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Abstract
In image morphing, a sequence of plausible frames are synthesized and composited together to form a smooth transformation
between given instances. Intermediates must remain faithful to the input, stand on their own as members of the set and maintain
a well-paced visual transition from one to the next. In this paper, we propose a conditional generative adversarial network
(GAN) morphing framework operating on a pair of input images. The network is trained to synthesize frames corresponding
to temporal samples along the transformation, and learns a proper shape prior that enhances the plausibility of intermediate
frames. While individual frame plausibility is boosted by the adversarial setup, a special training protocol producing sequences of
frames, combined with a perceptual similarity loss, promote smooth transformation over time. Explicit stating of correspondences
is replaced with a grid-based freeform deformation spatial transformer that predicts the geometric warp between the inputs,
instituting the smooth geometric effect by bringing the shapes into an initial alignment. We provide comparisons to classic as
well as latent space morphing techniques, and demonstrate that, given a set of images for self-supervision, our network learns to
generate visually pleasing morphing effects featuring believable in-betweens, with robustness to changes in shape and texture,
requiring no correspondence annotation.
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1. Introduction

Morphing is the process of transformation between states of appear-
ance, and may involve operations ranging from basic translation and
rotation, to changes in colour and texture, and, perhaps most icon-
ically, shape shifting. In the era of big data and deep learning, the
ability to morph between objects could have an impact beyond the
generation of the visual effect itself. For instance, synthesized inter-
mediate frames depicting novel variations of input objects, may be
added to existing datasets for densification and enrichment.

Traditional morphing techniques rely on correspondences be-
tween relevant features across the participating instances, to drive
an operation of warp and cross-dissolve [BN92]. These methods are
mostly invariant to the semantics of the underlying objects and are
therefore prone to artefacts such as ghosting and implausible inter-
mediates. Correspondence points are normally user-provided, or are
automatically computed assuming sufficient similarity. Recently, an
abundance of available data has given rise to their utilization as

guidance proxies for extraction of short or smooth paths between
the two endpoints [AECOK16], thus providing more plausible
in-betweens.

In this paper, we aim to further tap into the data-driven morphing
paradigm, and leverage the power of deep neural networks to learn
a shape prior befitting a given source dataset, catering to the task of
image morphing. Specifically, we employ a generative adversarial
network (GAN) [GPAM*14] combined with a spatial transformer
[JSZ*15] for shape alignment, for mitigation of the challenges as-
sociated with morphing. GANs are known for displaying impressive
generative capabilities by their capacity to learn and model a given
distribution, a particularly lucrative attribute for a task for which
realism and plausibility is crucial. Accordingly, we opt to design a
GAN framework to learn the space of natural images of a given class
so that intermediate frames appear to be realistic, and to enforce
sufficient similarity between sufficiently close frames, to maintain
smoothness of transformation.
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Figure 1: A morphing sequence generated by our approach.

We present a conditional GAN framework trained to generate se-
quences of transformations between two or more inputs, and fur-
ther integrate it with a grid-based freeform spatial transformer net-
work (STN) to alleviate large discrepancies in shape. The generated
output sequences are constrained by a perceptual loss, culminating
in an end-to-end solution that encourages transitions that are both
plausible and smooth, with a gradual and realistic change in shape
and texture.

The result is a trained generator specializing in a certain family of
shapes, that, given a pair of inputs and a desired point in time, out-
puts the appropriate in-between frame. A full morphing effect can
then be synthesized by requisitioning a reasonably dense sequence
of frames, which yield a smooth transformation (see Figure 1).

During training, each sampled set of inputs is first processed by
an STN, which computes an alignment allowing a feature-based
warp operation to map each input to the other. Next, our conditional
generator processes the warped inputs, and outputs a sequence of
frames, each corresponding to a given point in time. A reconstruc-
tion loss encourages the two endpoint frames to match the inputs.
Meanwhile, a GAN loss pushes the generated frames towards the
natural image manifold of the training set. Finally, a perceptual tran-
sition loss [ZIE*18] constrains the transformation over time to be
smooth and gradual.

