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Abstract

In the past few years, advances in graphics hardware have fuelled an explosion of research and development in the field of
interactive and real-time rendering in screen space. Following this trend, a rapidly increasing number of applications rely
on multifragment rendering solutions to develop visually convincing graphics applications with dynamic content. The main
advantage of these approaches is that they encompass additional rasterised geometry, by retaining more information from the
fragment sampling domain, thus augmenting the visibility determination stage. With this survey, we provide an overview of
and insight into the extensive, yet active research and respective literature on multifragment rendering. We formally present
the multifragment rendering pipeline, clearly identifying the construction strategies, the core image operation categories and
their mapping to the respective applications. We describe features and trade-offs for each class of techniques, pointing out GPU
optimisations and limitations and provide practical recommendations for choosing an appropriate method for each application.
Finally, we offer fruitful context for discussion by outlining some existing problems and challenges as well as by presenting
opportunities for impactful future research directions.

CCS Concepts
• Computing methodologies → Rasterization; Visibility;

1. Introduction

Multifragment rendering (MFR) is a genre of image synthesis tech-
niques and associated data structures tightly coupled with the ras-
terisation pipeline, which has helped deliver important improve-
ments to the visual quality of primitive-order rendering and has en-
abled the real-time display of complex phenomena and structures.
A multifragment method encompasses the algorithms and image-
space data structures that are necessary to produce, maintain, pro-
cess and exploit a set of geometry fragments that are associated
with a single image, in the sense that multiple samples correspond
to the same location in image space. Currently, and in the years
to come, MFR has an important role to play with the increasing
demand for ray-tracing-enabled applications, since the rich image-
space information that is provided can facilitate the creation of hy-
brid rendering techniques, providing freedom to the creative mind.

Scope. In this survey, we examine the underlying mechanisms,
complexity, strengths and weaknesses of multifragment-based so-
lutions and their applications, ranging from order-independent
transparency to global illumination. We present the most impor-
tant techniques for the creation and population of a multifragment
buffer and discuss in detail the various operations that can be per-
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formed on the stored data to implement fundamental methods for
image synthesis.

Multifragment rendering is not to be confused with multiview
approaches, such as cube map rendering, which are orthogonal in
both their generation procedure and use in applications. In fact,
later in this survey, some techniques that simultaneously use both
strategies are reported. Similarly, methods based on layered depth
images (LDIs) [SGHS98] also encompass data from multiple views
and, as such, are not included here. However, some MFR ap-
proaches in the literature are referred as LDIs, therefore they are
considered part of this survey. Finally, we exclude from the discus-
sion voxelisation techniques that rely on the rasterisation pipeline,
which generate data structures addressable in object space.

Throughout the years, many different terms have been used
in the literature to identify the data structure responsible for
storing multiple per-pixel fragments and often reflect the in-
tended application, including Deep Images [VAN∗19], Deep G-
buffers [MMNL16], Layered Fragment Buffer [KLZ12], and Layer
Depth Images [SGHS98]. In this work, we avoid complicating mat-
ters further and use the term multifragment rendering for the rest of
the manuscript, since it neither makes any assumption on the data
type that is captured and stored nor contains the notion of multiple
viewpoints.
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Related Surveys. In a recent tutorial course [HB14], Havran and
Bittner showed that many rendering algorithms are tightly con-
nected to sorting and searching methods. Despite the extensive
analysis on the underlying data structures and their enhancements
in the context of specific rendering algorithms, the scope of this
work was, contrary to our case, object-space data structures.

On the other hand, several surveys have attempted to classify
MFR techniques with regard to the specific topic of interactive
order-independent transparency [MCTB11, Wym16] as well as in
the broader field of light transport [RDGK12]. Nevertheless, no re-
sources exist to inform readers on the large volume of research on
the general image-space rendering domain, leaving several aspects
of valuable knowledge obscured and ambiguous.

Report Organisation. The paper is organised as follows. Section 2
deals with the fundamental concepts of the rasterisation pipeline
and visibility determination as well as how these can be gener-
alised, beyond hidden surface elimination. Section 3 provides a
comprehensive and comparative analysis of the current methods
used to route and store the samples of the displayed geometry, by
classifying them based on their memory allocation strategy. The
different stages of each algorithm are further discussed and ex-
plained, focusing on function rather than implementation. Section 4
outlines how fundamental image operations have been adjusted to
encompass the generic multifragment nature of image-space ren-
dering in order to give a significant effect on the speed and quality
at which images are produced. Section 5 presents how novel MFR
solutions have been exploited in a large variety of diverse prob-
lems and applications and summarises several key strategies that
have been found to perform well on specific scenarios. Section 6
discusses open problems and undiscovered, or with a rare atten-
tion, research areas. Finally, Section 7 offers conclusions and final
thoughts in the MFR topic.

2. Fundamentals

This section presents what is commonly considered to be the heart
of real-time rendering, namely the rasterisation pipeline. For both
the expert and inexperienced reader in the domain of real-time ren-
dering, it can help establish a common ground for concepts and
conventions, used in the rest of the paper. While the different stages
of the rendering pipeline will be shortly mentioned (Sec. 2.1), an
in-depth discussion on the visibility determination problem will be
provided (Sec. 2.2), since it involves some of the most complex
operations that are relevant to MFR techniques and differentiate
many of the algorithms presented. More importantly, we also dis-
cuss how the visibility determination process can be generalised to
support indirect visibility (Sec. 2.3). Finally, Table 1 summarises
most of the symbol notation used throughout this document, where
some of them will be described at some length in the following
subsections.

2.1. Rasterisation

In its simplest form, a rasterisation process receives as input a
mathematical representation of geometric shapes and converts the
latter into a set of coloured dots, or pixels, to fill a rectangular grid,

called a raster, which represents a synthesised image. At a more ab-
stract level, and the one that reflects a modern architecture, it con-
stitutes a geometry sampling process that leads to a set of records
of information associated with each sample, or fragments, that are
forwarded down a graphics pipeline for shading, routing and com-
positing to an image buffer.

Conceptually, this process can be pipelined into four basic steps,
which are directly mapped to the graphics processing unit (GPU).
First, each geometric shape is decomposed into a set of basic prim-
itives, such as points, lines, and triangles. Each primitive is rep-
resented as an ordered sequence of vertices, where each vertex is
further associated with a set of vertex attributes, such as position,
normal, etc. Then, a series of vertex processing stages is executed,
responsible for both vertex and primitive manipulation. Each prim-
itive can be subdivided further and/or spawn new primitives, while
each vertex is subjected to a series of transformations and clipping
that eventually projects it onto the image plane. Third, the scan
conversion step samples the projected objects, usually at a fixed
spatial rate, to form a record of the interpolated attributes of the
primitive at each sampling location. The relationship between frag-
ments and pixels is many to one; many surfaces may overlap the
same pixel area, thus generating multiple per-pixel fragments, or
layers, F(p) = { f1, . . . , fn(p)}, where n(p) ≥ 0 corresponds to the
fragment count at pixel p. The fragments are potentially tested for
visibility and the surviving ones, assuming a fixed shading rate,
are forwarded for fragment processing. Finally, the results of this
procedure are routed to one or more output buffers after a merg-
ing stage performs a series of post-processing steps to compute the
final values to the output buffers based on the sampled information.

In graphics hardware architectures, the fragment generation
stage is executed in parallel and fragments corresponding to the
same pixel location are produced in a primitive order, forming a
generally unsorted sequence with respect to the projection axis.
Therefore, to produce a correct image, a visibility determination al-
gorithm is employed, to determine how surfaces occlude each other

Table 1: Summary of the symbol notation used in this survey.

Symbol Description
Rasterisation
p Pixel
f j Fragment j
z j Depth of fragment f j

n(p) Depth complexity of p
n Maximum depth complexity for all pixels p: max(n(p))
F(p) Fragment set { f1, . . . , fn(p)} of p

Multifragment Rendering
i Algorithm iteration
rg Geometry rendering passes per iteration i
s(p) Maximum number of stored fragments of p in a single i
Fs(p) Stored fragment set { f1, . . . , fs(p)} of p, where Fs ⊆ F
k(p) Capacity of stored fragments of p in a single i
k Capacity of stored fragments for all p in a single i
b Number of depth bins
nb Depth complexity of depth-divided scene
m(p) Memory allocation for each pixel p
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Figure 1: The correct depth order, with respect to the camera view-
point, of the projected primitives is determined via the use of a
depth buffer (top). The depth buffer and the corresponding resolved
image for an example 3D scene (bottom).

and write the appropriate values to the image buffer. In particular,
the rasterization pipeline is very efficient at resolving primary visi-
bility, i.e. identifying the fragments associated with the first visible
surface locations with respect to the virtual sensor (Fig. 1).

