running the network in parallel over multi-
ple frames. The learned kernels are applied to filter the noisy input
as a gather operation. In contrast, Gharbi et al. [GLA*19] apply
kernels as a splatting operation of pixel aggregates or individual
samples onto the framebuffer. Leimkuhler et al. [LSR18] use Lapla-
cian kernel splatting to reconstruct defocus and motion blur.

Kernel prediction (KP) improves robustness, as the same fil-
ter weights are applied to the each color channel (reduced color

shifts), and it constrains the filtered output to be a linear combina-
tion of the input samples. It has also been successfully applied to
denoise bursts of camera images [MBC™* 18] and video interpola-
tion [NML17b, NML17a].

We are primarily inspired by the recent work of Gharbi
et al. [GLA™19] who apply kernel based denoising using CNNs on
individual samples, typically working with 8-32 samples per pixel.
They learn sample embeddings, process the (pixel-averaged) em-
beddings by U-nets [RFB15], combine them with per sample data
to generate filter weights, and finally splat large per-sample ker-
nels onto the framebuffer. They show high quality results on still
images, albeit at a high computational cost with denoising times
measured in seconds or minutes. Similarly, memory requirements
are substantial with 74 scalar features per rendered sample. Both
performance and memory scales linearly with sample count. The
algorithm is too expensive for real-time rendering, while it may not
scale up to the sample counts required for production rendering. In
this work, we adapt a layered architecture to design an efficient de-
noiser with near real-time performance, while retaining most bene-
fits of per-sample denoisers.

The machine learning reconstruction approaches for Monte
Carlo rendering discussed above generate state-of-the-art denois-
ing quality from 8-64 samples per pixel (spp), but come at signifi-
cant cost: seconds per frame on a high end GPU. For real-time re-
construction, smaller U-Nets that directly predict the output colors
instead of KP, have been applied [CKS*17,LMH*18]. To improve
runtime performance of KP, Vogels et al. [VRM™ 18] propose to
approximate a single large kernel with a hierarchy of smaller ker-
nels, each applied on spatially down-sampled versions of the input
image. They mention that recent experiments with a multi-scale hi-
erarchy of 5 x 5 kernels, using a kernel prediction at the end of
each U-Net decoder scale, generates good results at improved per-
formance. Hasselgren et al. [HMP*20] use a similar hierarchy of
filters to reach interactive denoising performance. We adapt a three-
level hierarchy in this paper to accelerate our real-time denoiser.

There is a vast body of work on using layers to help recon-
struct defocus and motion blur from individual samples. Zimmer
etal. [ZRJ*15] propose a general decomposition framework, where
the final pixel color is separated into components corresponding
to disjoint subsets of the space of light paths. Layered light field
reconstruction for defocus and motion blur [VMCS15, MVH*14]
partition samples front-to-back into depth layers. The depth lay-
ers are individually filtered, then composited using alpha blending.
Bauszat et al. [BEJM15] extend adaptive manifold filtering [GO12]
to work on individual samples and apply the technique to simulta-
neous defocus blur and Monte Carlo-simulated global illumination
at interactive rates. They use a set of depth layers, splat samples
to layers using the sample’s circle of confusion radius, filter each
layer separately, and composite the result. We have a similar goal
of fast denoising from low sample counts by exploiting per-sample
information and layers, but we apply neural networks to learn both
the layer partitioning and denoising kernels. In addition, we de-
noise the more general case of simultaneous motion and defocus
blur combined with the noise from Monte Carlo path tracing.

Our work is also related to deep framebuffer techniques, wherein
pixels contain multiple color values, each for a different range of
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depths. Vicini et al. [VAN*19] present techniques for efficient de-
noising approaches on deep images. We see potential for adapting
our approach to that domain, given that deep compositing work-
flows produce sample partitions similar to our layers.

3. Architecture

Our denoiser architecture is shown in Figure 2. The first half is sim-
ilar to the per-sample architecture by Gharbi et al. [GLA*19], and
the second half introduces our layer embedding stages. We target a
denoiser running at interactive rates, and want to assess the value of
a per-sample network in that setting. To that end, compared to the
network of Gharbi et al., we reduce the number of input features
from 74 to 20 and use a single larger U-net instead of a sequence of
three U-nets. Carefully pruning the feature count and the network
size is a worthwhile research topic in itself, but outside the scope
of this paper.

Conceptually, our architecture can be split up into five main
stages:

Sample reducer Input sample radiance and feature guides are re-
duced through a network to generate sample embeddings.