We demonstrate the competence of our generator and its ability to
produce visually pleasing morphing effects with smooth transitions
and plausible in-betweens, on different sets of objects, both real and
computer rendered. We conduct a thorough ablation study to exam-
ine the individual contributions of our design components, and per-
form comparisons to traditional morphing, as well as GAN-based
latent space interpolation. We show that our framework, uniting the
GAN paradigm with shape alignment and perceptually constrained
transitions, provides a solution that is robust to significant changes
in shape, a challenging setup that commonly induces ghosting arte-
facts in morphs.

2. Related Work

Classic morphing. Pioneering morphing techniques combine
correspondence-driven bidirectional warping with blending oper-
ations to generate a sequence of images depicting a transforma-
tion between the entities in play. The approach by Beier and Neely
[BN92] leverages user-defined line segments to establish corre-
sponding feature points that are used to distort each endpoint to-
wards the other, and proceeds to apply a cross-dissolve operation
on respective pairs of warped images to obtain a transformation
sequence. More recently, Liao et al. [LLN*14] automatically ex-
tract correspondences for morphs by performing an optimization of
a term similar to structural image similarity [WBS*04] on a halfway
domain. Averbuch-Elor et al. [AECOK16] adopt a data-driven

approach where a collection of images from a specific class of ob-
jects is used to locate smooth sequences of images. A morphing ef-
fect is then generated from source to target via in-betweens that are
smoothed with a global similarity transform. In deep image analo-
gies [LYY*17], deep features are leveraged for bidirectional corre-
spondences supporting bidirectional attribute transfer for synthesis
of style and content hybrids. Similarly, Aberman et al. [ALS*18]
focus on cross-domain correspondences extracted using a coarse-
to-fine search of mutual nearest neighbour features, and show that
this can produce cross-domainmorphs. Shechtman et al. [SRAIS10]
introduced an alternative way to morph between different images
using patch-based synthesis that did not rely on correspondences
and cross-blending, and Darabi et al. [DSB*12] extended it by al-
lowing patches to rotate and scale. While these methods produced
nice transitions that look different than the traditional warp+blend
effect, the method is limited to patches drawn from the two sources
and does not produce new content.

Deep interpolations. Neural networks have been previously
trained to synthesize novel views of objects using interpolation.
Given two images of the same object from two different viewpoints
as input, Ji et al. [JKMS17] generate a new image of the object from
an in-between viewpoint. The images are first brought into hori-
zontal alignment, and are then processed by an encoder–decoder
network that predicts dense correspondences used to compute an
interpolated view. General image interpolations are commonly
demonstrated within the VAE and GAN realms. A notable by-
product of a trained GAN is its rich latent embedding space that
facilitates linear interpolation between data points. Such interpo-
lations drive a generation of morphing sequences, by producing a
series of interpolated latent vectors that are decoded to images that
appear to smoothly morph from source to target [BDS18, BSM17,
KALL17, DS19]. To perform interpolation between existing in-
stances, one must obtain their corresponding latent codes in order
to compute interpolated vectors and their decoded images. This is
commonly accomplished with an optimization process that starts
from a random code, which is updated to minimize a loss such as L2
on the desired image [WRSJ19]. However, in practice, the learned
manifold may not be able to reconstruct any given test set image,
and obtaining the corresponding code to a given image may also
be challenging. Solutions that combine an encoder mapping exist-
ing instances to the learned space, such as VAE-GAN [LSLW15]
and CVAE-GAN [BCW*17], which is trained simultaneously, and
iGAN [ZKSE16], which is trained successively, alleviate this dif-
ficulty, but the crux of the problem remains, particularly when one
seeks to map more unique entities.

3. Method

Our system combines several key components that together
provide a robust solution for morphing effect generation. We
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henceforth present these components and address the manner in
which they cater to the three requirements, namely, frame realism
with respect to the training set, smooth transitions and input fidelity
at the endpoints.