2.2. Primary Visibility Determination and the Z-buffer

The most widely used algorithm for primary visibility determina-
tion is the Z-buffer [Cat74]. An image buffer, called the depth buffer
is created to hold the closest depth values with respect to the viewer.
Each fragment’s depth is tested against the currently stored value in
the same image-plane location and prevailing fragments are marked
as visible, updating the depth buffer with their own depth values.
The Z-buffer algorithm is a trivial yet effective technique for re-
solving direct surface visibility. It works with arbitrarily ordered
fragments and any geometric entity whose depth can be sampled
in image-space, and is thus efficiently implemented in commodity
hardware. As a result, it has been exploited to produce a vast num-
ber of real-time techniques [TPK01, RDGK12, AMHH∗18].

After processing all fragments, the Z-buffer algorithm effectively
produces a single layer of discretised geometric information about
the surfaces in view, which in the case of opaque surfaces corre-
sponds to the nearest visible geometry to the virtual sensor. How-
ever, this is not generally the case if fragment blending is involved
at the merge stage, e.g. to compute transparency effects. It is ac-
tually the reason that spurred the research of many methods on
order-independent transparency; transparent surfaces require mul-
tiple per-pixel fragments to be captured in sorted back-to-front or-
der and then evaluated using a compositing operator [MCTB11].
In general, with a single layer of view-dependent geometric infor-
mation, computations that require samples from hidden surfaces
or outside the current field of view are difficult to implement.
Phenomena such as indirect illumination [DS05], ambient occlu-
sion [Mit07], etc., where a visible point interacts with geometry
and lighting from potentially any part of the scene, cannot be prop-
erly implemented solely by relying on the depth buffer samples.

Opera�on Image

0 1 2 3 4 0 1 2 3 41 03 4 2

Construc�on

TransparencyTraverseStore Sort

Multifragment Rendering Application

Figure 2: Diagram of building an application using the MFR
pipeline (top). Order-independent transparency requires the sort-
ing of an arbitrary sequence of out-of-order fragments before alpha
compositing them in a linear traversal fashion (bottom).

2.3. Generalisation

Historically, the most prominent example of a method that went
beyond the single layer of rasterised geometry was Carpenter’s A-
buffer [Car84]; a software implementation of multiple per-pixel
linked lists for transparency and antialiasing purposes (Sec 3.2).
This was later followed by hardware architecture proposals, such
as the F-buffer [MP01] and the R-buffer [Wit01], based on FIFO
and recirculating fragment buffers, respectively.

At a conceptual level, the complex primary visibility determi-
nation is part of a more general multifragment pipeline responsible
for generating, storing, processing and evaluating information from
incoming fragments. This pipeline is comprised of two main steps:
construction and operation, both of which are affected by the con-
text of the particular application in mind (Fig. 2).

The construction step is responsible for generating and stor-
ing per-pixel fragments through a common rasterisation proce-
dure (Sec. 3), which is repeated according to a fixed number of
iterations i. Each iteration is executed in one or more geometry
rendering passes rg. In every geometry pass, a fragment subset
Fs(p)⊆ F(p) = { f1, . . . , fs(p)}, s(p)≤ n(p), associated with pixel
p is selected, sorted and eventually stored. The outcome of each
iteration is the starting point of the next iteration.

Even though storing and sorting are two fundamental build-
ing blocks of the construction step (Sec. 3.2 and 3.3), the lat-
ter stage is implicitly performed for the depth-peeling techniques
(Sec. 3.1). Concerning implementation, it can be applied either as
post-processing step or as an online algorithm, i.e. reordering frag-
ments as they arrive.

After construction has taken place, the next step performs one or
more operations on the ordered fragment data structure. The most
critical operation here is fragment data traversal, followed by other
optional, but more advanced ones, such as mipmapping, compres-
sion, etc. (Sec. 4). The application accesses and exploits the frag-
ment information stored in the MFR structure to compose the final
output (Sec. 5).

3. Construction

We classify the multifragment buffer construction techniques ac-
cording to the maximum number of fragment samples per-pixel
s(p) captured by each method in a single iteration step, in three
broad categories: depth-peeling, A-buffer and k-buffer methods
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Figure 3: Basic classification of multifragment buffer construction
methods based on the number of fragment samples per-pixel cap-
tured by each one in a single algorithm iteration.

(Sec. 3.1-3.3). Unlike depth peeling approaches, which directly
yield an ordered set of fragments per pixel, fragments captured by
A-buffer or k-buffer solutions are depth-ordered either during the
construction process via insertion sort or by a consecutive post-
sorting process (Sec. 3.2.2). Figure 3 presents a generic taxonomy
of the MFR domain based on this categorisation.

Depth-peeling methods process all fragment information
through an iterative rendering pipeline with i > 1. Depending on
the algorithm, each iteration carries out 1 or 2 passes rg, to ex-
tract a limited fragment batch s(p) = {1,2}, with guaranteed depth
order (Sec. 3.1). The main advantages of methods in this class
are that they allocate constant memory, they do not need post-
sorting and they support older hardware, increasing portability and
ease of implementation in diverse architectures. Their downside
is that they can induce a significant, and often prohibitive, over-
head on the geometry processing stage and rasterisation, cumula-
tive over all iteration steps. Nevertheless, depth-peeling algorithms
are still used nowadays despite their outmoded multipass mecha-
nism [LKE18, TDDD18]. In practice, they are usually employed
when sufficient visual quality can be achieved by processing even
a small number of fragments per pixel, for example s(p) = 4.

A-buffer methods aim at capturing all fragments per pixel, s(p)=
n(p), in a single iteration step (i = 1). Typically, fragments are
stored into GPU-accelerated data structures of fixed- or variable-
length per pixel during a single geometry rendering pass (rg = 1),
followed by a sorting process that reorders them according to their
depth. A-buffer variants are currently the dominant method for
maintaining and processing multiple fragments even in commod-
ity graphics hardware. However, this class of methods suffers from
memory overflows as a result of the unpredictable memory space
needed to store all generated fragments as well as performance bot-
tlenecks that arise when the number of per-pixel fragments to be
sorted increases significantly. To this end, a multitude of novel A-
buffer alternatives were proposed aiming at overcoming these lim-
itations (Sec. 3.2).

k-buffer approaches offer a middle ground between the depth
peeling and A-buffer classes of methods by efficiently combining
the best features of both pipelines. While, in some cases, the k-
buffer has been referred as multilayer depth peeling in the litera-
ture [LWXW09, LCD10], we think that it defines a unique class
of methods with distinct characteristics and essential capabilities
and, thus, we dedicate a separate section for it. In general, k-
buffer approaches are capable of capturing the k-best fragments,

image plane

viewing frustum

i=1 i=2 i=3 i=4 i=5

Figure 4: The fragment samples of each extracted layer when front-
to-back depth peeling [Eve01] is performed for multiple iterations
i = 1 . . .5. Note that distant from the camera fragments (outlined
with red colour) are not captured.

s(p) = k, in each iteration by employing a fixed-size per-pixel ar-
ray buffer (Sec. 3.3). Without loss of generality, the k-best frag-
ments in a pixel p are defined as the k-subset of F(p) that minimise
the value of a specific cost function C(p). For example, finding the
k-nearest fragments can be expressed as the minimisation of func-
tion C(p) = ∑k z j , where z j corresponds to the depth of f j. As a
result, using a k-buffer requires fewer iterations, i = dn/ke, when
compared to the traditional depth-peeling in order to capture all
generated fragments n. In practical scenarios, where only a spe-
cific portion of the fragment pool is enough for achieving plausible
simulation effects, such as transparency (Sec. 5.1), only a single
iteration is usually performed. The k-buffer can objectively be con-
sidered as the most preferred framework for optimal fragment sub-
set selection, especially when low graphics memory requirements
are of the utmost importance. Unfortunately, the standard practice
of employing a fixed number of k for all pixels can lead to various
issues [VVPM17]. On one hand, setting k to a small number, can
result in view-dependent artefacts as more than k fragments might
be required for some pixels at a particular viewing configuration to
correctly simulate the desired effect. On the other hand, employing
a large value of k can result in wasteful memory allocation, as a
large and potentially unused storage is preallocated for pixels that
contain less than k fragments.

Table 2 presents a comparative overview of the most represen-
tative MFR methods in each class with respect to the rendering
complexity, fragment acquisition, memory requirements, and sort-
ing stage.