U-net Sample embeddings are averaged and processed in a U-
net [RFB15] with large spatial footprint. This network outputs
context features.

Sample partitioner Sample embeddings and radiance are splat
into two or more layers, creating layer embeddings. Splatting
weights are computed from sample embeddings and context fea-
tures, using a small fully connected network.

Layer filtering A per layer spatial filter is applied, with unique fil-
ter kernels for each pixel. Filter kernel weights are computed by
a fully connected network, taking layer embeddings and context
features as input.

Compositing We track both radiance and weight/opacity per layer.
The final output is obtained by compositing the filtered layers.

Pseudocode for the architecture is included in Appendix A.

Per-sample Processing. The input to our architecture is per sam-
ple radiance and feature guides, computed by a Monte Carlo path
tracer. We also provide normal, depth, albedo, specular color,
roughness, motion vector, circle of confusion, lens position, and
time, for a total of 20 floats per sample. It should be noted that
this is a smaller set than what was used in the work by Gharbi
etal. [GLA"19], as we target interactive denoising.

The first stage is the Sample reducer stage of Gharbi et al. It
takes radiance estimates, Lyys, of sample s at pixel coordinates x and
y and corresponding per-sample feature guides fyys and produces
sample embeddings, Eyys. This is accomplished by applying a small
fully connected network on each sample. Our sample embeddings
have 32 features.

Per-pixel Processing. We compute context features by averag-
ing sample embeddings per pixel and process them by a large U-
net [RFB15] with high feature counts and large spatial footprint.
This design allows the network to gather data and perform feature
detection on a spatially large set of input samples. The output of
the U-net is 128 context features, Cxy, which are used further down
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the architecture pipeline, both to partition samples into layers and
to generate filter kernels. The exact layout of our U-net is shown in
Figure 3.

In the second part of our architecture, we partition the samples
into layers and then filter and process each layer individually. Both
layer partitioning and filtering are handled by networks, and the
entire system is trained end-to-end. Below, we describe the second
part in more detail.

Per-layer Processing. To partition samples into layers, we splat a
(learned) fraction of each sample to each layer. As shown in Fig-
ure 2, we use a fully connected network, the Sample partitioner,
which operates on sample embeddings, Exys, and context features,
Cyy, and outputs a scalar weight per layer, /, and sample, s:

! !
Wxys» wayx =1L (D
l

We then splat the sample embedding and radiance of each sample
into each layer, giving us layer embeddings for each layer [.

To filter and composite the layers, we use alpha-blending, as it
yielded better quality than a straightforward weighted sum of fil-
tered layers. Compositing alternatives are discussed in more details
in Section 3.1. More precisely, we extend a layered light field re-
construction technique [VMCS15] to use learned filter kernels and
layer partitioning. Samples are grouped front-to-back into depth
layers. The depth layers are individually filtered and composited
using alpha blending. We track, for each layer, the weight sum wiy,
layer occupancy nfcy, and weighted sums of radiance L_ny and em-
beddings E)lcy:
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s

When a sample is written to a layer, it punches a hole in all lay-
ers in front of it, indicating that these layers are transparent at that
particular position. The layer occupancy buffer, n_iy, tracks this in-
formation. This approach enables accurate layer opacity estimates
from low sample counts. For more details about this compositing
approach, please refer to Vaidyanathan et al. [VMCS15].

We then proceed to filter each layer. We follow recent kernel
predicting denoising networks [VRM* 18], and compute, for each
layer, kernel weights, K)lcyuv, for a spatial filter, unique for each
pixel. The kernel weights are computed using a fully connected
Kernel generator network, operating on layer embeddings, E)lcy,
and context features Cyy. Following Gharbi et al. [GLA™19], we
apply the kernels as splatting operations, as this helps with sup-
pressing fireflies. We apply (denoted with *) the kernel to the layer
radiance, Liy, weights, wiy, and occupancy, niy, to produce filtered
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Figure 2: Network architecture overview, adapted from Fig. 3 in Gharbi et al. [GLA™ 19]. The network receives individual radiance samples
Lyys with corresponding features fxys as input. The Sample reducer network generates sample embeddings E, average them per pixel, and
feed the averages into a U-net (see Figure 3 for an expanded view) to provide context features C at pixel rate. Then, a fully connected Sample
partitioner network takes the context features Cxy and sample embedding Exys to produce scalar weights, wiys € [0,1], which represent the
fraction of the sample to assign to each layer. We then partition the input radiance samples L and sample embeddings E into clusters per
layer Liy and E)IQ Each cluster represents the weighted average of the samples assigned to that layer. Given the per-layer clusters, we run a
fully connected Kernel generator network to produce a unique filter kernel per pixel in each layer from the layer embedding and the context
features Cxy. This kernel is applied to the linear radiance samples Liy and layer weights wfcy to produce a filtered layer radiance estimate
(blue square), and a filtered layer opacity (gradient square). Finally, the layers are composited to form the output image.