3.1. Basic setup

We use a convolutional GAN approach [GPAM*14, RMC15] for
our morphing. GANs have been demonstrated to perform highly
sophisticated modelling of image training data [BDS18]. This char-
acteristic is appealing for our endeavour, as we seek to create se-
quences of transformation between entities belonging to a specific
family of objects, that is, our target distribution. Therefore, a GAN
loss can help fulfill our first requirement of realism. In our imple-
mentation, we combine the least-squares GAN loss [MLX*17] with
two discriminators: a local PatchGAN [LW16] discriminator and a
global discriminator. We denote byLD andLG the GAN losses used
to train D and G, respectively, each by minimization of the corre-
sponding sum:

LD = LD
real
local + LD

real
global + LD

fake
local + LD

fake
global, (1)

LG = L∗
G
fake
local + L∗

G
fake
global. (2)

The asterisk in Equation (2) indicates the inversion of labels when
D is used to evaluate LG.

Common image morphing operates on existing instances given as
input, thus, accordingly, we opt for a special type of GAN known as
the conditional GAN [MO14, IZZE17, ZPIE17, KCK*17], whose
output is directly influenced by one or more signals given as input.
In our case, those signals include the two input images that are to
be morphed, IA, IB, as well as a scalar t specifying the desired time
sample of the output in-between frame. We note that this could also
be generalized to an arbitrary number k ≥ 2 of input images to be
morphed, along with a vector of interpolation parameters with L1
norm of unity. Our conditional GAN consists of an encoder followed
by a generator.

Our second requirement is smoothness of transitions. This is
dealt with by a combination of a special training protocol and a
suitable loss component. To better control and guide the generation
to comply with our aim, at training time, for each input pair IA, IB,
we generate a sequence of frames of length k. Each of these frames
correspond to a pre-determined time sample, and are uniformly
sampled on the unit interval [0, 1]. This approach allows us to apply
a loss component, LT , designed to constrain the similarity between
frames, and encourage smooth transitions. More specifically, we
make use of a pre-trained neural network (VGG-16 [SZ14]) to ob-
tain deep features of generated frames upon which perceptual simi-
larity (PS) is computed [ZIE*18]. As a frame-of-reference, we com-
pute input pair PS: PS4,5(IA, IB) = MSE(VGG4,5(IA),VGG4,5(IB)),
where VGG4,5(IA) are all VGG features of IA extracted from layer
groups 4 and 5 (out of 5). Using that, we define LT as:

LT = max
i=2..k

{‖PS4,5(Ii−1, Ii) − (ti − ti−1) · PS4,5(IA, IB)‖2}. (3)

That is, we constrain each frame to be a certain distance, in se-
mantic feature space, from its preceding frame. This distance should

Figure 2: Grid-based freeform spatial transformer. The two inputs
are concatenated and processed by the network which outputs a
5× 5 grid aligning the first to the second. The deformed first image
is compared against the second image using perceptual similarity.
The grid is compared to the identity grid for regularization.

ideally match the feature distance PS4,5(IA, IB) between the input
images, after rescaling by the time between adjacent frames ti − ti−1.

The final component in our basic setup is a reconstruction loss,
which encourages the endpoint frames in the sequence to match the
inputs:

LR = MSE(I1, IA) + MSE(Ik, IB) (4)

3.2. Alignment

The characteristic locality of convolutional networks is a known hin-
drance in situations where changes in shape are required. To sup-
port a wide range of inputs of varying shapes, we recognize the
need for higher level, semantic information to establish the rela-
tionship between the inputs, much like classic morphing techniques
that rely on correspondences between points and features to drive a
warping operation. Manually collecting correspondence points be-
tween instances in large datasets such as ours is intractable. Al-
though it is possible to incorporate an automatic correspondence
computation [ALS*18], we opt for an integrated end-to-end solu-
tion which is both computationally faster, and as we show later, can
be more robust in cases where there are significant differences in
shape.

An STN [JSZ*15] is a component that can be added to a neural
network as a means to learn and apply transformations to the data
to assist the main learning task. In our setting, we seek to compute
an alignment between the inputs, and apply it onto them to be given
to the generator for further processing. For greater flexibility and
range of deformation, we add a spatial transformer component that
computes a grid-based freeform deformation warp field [HFW*18].
This component is placed before the encoder–generator component
of our main network, and is composed of two convolutional blocks
and a fully connected block predicting the warp grid, whose size is
a parameter set to 5 × 5 in our experiments. The inputs IA, IB are
concatenated channel-wise before passing through this component,
which outputs two grids (for x and y) indicating the warp from IA to
IB -WAB. Likewise,WBA is obtained by switching the order between
IA and IB. See Figure 2 for an illustration, and our supplementary
material for specific design details.