3.1. Depth Peeling

Probably the most well-known iterative MFR technique is the
front-to-back depth peeling, which works by rendering the geom-
etry multiple times, extracting a single fragment layer per itera-
tion, in ascending depth order. The technique was first described
in [Mam89] and later implemented by Everitt [Eve01] gaining a
lot of popularity due to its low and constant storage requirements.
Specifically, the algorithm starts by rendering the scene normally
with a depth test (Sec. 2.2), which returns the closest per-pixel frag-
ment to the camera. The prepared depth buffer is then used as the
minimum acceptable depth in the subsequent pass. Together with
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the normal depth test, this effectively discards previously extracted
fragments, producing the next nearest layer underneath. This pro-
cess is performed iteratively and halts either when the maximum
number of iterations, set by the user, is reached or if no more frag-
ments are generated. Figure 4 shows how the consecutive fragment
samples are stored, illustrated with a different colour per iteration,
when depth peeling in a front-to-back fashion. While traditional
depth peeling extracts layers in a front-to-back order, Reverse front-
to-back peeling [Thi08] technique peels the layers in back-to-front
order, allowing to blend them with the output frame buffer imme-
diately, in the special case of order-independent transparency. Un-
fortunately, both methods require O(n) complexity. Furthermore,
the n passes of rasterisation makes them unsuitable for real-time
applications with complex geometries.

Dual depth peeling [BM08b] speeds up the rendering process, by
bidirectionally capturing both the nearest and furthest fragments in
each iteration, thus dropping the complexity to O(n/2). The idea
is to apply the original depth peeling method for the front-to-back
and the back-to-front directions simultaneously. Due to the unavail-
able support of multiple depth buffers on the GPU, a custom min-
max depth buffer is necessary. In every iteration, the algorithm ex-
tracts the fragment information which matches the min-max depth
values of the previous iteration and performs depth peeling on the
fragments inside this depth range. An additional rendering pass is

Table 2: Overview of selected representative MFR construction
methods. Symbols notation can be found in Table 1. For clarity,
the m(p) column presents relative per-pixel storage requirements,
assuming equally-sized fragment payload and depth.

Method i rg s(p) m(p) Post-Sort
Depth Peeling
Front-to-back

n 1 1 3 x
[Eve01]
Dual d n

2 e+1 1 2 6 x
[BM08b]
Depth Bins dnb/2e 1 2b 4b+2 x
[LHLW09]
A-buffer
Linked Lists

1 1 n(p) 3n(p)+1
√

[YHGT10]
Arrays

1 1 n(p) 2n+1
√

[LHLW10]
Variable-size Arrays

1 2 n(p) 2n(p)+2
√

[VF12, MCTB14]
k-buffer
Arrays dn/ke 1 k 2k+1 x
[BCL∗07, Sal13]
Decoupled Arrays dn/ke 2 k 2k+1 x
[MCTB13]
Linked Lists dn/ke 1 k 3k+6 x
[YYH∗12]
Max-Heaps/Arrays dn/ke 1 k 2k+2

√
[VF14, TH14]
Variable-size Arrays dn/ke 2 k(p) 2k(p)+2 x
[VVPM17]

needed to initialise the depth buffer to the closest and the further
layers.

The dual depth peeling method was extended to extract two frag-
ments per uniform depth bucket in each iteration [LHLW09], thus
reducing further the necessary iterations to dnb/2e, where nb cor-
responds to the depth complexity n(b j) of the bucket b j with the
most fragment layers in all pixels: nb = max{n(b j)}, nb < n. Each
bucket corresponds to a uniformly divided interval of the pixel
depth range. To quickly approximate the depth extent of each pixel,
a rendering pass of the scene’s bounding box has to be initially per-
formed. To reduce collisions in scenes with highly non-uniform dis-
tributions of fragments, the authors further proposed to adaptively
subdivide depth range according to the fragment occupancy in each
pixel: nb = dn/be, where b is the number of buckets. However, this
comes with the expense of additional rendering passes and a larger
memory overhead.

Similar to the Z-buffer, depth peeling methods are susceptible to
flickering artefacts (z-fighting), when two or more generated frag-
ments in the same pixel have identical depth values. This phe-
nomenon introduces various undesirable and unintuitive results,
when rendering complex multilayer scenes. Vasilakis and Fudos
introduced a number of solutions [VF13] to, fully or partially, al-
leviate the depth coplanarity issues in depth peeling methods with
the expense of either performance downgrade or excessive memory
allocation, respectively, and potential fragment overflow.

Recently, Mara and McGuire [MMNL16] proposed a minimum
separation selection criterion during depth peeling, where they se-
lect only the most relevant, with respect to shading, geometry frag-
ments; the ones that are immediately accessible after a certain dis-
tance past the visible surfaces. The authors also applied reverse re-
projection to closely estimate the second depth layer in a single ge-
ometry rendering pass (rg = 1). A generalisation of the traditional
single-layer G-buffer [ST90] was also presented where additional
geometry properties can be stored per depth layer.

Discussion. Despite the development of several speed op-
timisations via acceleration schemes, such as z-clipping
planes [WGER05], tiling [KSN08], partial geometry order-
ing [CMM08] and object-based occlusion culling [VF13], depth
peeling methods fail to behave interactively on complex environ-
ments since the geometry is repeatedly rasterised multiple times.
On the other hand, they require minimal graphics memory and can
be the optimal choice when the exhaustive capture of all fragments
is not imperative [MMNL16].

3.2. A-Buffer

Conceptually, the construction of an A-buffer data structure re-
quires two stages: (i) a store operation, where all fragments are
captured in the form of an unsorted sequence, and (ii) a sorting
one, where fragments are reordered correctly according to their
depth. Since each operation deals with different issues and research
questions, the remaining of the discussion is organised as follows:
Section 3.2.1 reviews methods related to the generation, process-
ing and storing of all incoming fragments, in parallel. Section 3.2.2
discusses the problem of efficient parallel sorting in the graphics
hardware.
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viewing frustum
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Figure 5: The A-buffer is able to capture all fragment samples in a
single iteration step.

3.2.1. Store

Historically, the first MFR approach was based on the A-buffer
method for resolving visibility of hidden surfaces [Car84]. The
main idea is to store all generated fragments (Fig. 5) in variable-
length lists instead of keeping only the closest visible fragment, as
in the Z-buffer. Each fragment in the list contains additional in-
formation such as opacity, area and coverage, in order to handle
antialiasing and transparent surfaces. A depth-sorting operation ar-
ranges the fragment lists in a back-to-front sequence. The final im-
age is obtained by traversing the list and resolving the final colour
of each pixel.

Yang et al. [YHGT10] proposed a GPU-variant of the original
method using per-pixel linked lists, by exploiting the capability of
graphics hardware to perform atomic operations. The implementa-
tion requires two buffers: a head buffer, containing head pointers
to each list and a node buffer, storing node connectivity and data
information of each node for all lists. The algorithm runs in every
frame and operates in three steps. In the first step, both buffers are
cleared to zero, representing null head pointers and no data, respec-
tively. In the second step, the lists are filled in a subsequent geom-
etry rendering pass. For each incoming fragment, the address of a
new node is obtained by atomically incrementing a global atomic
counter. Then, an atomic exchange operation sets the new node’s
next pointer to the pointer that is currently stored in the head buffer
and replaces the head pointer with new node’s address (Fig. 6, left).
This operation creates the linked list in reverse, where all per-pixel
fragments are stored in an unsorted manner. Finally, a post-process
operation reorders the fragments based on their depth.

The algorithm exploits efficiently the rasterisation pipeline and
is able to capture all fragments in a single iteration. However, it
suffers from two limitations. First, it requires a memory prealloca-
tion operation to reserve the memory space needed, since dynamic
memory allocation for new nodes is not possible within a shader.
This is decided manually and can result either in wasted space or
memory overflow; the latter manifests as flickering. This can only
be avoided by performing an initial step, responsible for counting
the total number of fragments required. Second, the non-contiguous
allocation patterns of the linked list result in memory indirections
and cache misses and can, as a result, cause performance degra-
dation in applications that typically operate on sequential per-pixel
elements, such as order-independent transparency (Sec. 5.1).

The research community has since focused on ways to allevi-
ate the limitations of GPU-based linked lists, improve upon their
efficiency as a data structure, or even propose alternative repre-
sentations. As an example, Crassin [Cra10b] used a memory pag-
ing mechanism, where fragments are allocated in small fixed-size
blocks (4-6 fragments each) in each pixel instead of individually.
This way, cache coherency is improved when accessing neigh-
bouring per-pixel fragments, at the cost of slight fragment over-
allocation.