Figure 3: Our U-net. We use convolution kernel sizes of 3 X 3, leaky
RelLU activation functions with a negative slope of 0.01, bilinear
upsampling and 2 X 2 max-pooling. The skip connections are con-
catenated with the input features.

versions:
7l I 1
ny = ny * nyuv

! 1
= Wy * Kyuy-

§
\

I l
Ty = Hxy * Kyyuy- 3)
Compositing. We compute the final output in this step. We first
normalize radiance and define o as the normalized layer weight
. L why
I l
ny*jxyv xy:TX}' 4
Tlxy Tlxy
The compositing operation to obtain the final pixel color oxy is then:
o N, el )
oxy =L+ Y Ly JT(1 — o)), 5)
=1 j=0
e.g., a front-to-back alpha compositing with pre-multiplied values.

Please refer to Appendix A for pseudocode for the forward pass

of our architecture, and further network implementation details
in Appendix B. Although our architecture is divided into several
stages, we want to stress that the system is trained end-to-end, op-
timizing only for the error of the final output, so all steps are opti-
mized jointly.

3.1. Discussion

Scaling costs. Comparing our approach to Gharbi et al., the sam-
ple reducer and sample partitioning steps scale linearly with the
number of samples, while the kernel generation and composite
steps scale with the number of layers. A key observation is that
the sample reducer and sample partitioner networks are compar-
atively inexpensive compared to the kernel generation step. The
kernel generator in a per-sample network outputs all weights for a
large filter kernel per sample. A 21 x 21 kernel per sample results
in 21 x 21 x 8 = 3528 features for each pixel at 8 spp. With two
layers, we reduce this cost by a factor of four.

By moving to a layered representation, we can eliminate the
main bottleneck of the system, replacing the per-sample multiplier
with a layer count parameter, which can be used to balance quality
and performance. We evaluate the computational cost of the differ-
ent network in Section 6.

Compositing Alternatives. One argument for using per-sample
data is that effects such as defocus blur and depth of field cannot be
robustly handled with per-pixel data [GLA*19]. In scenarios such
as a moving sphere in front of a static background or out-of-focus
foreground objects over an in-focus background (Figure 4), the
samples can naturally be partitioned into depth layers with unique
filters per layer. This motivated our trainable alpha compositing as
described in the previous section.

An alternative, more general, compositing approach is to treat
each layer as a weighted sum of samples, with no notion of ordering

(© 2020 The Author(s)
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Figure 4: A synthetic test with an out-of-focus foreground layer
and an in-focus background layer. We train two networks, one with
ordered alpha blending compositing, denoted «Q, the other with
weighted layers (w). The partitioning of samples into layers and
layer kernels are learned. We visualize the filtered layers and the
composited result. Comparing the two approaches, we see that the
a-version learns roughly a depth-based partitioning, with the in-
focus background layer in the middle layer, but splits texture details
across the layers. The weight based approach puts most informa-
tion in one layer, and uses the other layers to separate frequencies,
somewhat similar to a wavelet decomposition.

or visibility between layers. In this case, there is no need for the
occupancy buffer, and the compositing operation is simply

1 ¥
oxy = = 3 WayLay- (6)
YWy (50

Please compare this to the alpha compositing in Equation 5.

In Figure 4 we compare the two compositing approaches in a
synthetic experiment, where the networks are trained to denoise
rectangular textured primitives at different depths under defocus
blur. We eliminated all noise but visibility noise from the lens
sampling. The opacity-based layers with strict ordering and alpha
blending are intentionally designed to encourage the network to
partition samples based on depth. The results do not show a strict
depth partitioning, but we note that the alpha network keeps mostly
foreground defocus regions in layer 0, and the in-focus background
objects are concentrated to layer 1.

We then trained networks variants with the two composting tech-
niques on a large corpus of path traced images. In our experience,
the alpha compositing approach produces slightly higher-quality
results than the weighed approach, both visually (please refer to
the supplemental material) and in the image quality metrics (see
Table 1). We believe the more constrained approach may help the
network converge to a better local minimum, similar to how kernel
prediction seems to work better than direct prediction, although the
latter approach is more general. The runtime costs are similar. The
alpha-compositing approach require an additional buffer per layer
(occupancy, niy).