We combine the STN with our sequence generation scheme,
by applying a series of partial deformations to the inputs, each
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Figure 3: STN warp examples. We show three examples for bidi-
rectional warps computed by our STN. For each example, the first
input is in the top row on the left and the second input is in the bot-
tom row on the right. The STN computes a full warp, shown in the
top row on the right for the first input and in the bottom row on the
left for the second. The warped instances in between have all been
deformed with corresponding partial warps.

corresponding to a certain time stamp. The partial deformation for
WAB at time t is W t

AB = I + t · (WAB − I ), and W t
BA = I + (1 −

t ) · (WBA − I ) for WBA, where I is the identity warp grid. The
grids are upsampled to the input image size using bilinear inter-
polation, and are applied onto IA and IB to obtain a sequence of
warped inputs {ItA}tkt=t1 , {ItB}tkt=t1 , that are passed on to the encoder. See
Figure 3 for three examples of partial to full deformations computed
by our STN.

We add two losses tailored to our STN. The first is a shape warp
loss, LW , comparing the warped IA, denoted by ItkA , to IB, and the
second, LI , compares the predicted grid to the identity grid, for reg-
ularization. LW makes another use of PS by using the deep VGG
features of layer group 5. These provide a higher level of abstrac-
tion that encourages the overall shape of the warped image to match
the other endpoint, as opposed to stylistic details. The two losses are
given by:

LW = PS5

(
ItkA , IB

)
,

LI = MSE(WAB, I ). (5)

We note that the losses we have described thus far, do not di-
rectly bind the inner frames to the inputs IA, IB. With the addition of
the alignment computation, we are able to add a final PS loss, LE ,
that draws a connection between each frame and its corresponding
warped inputs, without restricting the ability of the frame to shift
the shape of its underlying object. We choose layer group 4 for this
purpose, to benefit from a combination of abstraction and a notion

of finer detail, and compute a blend of similarities dependent upon
the time stamp:

LE =
k∑
i=1

(1 − ti) · PS4

(
Iti , I

ti
A

) + ti · PS4

(
Iti , I

ti
B

)
. (6)

The total loss function of our generator is thus:

LG = λGLG + λTLT + λRLR + λWLW + λILI + λELE . (7)

3.3. Network structure

The architectures of G and D are similar to those of DiscoGAN
[KCK*17]. G is composed of an encoder containing blocks of conv
and ReLU followed by a decoder, containing blocks of tconv (trans-
posed convolution) and ReLU. Both local and global D contain
blocks of conv and ReLU with a final Sigmoid. In both G and D,
the number of blocks depends on the input image resolution. For
more details, please refer to our supplementary material.

We employ a late fusion protocol, where the inputs ItiA , I
ti
B are first

processed separately by the encoder of G, which outputs feature
maps Fti

A ,Fti
B respectively. An adaptive instance normalization com-

ponent [HB17] blends the mean and standard deviation of the fea-
ture maps according to the input time stamp ti. That is, for given
statistics μ

ti
A, μ

ti
B and σ

ti
A , σ

ti
B , we compute the blended statistics for

time ti:

μti = (1 − ti) · μ
ti
A + ti · μ

ti
B

σti =
√
(1 − ti) · (σ ti

A )
2 + ti · (σ ti

B )
2. (8)

Fti
A is then updated as: Fti

A
∗ = σti ·

(F
ti
A −μ

ti
A )

σ
ti
A

+ μti , and F
ti
B similarly.

Next, Fti
A

∗
,Fti

B
∗
are concatenated channel-wise, along with an addi-

tional channel containing the time stamp ti expanded to the appro-
priate spatial resolution—Fti . The resulting block of data,F

ti
A

∗
Fti
B

∗
Fti ,

is processed by the decoder which outputs the corresponding gener-
ated frame. During training we generate k frames, thus we prepare
k such blocks {Fti

A
∗
Fti
B

∗
Fti }ki=1, all of which are passed through the

decoder.