Classic linked lists perform well as long as the mode of operation
is unidirectional. For efficient bidirectional traversal, one [FMS13]
or multiple [VVP16a] double-linked lists can be used. This can be
achieved by augmenting the single list with a prev pointer in each
node and a tail buffer. Double linked-lists can support more com-
plex effects at the non-negligible cost of extra memory space.

Decoupling visibility from shading data allows for compact A-
buffer representations. This is accomplished by maintaining only
depth information in the node buffer [LHL15,VVP16a] and defer-
ring the rest of the data to a separate buffer, in order to reduce mem-
ory bandwidth during the sorting stage. One step further, primitive-
based A-buffers [KWBG13, VVP16b] aim at decoupling visibility
with per-fragment shading. Using such a layer of indirection can
impose a small performance decrease but can also reduce the mem-
ory storage of the entire data structure significantly. To mitigate
memory overflow issues, tiling approaches split the image domain,
uniformly [Thi11] or adaptively [TSdSK13], into smaller regions
and render the scene in multiple geometry passes.

Instead of a linked list, Liu et al. [LHLW10] proposed FreePipe,
a CUDA-based implementation of the rasterisation pipeline. Their
approach allows the storage of all fragments in fixed-size per-pixel
arrays. Compared to a linked list, the need to maintain node point-
ers is removed and fragments are stored in contiguous memory lo-
cations. A similar approach was also implemented in the traditional
rasterisation pipeline [Cra10a]. In general, fixed-size approaches
can offer much higher efficiency in complex environments, since
cache coherence is improved significantly. On the downside, scenes
with uneven fragment distribution can cause large blocks of mem-
ory space to be wasted, as the size of each array is fixed for all
pixels (Fig. 6, right).

Lefebvre et al. [LHL13] proposed the HA-buffer, where frag-
ments are stored in a hash-table rather than a traditional array.
To preserve spatial coherence on the keys, the authors employed
a parallel implementation of Robin Hood hashing. One of the key
properties of this technique is that construction and depth-ordering
can be combined in a single geometry pass, since fragments are
sorted as they are inserted in the hash. The HA-buffer exhibits good
performance characteristics, but the overall construction speed de-
pends on the occupancy of the hash-table, where high load factors
require more hash-table lookups to find the appropriate storage lo-
cation.

Variable-size arrays attempt to combine the advantages of fixed-
size arrays and linked-list structures [VF12, KLZ12, MCTB14].
Typically, they require two additional passes before the storing
stage: an initial geometry pass, responsible for counting the num-
ber of fragments in each pixel and a screen-space pass, for the gen-
eration of per-pixel memory offsets (heads) through a prefix sum
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Figure 6: Basic A-buffer variants: Variable and fixed array structures pack pixel fragments in contiguous memory regions (centre, right),
avoiding the memory indirections when accessing the nodes in the linked list (left). Variable arrays achieve this by performing additional
passes and maintaining extra buffers (centre) while fixed arrays allocate the same number of entries per pixel resulting at significant waste
of memory space (right).

operation. These methods are able to allocate per-pixel information
in contiguous regions and without overestimating memory space
(Fig. 6, centre), thus, offering a memory-friendly alternative to the
other approaches with improved cache coherence. On the down-
side, they are more complex to implement and can be less efficient
on scenes with high geometric complexity.

Discussion. The various A-buffer alternatives that exist in the liter-
ature cover a broad range of characteristics and, therefore, there is
no optimal solution but rather a more suitable match for each appli-
cation’s requirements. Fixed-size arrays are the simplest and most
efficient implementation but can also waste a significant amount of
memory. So they should be employed on scenes with uniform frag-
ment distribution, or applications with relaxed memory constraints.
Traditional linked lists can accommodate more complex environ-
ments at the same memory budget, by trading tighter memory allo-
cation with less efficient cache utilisation. Finally, variable-size ar-
rays are preferable for applications with tight memory budget and
environments with medium geometric complexity.

3.2.2. Sort

After all fragments have been generated and saved to the A-buffer
variant (except the HA-buffer [LHL13] which is an exception), they
are depth-ordered in a subsequent sorting stage. Conventionally,
this task is parallelised across pixels, but serialised along the in-
dividual depth fragments, by being implemented in a single full-
screen rendering pass. The process can be divided into four main
consecutive steps: read the depth values of the captured fragments
from the global memory, store the data in a local temporal struc-
ture, sort the temporal data based on the depth information, and
finally save the sorted data back to the global memory. The rea-
son for copying the unsorted fragment list to a local cache before
sorting is that the high latency when operating on global memory
is minimised. While altering the global structure of the A-buffer
may improve more or less the performance (Sec. 3.2.1), several
approaches have been proposed for alleviating the bottlenecks that
arise in managing local caches in graphics hardware. High fragment
scattering can impact the actual sorting algorithm due to thread
divergence, while poor coalescing and bad utilisation of the local
memory can affect all the other steps.

The graphics architecture is significantly different from that of
a CPU, thus directly applying typical parallel sorting strategies

is neither optimal nor practical. Even though GPU-based sorting
algorithms have been explored in the literature [SJC18], reorder-
ing millions of fragment lists in parallel remains a non-trivial task.
Knowles et al. [KLZ12] showed that altering the sorting algorithm
per pixel based on n(p) has resulted significant speed benefits.
Specifically, they demonstrated that the insertion sort algorithm be-
haves faster for low depth complexity, e.g. n(p)≤ 16, while merge
or shell sort is better suited for higher fragment counts. To re-
duce divergence and improve memory caches, Vasilakis and Fu-
dos [VF13] performed bin sort by distributing the fragment ele-
ments into a number of buckets, and each bucket is then sorted
individually. However, the computational complexity depends on
the algorithm used to sort each bucket, the number of buckets to
use, and most importantly on whether the input is uniformly dis-
tributed. To reduce the amount of local memory access, a novel
register-based block sorting algorithm was further introduced by
using an insertion sort network of fast registers, thus better exploit-
ing the memory hierarchy of the GPU [KLZ14]. Recently, Archer
and Leach [AL18] showed that the latter method can be improved
by modularising parts of the network and by tuning the loop un-
rolling, thus reducing the total sort code size for better cache be-
haviour.

Proper memory cache utilisation can have a large impact on the
overall performance. The prevailing approach described in the lit-
erature [YHGT10, Cra10a] for managing local GPU caches is to
allocate a fixed-sized array of length n per pixel. However, larger
array sizes can significantly reduce the number of active threads
due to low occupancy. Lindholm et al. [LFS∗15] presented two
novel approaches to improve the management of local GPU caches.
The first minimises the allocated size in the fast cache memory
by adjusting the allocation to pixel depth complexity (also pro-
posed in [KLZ13] as backwards memory allocation), while the sec-
ond partitions the depth sorting similarly to the iterative k-buffer
(Sec. 3.3), thus recycling a smaller amount of local memory. A
faster variation was further introduced in [VPF15] that alters the
traditional array with a max-array structure [VF14, TH14] at a lo-
cal cache level.

To overcome the sequential nature of the sorting process on
the number of depth layers, a CUDA-based technique extended
the domain of parallelisation to individual fragments [PTO10]. A
fragment-parallel procedure is responsible for sorting the list of
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image plane

viewing frustum

k=4

Figure 7: The fragment samples captured from a k-buffer, with
k = 4, when a single iteration is performed. Note that distant from
the camera fragments (outlined with red colour) are not captured.

generated fragments using a two-key sorting scheme, with pixel
identification as the first key and the depth value as the second one.
However, the performance advantages of this method are obvious
only for scenes with very high depth complexity (n > 50).

Discussion. The behaviour of the graphics memory caching, local-
ity and occupancy is highly-sensitive to the irregular fragment sam-
pling. Choosing the appropriate sorting mechanism is application-
dependent and most specifically, related to the generated fragment
distribution. In practice, efficient sorting implementations gener-
ally use hybrid solutions combining an asymptotically efficient al-
gorithm for the overall ordering with insertion sort for small lists.