In Figure 5, we visualize our network (alpha compositing vari-

ant) with two layers when trained on our entire dataset. Here we
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note that the network assigns outlier samples (fireflies) to layer L,
with layer L! looking like a lower variance version of the input im-
age. The network is, broadly speaking, dividing the image into a
hard and easy part, applying different filters for each partition. This
helps corroborate why layer separation is useful. The take-away is
that giving the network freedom to partition samples into two or
more layers is beneficial, the choice of compositing operation less
so. For the remainder of this paper, results are presented for the
a-version unless otherwise noted.

4. Dataset and Training

We generate a large collection of scenes to train our networks.
We follow the random scene generation approach presented
by Gharbi et al. [GLA*19] and use 50,000 3D models from
ShapeNet [CFG*15], 40 HDR probes from HDRI Haven [Zaal6],
5800 textures from the Descriptable Texure Dataset [CMK* 14] and
the Pixar 128 textures [Sis16].

The outdoor scenes have 75 random meshes on a backdrop mesh,
lit with an HDR probe. For our indoor scenes, we use one of eight
simple rooms filled with 50 random meshes, lit with four area
lights, one point light and a random HDR probe. All lights are
given random positions and radiance. Likewise, camera parame-
ters such as position, field-of-view and defocus blur settings are
randomized. We assign each mesh a randomized material from a
large set of BSDFs (diffuse, microfacet, dielectric, mirror, conduc-
tor, coated, etc.), randomize material parameters and textures and
randomly scale texture coordinates to vary texture frequency. For
frames with motion blur, we additionally assign a random, linear,
object motion with 50% probability. Each scene is independently
selected to include motion or defocus blur with 50% probability.
Some example scenes are shown in Figure 6.

The scenes are MC path traced with five bounces and Russian
Roulette disabled. We render input frames at 8 spp and store per-
sample radiance and guides (20 floats per sample). References are
rendered at 4096 spp and only average radiance per pixel is stored.
We initialize the renderer with different random number seeds in
the input and references to avoid correlations. Each training ex-
ample is rendered at a resolution of 256x256 pixels. In total the
training set consists of 4352 frames, of which half are indoor and
half are outdoor scenes.

We implemented our networks in PyTorch [PGC*17]. We use
Xavier initialization [GB10] and train with Adam [KB15] with de-
fault parameter settings and an initial learning rate of 0.005. We
train with input augmentations (random crops, flip x/y, 90 degree
rotations) and shuffle the training data each epoch. We use spatial
crops of size 128 x 128 and batch size four. All networks are trained
for 1000 epochs unless otherwise noted, so in a typical training ses-
sion, the networks see 4.3 million different image pairs. We also
track a small validation set of 128 additional randomly generated
frames, to supervise the training progress. Training a network for
1000 epochs with the augmented training dataset takes between 30
and 60 hours on a single NVIDIA V100 GPU. The per-sample net-
work is, not surprisingly, the slowest to train. The kernels produced
by the network is applied on linear radiance values, and the final
network output are linear radiance values.
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I’:O

Input 8 spp
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Figure 5: From left to right: input samples, unfiltered layer radiance L Equation 2), filtered layer radiance, L Equation 4), the composited
result (Equation 5), and the reference. We visualize all images in linear space without tone mapper to highlight absolute intensity differences.
Note that the network learns to partition high variance samples into one layer.

hd | |

Figure 6: Example training data from the random scene generator.

We trained the network with two different loss functions. First,
following Gharbi et al., we use L, loss on tone mapped values as
optimization criterion. As tone map operator, we transform linear

radiance values, x, according to

¥ =T (log(x+1)), 0
where I'(x) is the SRGB transfer function [SACM96]:
12.92x x <0.0031308

Ilx) = 1/2.4 - ®)
(1+a)x'/** —a x> 0.0031308

0.055.

a =

We found this tone mapper to be more robust in training than the
Reinhard tone mapper used in Gharbi et al. A similar observations
was made in a recent machine learning algorithm for burst denois-
ing [MBC*18]. Second, we tried the symmetric mean absolute per-
centage error (SMAPE), which has been reported to be stable when
denoising HDR images [VRM™*18]. Given a reference r and de-
noised estime d:

ldp.c —Tpel

SMAPE(r,d ldpe—rpe|
e 3N joh it 1dpel +Irpel+&

®
Here, N is the number of pixels in the image, and C are the three
color channels. We use € = 0.01. When comparing the network
trained with the two loss functions, we observered better results
with SMAPE, both by visual inspection and in the error metrics.
We include a comparison in Appendix C.