At train time, we randomly draw another instance fromwithin the
set for each input in the batch, and together these make up the input
pairs. At each iteration, we also draw at random a pool of images
to be shown to D as real data. Since each pair of inputs spawns k
frames, the real pool for each pair is of size k as well. See Figure 4
for a high level illustration of our pipeline.

3.4. Content and style

We extend our solution to address the problem of content and style
separation [GEB15, JAFF16, DSK17, HB17] within the morphing
scope, to allow greater control over the desired outcome and provide
increased freedom of creativity. Instead of a single axis of transfor-
mation between our two inputs IA, IB, we seek to engage two axes
corresponding to disentangled transitions of content and style. This
can be viewed as a 2D morphing effect taking place within the unit
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Figure 4: Method pipeline. A pair of inputs is first processed by the STN. The predicted warp is applied onto the inputs to obtain a sequence of
warped images corresponding to different time stamps. An encoder outputs a featuremap per warped image, and every respective pair of feature
maps undergoes a weighted adaptive instance normalization dependent on its time stamp, and proceeds, after channel-wise concatenation,
into the decoder. All the resulting frames are evaluated by the GAN loss and a reconstruction loss compares the two endpoints to the inputs.
Local and global perceptual similarity losses compare each pair of adjacent frames, and each frame to the warped inputs, respectively.

square, such that at coordinate (tci , ts j ), the content of the generated
frame reflects an interpolation of (1 − tci ) · IcA + tci · IcB and its style a
similar interpolation of (1 − ts j ) · IsA + ts j · IsB, where tc1 , ts1 = 0 and
tck , tsk = 1 (k samples along both axes), and IcA, I

c
B and I

s
A, I

s
B are the

content and style characteristics of the inputs, respectively.

We recognize the inherent capacity of the various components
in our pipeline towards the distinction between the manifestation
of content in our setup, that is, overall shape and geometric de-
tail, and stylistic attributes such as colour and texture. Specifically,
we observe that our local and global PS losses can be employed
in such a way as to encourage one aspect or the other by demand.
Combining these with the initial warping mechanism catering to
content (shape) rather than style, and the adaptive instance nor-
malization component favouring style over content, we are able to
formulate a disentangled solution dependent upon the two axes of
transformation.

Alignment. Initial alignment is carried out as before, but is only
governed by the content axis, disregarding the style axis completely.

Training. The new training protocol resembles our original one
in that for each input pair, we generate k frames. We randomly sam-
ple k − 2 points along each axis, and keep tc1 , ts1 = 0 and tck , tsk = 1.

As the feature maps corresponding to frame i, F
tci
A ,F

tci
B , exit the en-

coder, we perform adaptive instance normalization according to the
style axis alone, such that ti in Equation 8 is replaced with tsi . We
then concatenate the two samples associated with frame i – tci , tsi ,
each expanded to the appropriate spatial resolution as before, to the
normalized feature stack. The stack given to the decoder is thus:
F
tci
A

∗
F
tci
B

∗
Ftci Ftsi .

PS losses. We create a hard separation between the authorities of
the two PS losses with respect to content and style. The local PS loss
LT is assigned to the content whereas the global loss LE is assigned
to style. For LT , ti in Equation (3) is replaced with tci . Similarly, for
LE , ti in Equation (6) is replaced with tsi . Additionally, to increase
the emphasis upon stylistic elements, we compute LE with VGG
layer group 3 instead of 4.

4. Evaluation

In this section, we perform various experiments to evaluate our
method, both within its own scope (4.1), and externally (4.2). We
experiment on four datasets—boots [YG14, YG17] (∼10k) and
handbags [ZKSE16] (∼12k), depicting real-world objects, and cars
(∼7k) and airplanes (∼4k), featuring renders of objects from
ShapeNet [CFG*15]. For each dataset, we randomly draw 100 pairs
of inputs from a separate test set upon which we conduct all our
experiments. For each pair, we generate a sequence of 11 frames.
Our model is trained on a 128 × 128 image resolution for 200
epochs, except for the variations trained for the ablation study,
which were trained on a 64 × 64 resolution for computational
efficiency.