3.3. k-buffer

Z3 [JC99] is considered the first hardware architecture to use a fixed
number of fragments per pixel in order to allocate less memory
than the A-buffer variants. When the maximum number of frag-
ments per pixel is reached, it selects the two closest fragments and
merges them together using a set of heuristics based on pixel cov-
erage. The k-buffer, initially defined in [CICS05] for volume ren-
dering and later extended in [BCL∗07] to support a larger variety
of applications, can be seen as a generalisation of the Z3 algorithm,
where the storage and insertion of the fragments has been made
programmable.

k-buffer [CICS05, BCL∗07] reduces the computation cost by
capturing the best k-subset of all generated fragments, usually the
closest to the camera (Fig. 7), in a single geometry rasterisation
pass. In general, the algorithmic structure of any k-buffer variant
is as follows. For each incoming fragment f j ∈ F(p), we initially
read the captured elements of k-buffer for pixel p from the graph-
ics memory and copy them to a temporary buffer. If this fragment is
important, compared to the preexisting fragments in F(p), we mod-
ify the current fragment subset accordingly (e.g. with insertion sort)
and finally write the updated elements back to the k-buffer memory.
If the fragment is not significant, e.g. it is positioned after all k al-
ready captured fragments, then it is discarded and the k-buffer is not
modified. Note that the importance function for fragment inclusion
and order in F(p) varies between applications.

Despite the increased computational demands and reduced mem-
ory when compared to depth peeling and A-buffer solutions re-

spectively, the original algorithm suffers more or less from disturb-
ing flickering artefacts caused by read-modify-write hazards raised
when the generated fragments are inserted in arbitrary depth order.
The image quality may be significantly improved based on a coarse
CPU-based presorting in primitive space [HCNS18] which can re-
duce the arrival of out-of-order fragments significantly. Bavoil et
al. [BCL∗07] further proposed high-level hardware modifications
that would avoid these hazards in future hardware, but these were
never adopted by graphics hardware vendors.

Numerous k-buffer variants have been introduced that aim to
eliminate any race conditions that can occur with fragments be-
longing to the same pixel. Liu et al. [LWXW09] extended the
original method to an iterative approach, achieving robust render-
ing behaviour with the trade-off of low frame rates. Bavoil and
Mayers [BM08a] eliminated most of the memory conflicts by per-
forming stencil routing operations on a multisample anti-aliasing
buffer. Wang and Xie [WX13] proposed to partition the input
scene into components with a bounded number of layers and then
render them individually to fit into the limited data size of the
stencil-routed k-buffer. However this scheme cannot support dy-
namic scenes and is not particularly suitable for order-dependent
rendering. A memory-hazard-aware solution based on a depth error
correction coding scheme was explored by Zhang [Zha14], how-
ever in practice, correct results are not guaranteed for all cases.
Leung and Wang [LW13] proposed to convert a solid voxelisation
into a k-buffer representation that ensures conservative sampling.
However, the proposed solution limited the applicability of the par-
ticular structure to solid shape representation applications.

Multidepth testing, developed in both CUDA [LHLW10] and
OpenGL [MCTB13], guarantees correct depth order results by cap-
turing and sorting fragments on the fly via 32-bit atomic integer
comparisons. However, its inability to simultaneously update the
depth value and the rest of the shading parameters necessitates an
additional costly geometry rendering pass (rg = 2). While its 64-
bit version [Kub14] is feasible to run on modern graphics cards,
it is limited to maintain only 32-bit additional geometry informa-
tion per sample. Furthermore, noisy images may be generated from
both 32- and 64-bit versions of this algorithm due to the precision
lost when converting floating-point depth values.

Yu et al. [YYH∗12] proposed two linked-list-based solutions to
accurately compute the k-closest fragments. The idea of the first
one is to capture all fragments by initially constructing an A-buffer
via linked lists [YHGT10], followed by a step that selects and sorts
the k-nearest fragments. The same strategy was also followed by
prior work [SML11], which adaptively compresses fragment data
to closely approximate the ground-truth visibility solution. The
second approach directly computes depth-ordered per-pixel linked
lists, thus avoiding the memory-consuming A-buffer construction.
The idea is to perform fragment insertion sort in parallel without
mutual exclusion. A verification step is responsible to guarantee
valid insertions during fragment race condition. Despite the fact
that this approach theoretically requires less storage, failed inser-
tion attempts resulted in fragments being sparsely stored in the data
buffer, causing a notable memory overhead.
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The original k-buffer algorithm [BCL∗07] has been revised to
perform without quality artefacts, caused by read-write-modify
hazards, by utilising hardware-accelerated pixel synchronisa-
tion [Sal13]. However, its performance degrades rapidly due to the
heavy fragment contention of accessing the critical section, when
rendering highly-complex scenes. To this end, k+-buffer [VF14]
significantly alleviated fragment race conditions by concurrently
performing efficient culling checks to discard fragments that are
farther from all currently maintained fragments based on max-array
and max-heap data structures. Using max-array buffer storage can
perform faster compared to the max-heap data structure, when the
selected fragment subset remains at low levels (k ≤ 16). A pixel-
synchronised max-array k-buffer implementation [TH14] is also
used in AMD TressFX [MET∗14] - a software library for advanced
simulation and rendering of hair, fur, and grass. A drawback of the
pixel-synced methods is that they require an additional post-sorting
of the captured fragments. Insertion sort is usually employed here
since, despite its quadratic complexity, it behaves quite efficiently
when sorting small fragment sequences (k ≤ 8) [KLZ12].

Nevertheless, fragment culling of pixel-synced methods depends
on the depth order of the incoming fragments, where no culling is
being performed when fragments arrive in descending depth or-
der. Vasilakis and Papaioannou [VP15] introduced a fast fragment
culling mechanism via occupancy maps to maximise the number of
fragments to be rejected. By computing a well-approximated depth
of the k-th fragment a priori, the insertion of all fragments with
smaller or equal depth can be performed in constant time.

With regard to memory, the k-buffer assumes a preassigned, and
global, value of k fragment layers across the entire image. From a
development and production standpoint, the process of finding the
optimal k, which correctly captures the user’s intent, while keep-
ing memory budget low, can become very challenging. Tradition-
ally, this task is addressed in an iterative trial-and-error basis, to
obtain an acceptable visual result, albeit at very specific viewing
conditions. The intended fidelity can easily degrade for arbitrary
views, while at the same time under-utilising fixed preallocated
memory for image parts of shallow depth complexity. To this end,
a dynamic k-buffer [VPF15] was proposed, where k is automati-
cally determined under constrained memory budget via on-the-fly
depth complexity histogram analysis. In contrast to previous ap-
proaches, where the manually or automatically chosen k is con-
sidered to be the same for all pixels, Vasilakis et al. [VVPM17]
introduced the variable k-buffer, the first selective MFR solution,
which dynamically assigns k on a per-pixel level, k(p), according
to an importance-based distribution function, thus, allowing higher
depth complexity in regions that are deemed important.

Discussion. Without doubt, practical implementations for support-
ing complex effects must severely constrain both the memory bud-
get and the computation time for the depth-sorted fragment deter-
mination, thus leading to the adoption of bounded memory MFR
configurations such as the k-buffer strategy. Similar to the A-buffer
implementations, the fixed-size k-buffer approach outperforms the
variable solution, thus being more suitable for real-time render-
ing applications. However, relying on manual configuration of the
value of k, can inevitably result in bad memory utilisation and view-
dependent artefacts. While synchronisation and selective render-

B
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Figure 8: Depth traversal is commonly applied for efficient com-
puting CSG operations. Fragments illustrated with green colour
define the surface boundary for each operation as observed from
the user’s point of view: union, intersection and difference.

ing solutions move towards the right direction, further research has
to be conducted to address fragment race conditions and selection
more efficiently in terms of speed and perceptual importance.

4. Operations

In this section, we identify and discuss some of the most widely
used operations in the MFR genre. In general, applications (dis-
cussed in detail in Sec. 5), need to access multiple fragments in an
ordered manner (Sec. 4.1 and 4.2) to evaluate pixel quantities or
query visibility and spatial intervals (Sec. 4.3). A number of other,
infrequent operations can also be performed in order to process the
fragments and alter the MFR data structure (Sec. 4.4). Certain op-
erations are performed locally, per pixel, while others transcend
the single-pixel cell boundaries and access laterally adjacent infor-
mation, often in an iterative manner. Note that each operation is
usually implemented as a screen-space post-processing step.

4.1. Depth-only Traversal

The most common multifragment operation is the unidirectional
traversal along the depth direction, where the fragment elements
for each pixel in the data structure are accessed sequentially starting
from the first node until reaching the last one. Order-independent
transparency (Sec. 5.1) and Constructive Solid Geometry (Sec. 5.5)
are the most typical applications of this operation. The sorted frag-
ment node structure is visited either in back-to-front order, to blend
transparent fragments (Fig. 2, bottom), or in front-to-back order
according to a Boolean operation, until its surface boundary is
reached (Fig. 8). For such an operation, array-based data struc-
tures are typically more efficient, compared to linked-lists (Tab. 2),
as they support binary search and have better cache locality that
can make a significant difference in the access and traversal perfor-
mance [MCTB11].