5. Image Quality Evaluation

In this section, we focus on the image quality differences of
per-sample, per-pixel and layered denoisers in similar settings.
It is now well understood how to craft a high quality machine
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Figure 7: Our test set. We use different viewpoints per scene to
capture a larger range of shading and geometry effects. Each frame
has different camera settings, aperture and focal length. We also
include a few scenes with motion blur with skinned characters and
simple physics simulations.

learning denoiser. See for example the excellent paper by Vogels
et al. [VRM™18] that discusses many challenges in designing a
denoiser for offline production rendering. For extensive compar-
isons with other recent denoising techniques, please refer to pre-
vious work [BVM™17, VRM* 18, GLA*19]. In our experience, the
quality of machine learning denoisers are greatly influenced by the
training dataset, so in all comparisons in this paper we train all net-
work variants at equal number of steps on the same dataset and
loss (SMAPE : Equation 9), to focus on architectural differences
and network capacity. We have spent considerable effort building
a reasonable large and varied training dataset for the comparisons
below. Please refer to Section 4 for details.

To study differences between per-sample, per-pixel and layer
networks, we compare three networks. Referring to Figure 2, the
first half of the architecture is shared by all configurations. Input
samples are transformed into sample embeddings and a U-net (Fig-
ure 3) transforms the average embeddings into context features. In
the second half, when applying the predicted filter kernels, the vari-
ants diverge. We use 17 x 17 pixel filter kernels for all networks, but
they are applied at different granularity:

PIXELGATHER The network outputs one kernel per pixel, which
is then applied on the pixel aggregate radiance. The kernel
is applied as a gather operation. This variant is similar to
the PixelGather network from Gharbi et al. [GLA*19] and
Bako et al. [BVM*17] (without albedo demodulation).

SAMPLESPLAT The network outputs a kernel per-sample. The

(© 2020 The Author(s)
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re’MSE| SMAPE| SSIMT PSNR1
PIXELGATHER 0.0352 0.0353 0.938 33.706
SAMPLESPLAT 0.0298 0.0344 0.941 33.878
LAYERg, 0.0288 0.0350 0.941 33.838
LAYER,, 0.0295 0.0350 0.940 33.812

Table 1: Image quality metrics. Average over the 36 images in the
test set. The relMSE and SMAPE scores are computed on linear
radiance values. Lower values means lower error. SSIM and PSNR
are computed on tone mapped values, using the tone map operator
of Equation 7. Higher values means better quality.

kernel is applied per sample as a splatting operation. This variant
is similar to Gharbi et al. [GLA*19].

LAYER Our proposed variant, as depicted in Figure 2 with two
layers and unique filter kernels per pixel in each layer.

Note that we have purposefully chosen this setup to keep input and
the majority of the networks identical. Thus we isolate and evaluate
the impact of layer embeddings compared to per-sample or pixel
aggregates, and do not compare to the exact implementations of
previous work. We argue that this is a fair comparison when eval-
uating the impact of per-sample information and layers over net-
works working on pixel aggregates. The size of the U-net, kernel
sizes and number of features in our networks differ from previous
work. Our network sizes are purposely chosen fairly large to focus
on quality and to simplify the comparison of per-sample, layer and
per-pixel networks in similar settings.

We evaluate the fully trained networks by denoising the 36
images shown in Figure 7 from 8 spp input. Our test set con-
sists of scenes from Benedikt Bitterli [Bit16], ORCA [NVI18],
Smithsonian [Smil8] and Morgan McGuire’s Computer Graphics
archive [McG17]. We added defocus blur and new camera view-
points to the Bitterli scenes, and include a few scenes with motion
blurred skinned characters and some simple physics simulations
with large motion variations.

We show quantitative results in Table 1, as well as a few se-
lected image crops in Figure 8. Please refer to the supplemental
material for the test set images evaluated on all network variants.
We first note that LAYER obtain similar visual quality as SAMPLE-
SPLAT with only two layers. Looking at just image quality met-
rics, the differences are minor, which is consistent with the results
presented by Gharbi et al. [GLA™19]. In our experience, the main
benefit of SAMPLESPLAT is robustness against fireflies. This can
be seen in the Bathroom and Spheres scene, where we note that
PIXELGATHER produces blocky image artifacts.