4.1. Ablation study

We explore the individual contributions of our various design com-
ponents by conducting an ablation study. For this purpose, we train
six variations of our network, aside from the proposed solution.
Each variation excludes one component: GAN loss (adversary),
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Table 1: Ablation FID scores on four datasets. We compute FID scores for
different versions of our method, on a test set of 100 input pairs per dataset
with nine frames each, totaling at 900 frames per dataset. These generated
frames are compared against the corresponding training set.

Ablation Bags Boots Cars Planes Mean

Main 31.96 27.75 34.90 44.18 34.70
w/o GAN 30.71 27.98 37.10 44.52 35.08
w/o local PS 31.67 27.32 29.72 43.79 33.13
w/o global PS 36.17 31.85 38.61 49.19 38.96
w/o recon 33.18 29.03 36.13 41.17 34.88
w/o adaIn 34.40 32.57 40.29 44.51 37.94
w/o STN 53.68 57.72 64.18 57.26 58.21

local PS, global PS, reconstruction loss, adaptive instance nor-
malization and STN (which also excludes global PS, see
Section 3.2).

We compute the Fréchet Inception Distance (FID) [HRU*17] be-
tween the generated frames of each version in each dataset, and its
respective training set, resized to a resolution of 96 × 96. The over-
all trend of the scores, summarized in Table 1, indicates that our
main solution generates images that are generally in-line with the
training set distribution. Additionally, in Figure 5, which contains
visual examples for generated sequences obtained with the six vari-
ations, we note the various shortcomings characterizing the five ab-
lation variations. The ‘w/o GAN’ version does not preserve object
detail, the ‘w/o PS’ versions do not appropriately combine charac-
teristics from both inputs, the ‘w/o recon’ version does not adhere to
the two endpoints and neither does the ‘w/o adaIn’ version, and the
‘w/o STN’ version is characterized by a serious degeneration, ex-
hibiting little to no deformation in shape, resulting in a preference
of one endpoint over the other. Note that as part of our earlier exper-
iments, we did not experience a similar degeneration with a base-
line system that did not incorporate an STN. However, these earlier
versions naturally produced substantially lower quality results (due
to their lack of advanced image alignment), and their far-removed
architecture places them are outside the scope of this ablation
study.

4.2. Results and comparisons

We compare our results to three other methods. The first is simple
linear blending. We take the two sequences of warped inputs that
our STN outputs, and blend each pair of corresponding frames ac-
cording to their respective time stamp. The second is the morphing
method by Liao et al. [LLN*14] (termed ‘Halfway’ in Table 2 and
Figures 6 and 7). The final method is GAN-based latent space in-
terpolation. Although recent high-resolution GAN solutions such as
BigGAN [BDS18] have been shown to produce impressively high-
quality generation and interpolation results, they are not as read-
ily available to train, thus we opt for the well-known WGAN-GP
[GAA*17] solution for which we make use of the official imple-
mentation. We also experimented with VAE-GAN [LSLW15] and
IntroVAE [HHS*18], but found WGAN-GP to provide superior re-
sults on our data. After training WGAN-GP on each of our four
datasets, we train an encoder per trained model, to assist in our ef-

Table 2: Comparing FID scores on four datasets. All methods were given
the same set of 100 input pairs yielding morphing sequences of length 9,
totaling at 900 frames per method. The best (lowest) scores are marked in
bold.

Comparison Bags Boots Cars Planes Mean

Ours 29.12 25.78 28.94 50.35 33.55
Linear blend 29.75 23.97 28.04 45.14 31.72
Halfway 22.72 21.47 23.06 39.61 26.71
WGAN-GP 68.91 83.71 54.38 55.53 65.63

forts to recover latent codes of existing instances. To obtain the la-
tent codes of our test input images, we first pass them through the
trained encoder, and then proceed to optimize the code further with
an L2 loss on the input image.