4.2. Image-space Traversal

Treating the sampled fragment information as a viable geomet-
ric representation has been exploited in screen-space and environ-
ment map ray tracing, especially with a single depth layer (Z-
buffer). The most widely used method for image-space traversal
has been the linear ray marching using regular object-space incre-
ments [SKS11]. The same principle can be directly applied in the
multilayer case. Each ray is sampled incrementally at fixed object-
space intervals, projected in screen-space, and finally tested for ter-
mination only at these pixel locations. The termination condition
for a single-layer buffer is simply the crossing of the depth bound-
ary. However, in MFR data structures, it involves more elaborate

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

631



A. A. Vasilakis et al. / A Survey of Multifragment Rendering

computations, which are detailed in Sec. 4.3. This method is sim-
ple and efficient, but its object-space nature suffers from under and
over-sampling issues. A small number of steps will eventually skip
pixels representing correct intersection locations, while a larger one
might result in accessing the same pixel multiple times (Fig. 9,
left). McGuire and Mara [MM14] proposed an efficient 2D Digi-
tal Differential Analyser (DDA) for densely marching rays, capa-
ble of capturing both contact details and distant geometry with no
severe sampling issues (Fig. 9, middle). Instead of following the
Bresenham-style traversal scheme, Hoffman et al. [HBSS17] re-
lied on the exact 3D DDA scheme proposed by Amanatides and
Woo [AW87] to ensure conservative pixel traversal.

Iterating in single-pixel increments can be prohibitive for real-
time applications at high resolution configurations, unless only
near-field effects are considered. To capture the entire image-space
domain effectively, ray traversal can be performed in a hierarchical
manner (Fig. 9, right). Essentially, this reduces the image-domain
traversal from linear to logarithmic complexity by efficiently skip-
ping regions that are completely below or above the ray. This can be
done in two ways. Build a boundary-based hierarchy on the nearest
and/or farthest layer(s), inspired by the work of Cohen and Shaked
on height field rendering [CS93]. This approach enables effective
empty space skipping only on the shell of the represented frag-
ments, e.g. [Ulu14]. Conversely, one can consider fragment clus-
tering in both image and depth domains, resulting in more effective
data structures. Widmer et al. [WPS∗15] proposed a quad-tree ray
traversal acceleration structure, where each set of adjacent and non-
overlapping tiles is represented in the hierarchy as either a planar
or axis-aligned bounding-box, depending on fragment coplanarity
criteria. Hofmann et al. [HBSS17] also followed a spatial hierar-
chical approach, generating a pyramidal representation by merging
neighbouring fragments with similar depth intervals.

For near-field tracing, e.g. ambient occlusion shading, it is usu-
ally preferable to use a fixed number of uniformly spaced samples,
since the probability of missing a geometric feature and the respec-
tive error is small. For other ray tracing tasks, we have found that
hierarchical traversal is generally advantageous. However, in dense
environments and especially when rays emanate from surfaces, this
performance gain is lost.

start start start

hit point hit point hit point

Object space Image space
Linear Hierarchical 

Figure 9: Image domain traversal is performed by moving in lin-
ear object space (left), linear (middle) or hierarchical image space
steps (right).
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Figure 10: The different cases for testing a ray against frag-
ment samples (top) [VVP16a] and pixel-clipped primitives (bot-
tom) [VVP16b]. Empty space skipping is performed when rays pass
outside depth boundaries (r1,r5,ra,rd). In both cases, the closest
valid hit is determined by the ray’s direction (r4,rc). Ray-pixel and
ray-fragment/primitive intersections are illustrated with cyan and
red colours, respectively.

4.3. Ray-Pixel Hit

Identifying a potential intersection between a ray and a pixel can be
performed by testing the image-projected ray against all fragment
samples assigned to a pixel [MM14]. To mitigate intersection er-
rors due to the fragment discretisation process of the rasterisation
pipeline, each fragment is considered as a frustum-shaped voxel of
predetermined thickness. This approach is relatively efficient, but
adds a small view dependency. Ray-fragment intersection is com-
monly performed in view space, since screen space depth is nonlin-
ear [BHKW07,XTP07]. For every fragment, the ray’s depth extents
are compared with the fragments depth extents in order to iden-
tify a hit. In the multifragment case, four different ray-fragment
hit cases may arise (Fig. 10, top); a ray may pass outside pixel
depth boundaries (r1,r5), it may cross zero (r3), one (r2) or more
(r4) fragments. For the latter case, rays crossing multiple frag-
ments use their direction to determine the hit. Considering image-
space ray tracing efficiency, significant performance boost can be
achieved by subdividing the pixel-sized frusta along the depth axis
into multiple bins and enabling bidirectional traversal, thus, allow-
ing for empty space skipping [VVP16a]. While replacing fragments
with frustum-shaped voxels can improve hit-ratio, it cannot guaran-
tee accurate intersection behaviour. Therefore, analytic intersection
tests were introduced, operating on primitive indices captured in
per-pixel linked lists [WHL15, VVP16b] (Fig. 10, bottom).

For rendering operations that use a wide distribution of rays,
such as ambient occlusion, diffuse inter-reflection and soft shad-
ows, approximate, fragment-based intersections suffice to achieve
an acceptable quality level. Otherwise, an analytical solution is
preferable.

4.4. Other Operations

Neighbourhood Discovery. Computing the connectivity between
fragments of neighbour pixels allows for more complex sampling
and filtering operations at the fragment level, such as spatially-
aware transparency. Carnecky et al. [CFM∗13] proposed to com-
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pute the multilayer neighbourhood graph of adjacent pixels by
linking geodesically neighbouring fragments. A comparison is per-
formed between a fragment and all fragments contained in an ad-
jacent pixel and the best neighbour candidate corresponds to the
fragment which maximises the connectivity function. Murray et
al. [MBG16] lower the complexity of this operation by grouping
together per-pixel fragments that belong to the same object. Thus,
the number of fragment pairs to test is restricted to a subset of can-
didates, i.e. the ones with the same object identifier. Regarding col-
lision detection, Radwan et al. [ROW14] computed the connectivity
between dense fragment samples in order to estimate a thickened
boundary representation of the surface geometry in screen-space.

Compositing. Multilayer compositing has recently become a com-
monly used technique for generating complex production images
from multiple sources [HHHF12,EDL15,VAN∗19]. Elements ren-
dered into separate multilayer images can be combined accurately
to produce a single composited image of the entire scene, even
if the images are interleaved in depth [Duf17]. This allows for
great flexibility, since it enables additional capabilities such as ac-
curately inserting volumetric details [HHHF12] or other opaque
surfaces [EDL15]. Object modification does not require the entire
frame to be re-rendered, and the scene can be divided into elements
without needing to consider how they will be combined. Archer
et al. [ALvS18] proposed several implementations for compositing
multifragment buffer pairs on the GPU.

Compression. In order to handle and visualise large fragment sets,
provision of effective data reduction mechanisms is necessary for
addressing problems related to sampling overflow. Offering visual
scalability is crucial, when processing and rendering multiple frag-
ment layers. A number of approximation techniques has been in-
troduced, in which compressed sets of data are computed based
on both sampling and aggregation strategies, in a way that do not
cause a loss of information with a significant visual impact on
the target application. To reduce the memory storage, Duan and
Li [DL03] proposed to separately compress colour and depth in-
formation for each layer using lossless image coding schemes. To
keep multilayer shadow images to manageable sizes, Lokovic and
Veach [LV00] performed sample compression when a subsequent
fragment falls within an error tolerance of the extrapolated trans-
mittance from the previous samples. In order to avoid memory
overflow, Salvi et al. [SVLL10, SML11] followed a similar idea
by performing on-the-fly rejection of incoming fragments. The al-
gorithm chooses to eliminate the fragment that if removed, would
minimise the error with respect to the uncompressed visibility func-
tion (Fig. 11). Based on the observation that the far fragments, tend
to have less contribution to per-pixel visibility, two works split the
fragment layers of a pixel in two classes; a core, that is preserved as
it is and a tail, which is approximated via weighted average blend-
ing [MCTB13] or online alpha compositing [SV14]. Kerzner et
al. [KS14] presented a novel G-buffer antialiasing method based
on a lossy streaming compression algorithm suitable for deferred
shading. During the compression (accumulation) pass, they merge
fragments with coplanar geometric features that overlap in depth,
and cover mutually exclusive multisample antialiasing samples.
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Figure 11: The visibility function models how light is absorbed as
it travels through space (left). To compress this, the fragment that
generates the smallest area variation is removed [SML11] (right).