A single 17 x 17 kernel is still not large enough to blur an intense
firefly, which creates box-shaped artifacts in the denoised image
(e.g., second row in Figure 8). LAYER and SAMPLESPLAT have
more freedom in suppressing fireflies, and produce smoother, bet-
ter looking, images. The remaining examples show cases with sig-
nificant noise both in primary visibility (due to defocus blur), and
shading due to complex lighting sampled at only 8 spp. We note
that PIXELGATHER again struggles in regions with complex visi-
bility, such as for the Classroom scene, where it loses detail or has
remaining low frequency noise, giving it a blotchy look.
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8 spp PIXELGATHER LAYER
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Referece 16k spp S8 spp . PIXELGATHER LAYER SAMPLESPLAT Reference 16k spp

Figure 8: Denoising quality from 8 spp. A few selected crops from our test set. Please zoom in to see the details, as the differences are subtle.
We provide results from all network variants on the test set in the supplemental material for detailed comparisons.

We study the impact of layer count in Table 2. Increasing layer 6. Optimizations and Runtime Performance Evaluation
count above two has limited quality impact and sometimes also re-
duce quality. When the layer-to-sample ratio is high, the sample
partitioning step becomes more complex, and may cause the net-
work to get stuck in a worse local minimum.

In this section, we evaluate optimization strategies to significantly
reduce runtime with limited impact on image quality, to approach
interactive denoising rates.

To reduce the number of kernel weights produced by the

(© 2020 The Author(s)
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layers | relMSE | SMAPE| SSIM{ PSNR*
2 0.0288 0.0350 0941  33.838
3 0.0315 0.0364 0937 33611
4 0.0313 0.0361 0938  33.697
5 0.0332 0.0353 0939  33.849

Table 2: Error metrics as function of the number of layers in the
network, evaluated on out test set (Figure 7). We note that there is
limited benefit of moving beyond two layers.

. e
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Figure 9: Example of hierarchical kernel prediction with three lev-
els applied in our architecture. For each layer (we show layer 0),
kernel prediction is applied on three scales. The kernel generator
network is fed with the scaled layer embedding and the U-net de-
coder layer at the same resolution.

network, we apply hierarchical kernel prediction [VRM™*18,
HMP*20]. Instead of applying a large, 17 x 17 kernel per pixel
per layer, we apply a cascade of three 5 x 5 filters, applied to the
original resolution as well as 2x and 4x downscaled version of
the input radiance values. Referring to Figure 9, we feed the kernel
generator networks with downscaled versions of the layer embed-
dings as well as the U-net decoder layer output with corresponding
resolution. The generated kernel is then applied on the downscaled
radiance.

Kernel normalization is more complicated when using hierarchi-
cal kernels, as weights are applied at different spatial resolutions.
As a practical solution, we process each miplevel until completion.
That is, we perform layer filtering for all layers, and do composit-
ing to get a global miplevel, G;, which can be seen as the final,
correctly normalized, output of our algorithm as computed at given
sub-sampled resolution. To get the final result, we combine the
global miplevels using another weighted summation,

2 .
Z Upscale(G;,2")A;, (10)
i=0
where A; are trainable scalar weights. We modify the kernel gen-
erator network of the first layer to additionally output the three A;
weights.

Hierarchical kernels result in optimized filter evaluations, but,
more significantly, reduced amount of data flowing through the net-
work. A 17 x 17 filter requires 289 features, which is the reason
our U-net and kernel generator network are sized accordingly with
high feature counts. The hierarchy allows us to reduce the kernel
generator network from 128 to 32 features throughout, thus sig-

(© 2020 The Author(s)
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Time (ms)
Sample reducer 39
U-net 18.8
Sample partitioner 10.2
Layer filtering 53
Total 38.3

Table 3: Inference performance at a resolution of 1920 x 1080 of
the different steps of our OPTIMIZED architecture, measured on an
NVIDIA GeForce RTX 2080 Ti. We run 250 iterations of the net-
work and report the average timing for each pass to reduce fluctu-
ations.

reIMSE| SMAPE| SSIM1T PSNR1
LAYER 0.0288 0.0350 0.941 33.838
OPTIMIZED 0.0351 0.0361 0.935 33.435

Table 4: Comparing image error metrics for the optimized versus
the large layer network. Average over the 36 images in the test set.

nificantly reducing one of the main architectural bottlenecks. We
similarly reduced the U-net (Figure 3) feature count in the first two
convolutional layers of the encoder to 32 features, and the last four
convolutional layers of the decoder to 64 features.

Our architecture contains three fully connected networks: sam-
ple reducer, sample partitioner, and kernel generator, which we in
practice realize as 1 X 1 convolutions. A main problem with this
design is that the compute-to-bandwidth ratio is relatively low, so
compute kernels are typically memory bandwidth limited. A key
observation is that with the hierarchical kernel prediction, all fully
connected networks have low enough feature counts that we can fit
weights and temporary data entirely within the GPU’s shared lo-
cal memory. We can optimize these networks by evaluating three
consecutive fully connected layers in one compute shader without
writing the data to RAM.