Table 2 summarizes the FID scores obtained by comparing the
generated frames of each method on each of the test sets, with the
corresponding training set. Note that all methods except WGAN-
GP, which is compared at a 64 × 64 resolution, are compared at a
resolution of 192 × 192. The presented scores show that the clas-
sic techniques we compared to produce images that are closer to
the ‘real’ data distribution than those generated by our method and
WGAN-GP. These results are not surprising, since the classic tech-
niques operate on the original images and perform operations of
warp and cross dissolve, while generator-based methods procure
the entire image every time, and are therefore bound to stray far-
ther from the original distribution. Thus, even when an intermediate
frame features ghosting artefacts, it may not incur a high FID score
when it is essentially a blend of the two original inputs, as is the case
in both of the classic methods.

Figures 6 and 7 present qualitative examples of our generated se-
quences compared to those of the other methods. We observe that
classic techniques exhibit excellent adherence to the original inputs
as well as smooth transitions, however, at times they suffer from
ghosting artefacts and exaggerated deformations due to incorrect
correspondences. In contrast, our method is able to overcome dif-
ferences in the overall shape, supporting a plausible transformation
between the inputs. Specifically, we note that Liao et al. [LLN*14]
(Halfway) produce high-quality effects composed of visually pleas-
ing frameswhen the correspondence is accurate (many examples are
available in our supplementary material). The difficulty arises when
the two input images depict objects of larger shape offsets (see the
boots example in Figure 6 and the planes example in Figure 7), or are
somewhat lacking in texture and colour (see the wheels in the cars
example in Figure 7). The baseline, linear blending, uses the align-
ment computed by our STN, and therefore benefits from its robust-
ness to large differences in shape. However, the alignment provides
general cues for warping, and further processing is often needed in
order to promote smoother transitions. See Figure 6, where ghost-
ing artieacts are visible just above the opening of the bag, and at
the tip and back of the boots. Lastly, our experiments with WGAN-
GP [GAA*17] show that generation quality as well as latent space
encoding of existing instances, is still insufficient for high-quality
morphing effect creation. However, despite the artefacts that often
appear in the generated frames, a strong advantage of latent space
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Figure 5: Qualitative ablation. We present 11 frames generated for an input pair of planes 2 by our main solution and the five ablation
variations. All variations in this study operate on a resolution of 96 × 96, and were trained for 200 epochs.

interpolation is its manner of frame creation. Frames are generated
independently of one another, unlike approaches that are based on
warp and cross-dissolve operations, and thus, ghosting artefacts are
naturally avoided.

4.2.1. User study

To obtain user perspective, we designed a survey that presents the
user with 36 pairs of morphing effects (nine of each dataset), such
that each pair is composed of our result versus that of one of the
compared methods (in arbitrary order). For each pair, the users were
asked to select the one they preferred of the two (subjectively), as
well as the one that exhibits a more plausible transformation of
shape (objectively). Users were able to select ‘no preference’when-
ever they wished. A total of 50 participants took part in our study.
The results are shown in Table 3, where the column ‘Ours’ con-
tains the portion of morphing effects where our method was se-
lected over the other method (appearing in the ‘Compared to’ col-
umn). Likewise, the column ‘Theirs’ contains the portion where the
other method triumphed, and the ‘Tie’ column specifies the remain-
ing portion, where ‘no preference’ was selected. The statistics of
the two questions appear in the same cell in the format q1/q2, such
that q1 corresponds to the statistics of the first question. These re-
sults show that in all sets except for Planes, users prefer Liao et al.
[LLN*14] (Halfway) over ours, with larger margins in the real im-
age datasets (Bags and Boots), where faithfulness to the original
image statistics is more crucial. The planes dataset contains in-
stances with highly distinct silhouettes that prove challenging for all

Table 3: User study results. Refer to main text for details. Higher user pref-
erence is marked in bold.