5. Applications

With the advent of modern graphics architectures along with the
corresponding software APIs, MFR research plays key role in a
wide range of application areas covering several fields in the indus-
try (Fig. 12), by enabling developers to perform robustly a series of
tasks that are not always possible with common single-layer tech-
niques (Tab. 3). In this section, we identify key application domains
of MFR and provide recommendations for choosing an appropriate
method for each problem.

5.1. Order-Independent Transparency (OIT)

The majority of research ideas in the MFR domain has spurred by
the demand for efficient and correct simulation of transparent (see-
through) surfaces. Transparency is an order-dependent operation,
i.e. primitives must be submitted in sorted back-to-front order be-
fore alpha compositing them [HCNS18]. However, this procedure
requires significant rendering time per frame since the ordering is
different under dynamic geometry or animated camera view. More-
over, it will not always produce a correct solution in cases of inter-
secting or circularly overlapping geometry.

Order-independent transparency, on the other hand, lifts this re-
striction and performs sorting on a per-pixel level by exploiting the
capabilities of modern graphics hardware. The traditional approach
is as follows: First, the opaque surfaces are rendered normally and
stored in a separate buffer. Then, for each pixel, a list of transpar-
ent fragments is captured, stored and sorted (Sec. 3). The list is
traversed in a back-to-front manner (Sec. 4.1) and a composition
operator, such as the over operator [PD84], is applied on the frag-
ments to compute the final colour of the transparent surfaces. The
final result is then merged with the colours from the opaque buffer.

Since this application encompasses a large body of research, this
report concentrates mainly on research publications with an empha-
sis on notable recent advances and refers the interested reader to the
comprehensive survey by Maule et al. [MCTB11] for more infor-
mation on this specific topic. While A-buffer solutions produce ac-
curate results, storing the entire fragment list of transparent objects
in memory can quickly exhaust GPU resources in real-time applica-
tions, since the number of primitives in hair [YYH∗12,JCLR19] or
computer-aided design (CAD) models [SBF15, MBG16] (Fig. 12)
can be quite large. As such, researchers focused on capturing only
the most important information with a k-buffer scheme (Sec. 3.3)
and compactly representing the resulting transmittance as a func-
tion of depth.
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Figure 12: MFR has been deployed in a wide spectrum of rendering applications in order to generate compelling graphics effects at interac-
tive frame rates. Top left to bottom right: order-independent-transparency [MBG16], shadow mapping [SDMS15], hair rendering [JCLR19]
(https://github.com/CaffeineViking/vkhr), global illumination [VVP16b], trimming and CSG operations [RFV13], depth of field [FHSS18],
hybrid visualisation [LFS∗15], and collision detection [ROW14].

Specifically, Salvi et al. [SML11] captured and compressed the
k-best fragment data on the fly, by adaptively removing and merg-
ing fragments with smaller contribution, in order to minimise
the error in the visibility function and more closely approximate
the ground-truth solution. The original method required hardware
modifications in pixel synchronisation that were made available
later on [Sal13]. Further on, Maule et al. [MCTB13] tried to ap-
proximate better the transmittance function by suggesting that frag-
ments farther away from the viewer are not as important as the
closer ones, and their contribution can be approximated with a
smaller impact to the pixel colour. Thus, they proposed a hybrid
approach, where the k closest fragments are captured, sorted and
iteratively blended, while the remaining ones contribute to the fi-
nal result via a fast weighted average blending. Going one step
further, Salvi and Vaidyanathan [SV14] introduced multi-layer al-
pha blending; an online merging strategy that alpha-composites
the fragments with the lowest transmittance in a streaming fash-
ion. Later on, Wyman [Wym16] offered a general analysis on the
continuum of OIT algorithms and further proposed a k-buffer solu-
tion with stochastic transparency characteristics, i.e. fragments are
stored in a probabilistic manner.

Regardless of the way fragments are captured and merged, em-
bedding the material properties of transparent surfaces in the frag-
ment buffer can significantly affect the rendering cost. Hillesland et
al. [HBT14] traded memory for efficiency by storing G-buffer in-
formation in a k-buffer instead of the final shading colour. Shading
is deferred to a later stage, where lower quality shading computa-
tions are applied at the furthest fragments. Finally, Schollmeyer et
al. [SBF15] went a step further and proposed a complete deferred
shading pipeline that accommodates MFR and OIT.

To summarise, many specific applications related to OIT, in-
cluding hair rendering, can benefit from using relatively shallow k-
buffers instead of an A-buffer, due to the rapid attenuation of trans-
mittance along the depth axis. CAD model visualisation or simi-
lar object inspection applications are ideal candidates for adaptive
and variable allocation of a fixed memory budget across the im-
age buffer, since depth complexity can take dramatically different
values in each pixel, also leaving many pixels unoccupied.

5.2. Shadows (SH)

Traditional shadow mapping, i.e. based on the Z-buffer, has been
the most popular approach for shadow generation in real-time ren-
dering. Despite its simplicity, it suffers from various issues, due to
either the discretisation nature of the rasterisation pipeline or the
limited occluded information stored in the depth map [ESAW11,
SWP11]. As such, the research community has also explored tech-
niques to improve the quality of the produced shadows by main-
taining visibility information from multiple per-pixel occluders.

Rather than storing a single depth at each pixel, Lokovic and
Veach [LV00] proposed deep shadow maps that store a transmit-
tance function, representing the fractional visibility through a pixel
at all possible depths. To suppress self-shadowing aliasing issues,
Woo et al. [Woo92] proposed to generate shadow maps based on
the midpoint of the two closest depth values to the light source,
an approach that can be implemented today via depth peeling or
a k-buffer. Bavoil et al. [BCS08] used multilayer shadow maps
to improve soft shadowing issues of the original backprojection
algorithm [GBP06]. They exploited depth peeling in order to re-
duce light bleeding in thin objects by computing occlusion from
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each per-pixel sample and to minimise self-shadowing by aug-
menting midpoint shadow maps [Woo92] with multilayer informa-
tion. Further on, Salvi et al. [SVLL10] proposed adaptive volumet-
ric shadow maps that generate an adaptively-sampled representa-
tion of the volumetric transmittance in a linked-list data structure,
where each texel stores a compressed approximation (Sec. 4.4) to
the transmittance curve along the corresponding light ray. Later
on, Selgrad et al. [SDMS15] performed prefiltering and merging
of multiple occluders stored in variable-length lists, in order to se-
lect the appropriate filter width for the generation of soft shadows
(Fig. 12).

To generate alias-free shadows for point lights, the shadow map-
ping process can be reversed using the concept of irregular Z-
buffers [JLBM05]. Instead of storing occluders and testing re-
ceivers against them, receivers are projected to the light and stored
in per-pixel fragment lists. Then, occluders are rendered using con-
servative rasterization and tested against the data stored in the
linked lists [WHL15].

Recently, Lee et al [LKE18] used iterative depth warping to syn-
thesise multiple shadow maps, each one corresponding to an area
light sample, for high-quality soft shadows. In this work, depth
peeling is used to generate multilayer depth buffers in order to find
good candidates for warping and, consequently, handle potential
disocclusions that may appear when hidden surfaces become visi-
ble in the new frame.

In general, shadow generation via MFR can benefit from com-
pact buffers, since the stored information may correspond to ei-
ther an approximate transmittance function or partial occlusion es-
timate. A key enabling factor here is the fact that small discrepan-
cies in indirect visibility are less visually objectionable, compared
to other MFR applications, such as OIT.

5.3. Global Illumination (GI)

Image-based global illumination techniques use either an image-
space ray or cone tracing mechanism to sample paths due to one
or more indirect lighting scattering events, or a more approxi-
mate gathering operation on the MFR buffer to reconstruct far-
field ambient irradiance attenuation (ambient occlusion), irradiance
(sky lighting) or near-field colour bleeding. Traditional single-layer
techniques are able to efficiently approximate indirect illumina-
tion phenomena [RDGK12]. Despite their fast performance though,
they suffer from view-dependent artefacts, due to the missing geo-
metric information, both inside and outside the view frustum, caus-
ing - often severe - visual instabilities and erroneous results. Multi-
fragment techniques can augment the information stored in the data
structure, thus, reduce view dependencies significantly.