Runtime Performance. We use our optimized implementation
to evaluate runtime performance on an NVIDIA GeForce RTX
2080 Ti GPU at a resolution of 1920 x 1080 using 8 spp with 20
scalar features per sample. The results are shown in Table 3. The
layer filtering phase includes both the cost of the kernel generator
network and the cost of applying the hierarchical filter kernel on
the two layers.

Despite our efforts, performance is still limited by per-sample
work (sample reducer + sample partitioning = 14 ms). Previous
work [VRM*18, GLA*19,BVM*17] report GPU timings of 12-40
seconds per frame at 1080p from 8 spp, admittedly on unoptimized
Tensorflow / PyTorch implementations and with a higher input fea-
ture count. We find it encouraging that it is possible to reach similar
denoising quality and robustness against outliers with a two-layer
architecture running at interactive rates (40 ms).

As shown in Table 4, OPTIMIZED has lower image metric scores
compared to the large LAYER network. This is caused by the large
reduction in network capacity, with OPTIMIZED being significantly
smaller even than PIXELGATHER (see Figure 10). We note that Op-
TIMIZED still retains the outlier filtering and higher visual quality
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of our layer architecture, and is still less artifact prone than PIXEL-
GATHER even though the numerical error is higher. Please refer to
the supplemental material for image quality comparisons.

Scaling. It is beyond the scope of this paper to implement opti-
mized versions of all networks, so we analyze scaling with respect
to sample count by counting the number of fused multiply-add op-
erations (FMAs) for PIXELGATHER, SAMPLESPLAT and LAYER.
We also include OPTIMIZED, the smaller version of LAYER opti-
mized for interactive denoising. Apart from OPTIMIZED, all algo-
rithms run the same U-net, and the main difference in computations
are at which frequency kernel generation and filtering are applied.
For fairness, please focus on comparing the three large networks.

Figure 10 shows how the algorithms scale with increasing sam-
ple count. PIXELGATHER has best performance, and is invariant
to sample count. Our LAYER architecture scales well, with rela-
tively modest overhead with increasing sample count. Instinctively
it feels like we should increase layer count with increasing sam-
ples, but the opposite is true. We only need enough layers to match
the visibility or shading complexity of the scene. Increasing sample
count reduces noise and makes the denoising problem easier.

Computational cost is a good estimate for the overall perfor-
mance of a network, but note that applying a kernel predicted filter,
in particular, is heavily bandwidth limited and its cost is therefore
underestimated in Figure 10. This works further to our benefit, as
we perform fewer filter operations than SAMPLESPLAT.

7. Conclusions

We have presented a layer-based denoising algorithm that produces
image quality comparable to per-sample denoising, both visually
and in image quality metrics, while being almost as efficient as
denoisers working on accumulated pixel values. We denoise 1080p
images at interactive rates on contemporary GPUs.

We observe similar robustness against outlier samples, a
smoother look, and better handling of out-of-focus regions as first
shown by Gharbi et al. [GLA™*19]. In general, it seems beneficial to
give the network the flexibility to apply more than one kernel per
pixel. In practice, we see most benefits already with two layers.

When comparing PIXELGATHER and SAMPLESPLAT in our
evaluation, the differences are fairly subtle, and smaller than what
we had anticipated. This may be an effect of our reduced input fea-
ture count (20 instead of 74 floats) compared to Gharbi et al., and
differences in training data and test set. In scenarios where runtime
performance is critical, it remains an open question if it is worth
the added cost of incorporating per-sample information in machine
learning denoisers, both in terms of the additional bandwidth usage
requirements and the added arithmetics of per-sample or per-layer
kernels. Extreme firelies are less common in real-time rendering
settings with short ray paths and smooth approximations of global
illumination.

Still, we argue that a layered denoising architecture is a flexible,
scalable tool to exploit per-sample data. Our architecture learns to
partition samples into layers, learns unique filter kernels per layer
and alpha composite the filtered layers, all trained end-to-end. We

hope this research will inspire future progress in denoising for both
offline and real-time rendering.