Set Compared to Ours Theirs Tie

Bags Halfway 0.25/0.27 0.625/0.59 0.125/0.13
Bags Linear blend 0.51/0.49 0.22/0.25 0.27/0.26
Bags WGAN-GP 0.88/0.875 0.08/0.08 0.04/0.046
Boots Halfway 0.29/0.27 0.53/0.53 0.18/0.2
Boots Linear blend 0.39/0.41 0.32/0.28 0.29/0.3
Boots WGAN-GP 0.93/0.86 0.007/0.05 0.066/0.083
Cars Halfway 0.34/0.33 0.45/0.45 0.21/0.23
Cars Linear blend 0.38/0.375 0.3/0.3 0.32/0.32
Cars WGAN-GP 0.89/0.88 0.01/0.04 0.09/0.08
Planes Halfway 0.43/0.43 0.41/0.41 0.16/0.16
Planes Linear blend 0.47/0.48 0.3/0.3 0.23/0.21
Planes WGAN-GP 0.86/0.81 0.04/0.086 0.11/0.11

methods, but are slightly better handled by ourmethod, which is able
to reliably compute the alignment between the inputs. Our method
had the upper hand over linear blend andWGAN-GP in all datasets,
with a smaller margin against linear blend, whose performance is
satisfactory when the two input shapes are sufficiently similar in
shape, but otherwise produces ghosting artefacts. Note that all mor-
phing effects were taken from the pool of 100 effects per dataset that
we generated from the test set, all of which are available for viewing
in our supplementary material.
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Figure 6: Qualitative comparisons. Morphing sequences of bags and boots, generated by our method versus three others.

While the classic method of Liao et al. [LLN*14] has the over-
all upper hand in terms of user preference, the advantage of our
method is its consistency and robustness to different shape silhou-
ettes and textures, and its speedy inference time (see our supple-

mentary material for run time comparisons). Our main limitation is
individual frame quality which relies on network generation, thus,
latest and future advances in neural generation may help alleviate
this, although at a probable training time penalty.

Figure 7: Qualitative comparisons. Morphing sequences of cars and planes, generated by our method versus three others.
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Figure 8: Content and style disentangled morphing. A 2D 6 × 6 morphing grid between an input pair of boots (shown at the top left and
bottom right corners) appears on the left, and similarly for cars on the right.

4.2.2. Content and style

Figure 8 contains two examples for content and style disentangled
morphing as described in Section 3.4. For a given input pair, we
generate each frame in a 6 × 6 grid, such that for cell (i, j), the
coordinate i represents the desired location on the content axis, and
similarly for coordinate j with the style axis.

For more results, please see our supplementary material. For our
full implementation please see our GitHub page.

5. Conclusion

We presented a new approach for morphing effect generation, com-
bining the conditional GAN paradigm with a grid-based freeform
deformation STN and a set of PS losses. The components that make
up our pipeline have been carefully curated to promote the genera-
tion of realistic in-betweens with smooth and gradual transitions, re-
sulting in a solution that is robust to inputs exhibiting differences in
shape and texture. Particularly, shape misalignments are overcome
automatically by the integrated STN that learns a strong shape prior

© 2020 The Authors Computer Graphics Forum © 2020 Eurographics - The European Association for Computer Graphics and John Wiley & Sons Ltd



312 N. Fish et al. / Perceptual Image Morphing

based on semantic features, rather than on potentially misleading
low-level features.

In a world that is constantly hungry for more visual data, the abil-
ity to generate high-fidelity image instances is particularly benefi-
cial. These can be used not only for artistic purposes, but also to
enrich and augment existing datasets in support of various endeav-
ours requiring substantial amounts of information. Moreover, as a
frame generation framework, a natural and potentially advantageous
connection ties us to the field of video processing and synthesizing,
one that may establish a bidirectional exchange of ideas with the
prospect of mutual gain.

We note that our current setup is composed of simple building
blocks—a no-frills generator and discriminator that maintain a bal-
ance of good performance with low computational cost. Despite
that, potential improvements and extensions to these components
may further increase the quality of the generated frames, which are
not always free of commonmorphingmaladies such as ghosting and
blurring. The addition of supervision to the pipeline may broaden
the scope of our approach, and allow various types of transitions
such as rotations. Similarly, morphing between images with arbi-
trary backgroundsmay call for an integration of a dedicated segmen-
tation component, one that is either pre-trained, or trained within the
entire framework in an end-to-end manner.
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