In future work, we hope to apply similar ideas to deep com-
positing workflows. We also want to extend the layer denoising ap-
proach to the temporal domain, by denoising sequences, similar to
recent work [CKS*17, VRM*18, HMP*20]. We believe a layered
representation can be beneficial to more robustly handle disocclu-
sion and ghosting effects.
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Appendix A: Pseudocode: Denoiser forward pass

We show pseudocode for the forward pass of our architecture in
the listing below. This code corresponds to the description in Sec-
tion 3 and uses the ordered layered depth representation, based on
alpha blending, as proposed by Vaidyanathan et al. [VMCS15]. A
sample that hits a background layer indicates that a ray could travel
unoccluded through all layers in front of it, so we increment an oc-
cupancy weight, 1_n, for all layers in front. We apply the same
kernel to radiance, alpha and occupancy, then normalize radiance
and alpha with occupancy. Finally, the filtered results are compos-
ited front to back.

Note that we exponentiate filter weights on L26 to make them
positive, similar to a softmax operation. When doing so, we subtract
the maximum weight value to avoid numerical instabilities with
large exponents [GLA™19].

| def forward(samples, num_layers):

2 # Loop over samples to create embeddings
for i, s in enumerate (samples) :

4 embedding[i] = sample_reducer (s)

5 radiance[i] = get_linear_radiance (s)

6

7 context = UNet (mean (embedding))

9 # Splat samples to layers
10 for i in range (num_samples) :

11 w = partition (embedding[i], context)
12 w = softmax(w) / num_samples

13 for j in range (num_layers) :

14 1_radiance[j] += radiance[i] * w[]]
15 1_weight[j] += w[]]

16 1_embed[]j] += embedding[i] * w[]j]
17 1. n[]j] += sum(w[Jj:num_layers])

19 # Compute kernel weights

20 for j in range (num_layers) :

21 kernel[j] = kernel_gen (l_embed[]j], context)
23 # Apply kernels and alpha blend

24 k=1.0

25 for j in range (num_layers):

26 kernel[j] = exp(kernel[j] - max(kernel))

27 n = kpn(l_n[j], kernel[j]) + eps

28 rad = kpn(l_radiance[j], kernel[j])/n

29 alpha = kpn(l_weight[j], kernel[j])/n

30 final_color += k*rad
31 k = kx(l-alpha)

33 return final_ color

Appendix B: Network Implementation Details

We implement all fully connected networks with 1 x 1 convolu-
tions. All activations are leaky ReLLU with a negative slope of 0.01,
unless otherwise noted. The feature counts of the network stages
are summarized below.

Sample reducer Three fully connected layers with input-output
feature counts [input features, 32], [32, 32], and [32, 32]. In our

implementation we use 20 input features and the network pro-
duces 32 features for the sample embedding of each sample.

Pixel U-net See Figure 3. The U-net produces 128 context features
from 32 inputs (averaged sample embeddings).

Sample partitioner Three fully connected layers with feature
counts [160, 32], [32, 16], and [16, layers]. No activation in the
last layer. Input consists of 128 context features + 32 embedding
features for a total of 160 features. The output is a scalar weight
per layer.

Kernel generator Three fully connected layers with feature
counts [160, 128], [128, 128], and [128, kernel x kernel]. No
activation in the last layer. Input consists of 128 context features
+ 32 embedding features and the produced kernels have 17 x 17
taps.

Per-sample and Per-pixel network For the per-sample network,
the sample reducer, U-net, and kernel generator are identical to the
layer variant. In the per-pixel variant, we additionally compute vari-
ance over the samples and pass as input to the sample reducer, so
its input feature count is doubled. Note that the kernel generator is
executed once per-sample in the sample variant. The sample parti-
tioner step appears only in the layer network.

Appendix C: Loss Function Comparison

In Table 5 we compare error metrics on the test set when training
the networks with two different loss functions.

L, tonemap reiIMSE| SMAPE| SSIM{T PSNR1Y
PIXELGATHER 0.0452 0.0371 0.932 33.427
SAMPLESPLAT 0.0358 0.0362 0.937 33.720
LAYER 0.0355 0.0361 0.937 33.668
SMAPE reiIMSE| SMAPE| SSIM{T PSNR1?
PIXELGATHER 0.0352 0.0353 0.938 33.706
SAMPLESPLAT 0.0298 0.0344 0.941 33.878
LAYER 0.0288 0.0350 0.941 33.838

Table 5: Image quality metrics for the different algorithms when
trained either using Ly on tone mapped values (top) or SMAPE
(bottom). Average over the 36 images in the test set. The relMSE
and SMAPE scores are computed on linear radiance values. Lower
values represent lower error. SSIM and PSNR are computed on tone
mapped (Equation 7) values. Higher values means better quality.
Note that all networks consistently improve on image quality met-
rics when trained with SMAPE.
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