Ambient Occlusion. Bavoil and Sainz [BS09] demonstrated mul-
tilayer ambient occlusion (AO) using several depth-peeled screen-
space layers. The layers are generated with an enlarged field of
view for accessing visibility information outside the screen bounds,
thus increasing stability. The approach computes screen-space AO
for each layer and maintains the highest contribution. This way,
the AO estimator is improved, at the cost of slightly overestimat-
ing occlusion. Moreover, Bauer et al. [BKKB13] stored additional
properties for translucent objects, such as opacity, on an linked-list

A-buffer and computed AO using a modified estimator, considering
both the interior and exterior occlusion of objects. For each sample
covered by translucent objects, AO is computed for each fragment
in the list separately. The final AO is the highest AO contribution
from all visited fragments.

Indirect Illumination. Hermes et al. [HHGM10] exploited a k-
buffer to capture the intersection layers for bundled parallel rays
from multiple directions [Hac05], in order to progressively com-
pute irradiance and approximate glossy reflections, via an addi-
tional transfer atlas, for one or more light bounces. Widmer et
al. [WPS∗15] used a two-layer k-buffer as input to the generation
of a screen-space quad-tree for screen-space reflections. To sup-
port multiple bounces, they performed hierarchical screen-space
ray traversal on a cubemap representation of their data structure.
Mara and McGuire [MMNL16] stored a two-layer depth peeling
representation in a single geometry rendering pass, where the sec-
ond layer was selected based on a minimum fixed separation met-
ric, so that potentially similar geometry can be skipped. By stor-
ing only the two-best layers, global illumination computations can
be performed in real time. As such, the authors presented various
illumination-based applications related to AO, reflections and ap-
proximate single-bounce diffuse irradiance gathering. McGuire and
Mara [MM14] captured near and far-field illumination effects us-
ing per-pixel image space line traversal and per-fragment thickness-
based intersection tests. The authors used depth peeling to provide
results in several illumination methods, such as AO, reflection and
screen-space radiosity. Vardis et al. [VVP16a] used an A-buffer to
accommodate multiple layers and views as well as employed vari-
ous optimisation strategies to accommodate AO and unidirectional
path tracing applications on fully-dynamic scenes of arbitrary geo-
metric complexity. The same authors further improved the accuracy
of the approach via analytic ray-triangle intersection tests, indexed
by the stored fragments [VVP16b] (Fig. 12).

The use of multifragment buffers in global illumination calcula-
tions can be clearly grouped in two categories. For low-frequency
scattering events and high ambience, shallow (even two-layer)
buffers suffice to produce visually convincing results, especially for
real-time applications. These methods, however, can easily break
down in highly-directional scattering events and complex or ex-
pansive environments, where missing light interactions and severe
light leaking can occur. For accurate results, either an A-buffer is
recommended, ideally coupled with analytic primitive intersections
to eliminate holes caused by the sampling of oblique geometry, or a
hybrid rendering solution, combining a limited depth k-buffer with
object-space acceleration data structures for the geometry not cap-
tured by the first.

5.4. Distribution Effects and Filtering (DF)

Defocus Blur. The simulation of focal imaging from real world
lens systems, such as depth-of-field, is of high importance in real-
time rendering as it can increase visual realism significantly. Since
out-of-focus regions require information from occluded geome-
try not available in a single-layer buffer, multifragment techniques
have been exploited to augment the missing information and pro-
duce more visually convincing results.
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Specifically, Lee et al. [LES10] used a custom depth peeling ap-
proach by observing that certain layers cannot be reached by lens
rays and, thus, can be skipped. To simulate high quality depth-
of-field, image-space ray tracing is further employed (Sec. 4.2)
to traverse fragment layers efficiently. Using ray tracing enables
the incorporation of effects from more general lens models, such
as anisotropic blur, spherical and chromatic aberration. Selgrad
et al. [SRP∗15] applied a similar multilayer filtering data struc-
ture that is used in the generation of soft shadows [SDMS15] to
simulate depth-of-field effects at real-time framerates, without any
variance artefacts that may appear in ray tracing approaches. Re-
cently, Franke et al. [FHSS18] combined the observations of Lee
at al. [LES10] with the minimum separation metric of Mara and
McGuire [MMNL16] to generate a partial multilayer data structure
of surfaces affected only by the circle of confusion. This representa-
tion is then splatted to screen-space tiles, enabling fast sorting and
blending while properly handling occlusion of out-of-focus near-
field objects objects at depth discontinuities (Fig. 12).

Antialiasing. Aliasing riddles real-time image synthesis in many
ways and one of the typical manifestations is the jagged appearance
of primitive edges or the erratic capture of thin structures, due to
insufficient sampling in image space.

The original A-buffer algorithm [Car84] was the first method
to perform antialiasing at the pixel level using sampled coverage
in the form of a 32-bit mask. The clipped polygon fragments are
maintained in a depth-sorted list, where they are also merged for
efficiency based on surface congruity and coverage mask overlap
and finally resolved to produce the pixel colour and alpha value.
Inspired by A-buffer, Jouppi et al. [JC99] proposed a hardware im-
plementation of a polygon antialiasing mechanism that also main-
tained polygon fragments in a small, fixed memory, by utilising
a more aggressive merging operation. Lee and Kim [LK00] also
proposed a modified A-buffer algorithm and a respective hardware
architecture for antialiased polygon rendering, using dynamic stor-
age allocation. More recently, Kerzner and Salvi [KS14] reduced
the memory usage and shading costs associated with multisample
anti-aliased G-buffer construction. This is achieved by intercepting
fragments on an MSAA-enabled buffer and storing them in a cus-
tom, fixed-length array of surface attributes and G-buffer data per
pixel. Fragments with similar geometric features are merged, re-
sulting in at most three records in the antialiased G-buffer for eight
visibility samples per pixel.

Denoising. Among the many strategies explored to reduce image
noise, image-space denoising has emerged as a particularly attrac-
tive solution due to its effectiveness and ease of integration into
rendering pipelines [ZJL∗15]. However, the vast majority of image-
space methods operate on a single layer of information, where all
per-pixel samples are first aggregated in a single value per data
channel. To this end, Vicini et al. [VAN∗19] presented a novel
framework that preserves the full expressiveness of the deep struc-
ture in order to denoise multilayer physically-based rendering im-
ages. They combine an image-space non-local means filtering of
pixel colours with a deep cross-bilateral filter operating on auxiliary
features. Despite its relatively straightforward design and pipeline,
this work represents the first step towards integrating denoising into
modern multilayer-compositing workflows.

From the diverse specialised applications in this category, the
common denominator is the flexibility and programmable pipeline
offered by the availability of multiple layers of information. For an-
tialiasing purposes, retaining a low-count, fixed-size fragment list
can result in large memory savings in the cost of some small quality
loss. Denoising operations applied on a fixed number of layers can
more easily enable the use of future deep learning approaches for
filtering. Finally, defocus blurring can be conveniently mapped to
shallow multifragment buffers through the clustering of fragments
into focal zones.

5.5. Shape Representation (SR)

Constructive Solid Geometry. Computing the boundary of solids
defined in constructive solid geometry (CSG) with geometry prim-
itives is a computationally expensive and numerically delicate pro-
cedure. As such, the visualisation of CSG operations has also been
performed via multilayer data structures in the literature, for effi-
cient and interactive GPU rendering. The traditional approach in-
volves traversing the sorted list of fragments (Sec. 4.1) in order to
classify surfaces as interior/exterior and apply common CSG op-
erations, such as union, intersection and difference, during image
composition (Fig. 8).

Specifically, Lefebvre et al [LHL13] used an A-buffer to store
shape information in per-pixel linked lists. The combined CSG
model is determined by updating bitfields through Boolean expres-
sions, where each bit represents whether the ray is inside or out-
side a particular primitive. Kauker et al. [KKP∗13] stored frag-
ments either in per-pixel linked lists or variable-length arrays to
render molecular surfaces with OIT, where atoms are represented
as spheres. The final colour of a molecule is produced through a
compositing stage that removes the interior parts of atoms through
a CSG union operation. Surface boundaries are determined sim-
ply by examining the orientation of fragments with respect to the
viewer. Furthermore, Rossignac et al. [RFV13] performed GPU-
based trimming and CSG on self-intersected surfaces with support
for interactive free-form editing of deformable objects (Fig. 12).
The approach was evaluated on various depth-peeling and A-buffer
variants.

Scientific Visualisation. MFR has been widely exploited to per-
form interactive visual exploration of large, complex, and multi-
modal scientific data. In many applications, visualisation of hybrid
data representations is required, i.e. the fusion of multiple volumet-
ric and potentially transparent surface data sources. Several screen-
space techniques have been developed to compute and process the
fragments in a correct composition order.

As such, Busking et al. [BBF∗11] proposed an image-space
pipeline, based on depth-peeling and deferred shading, to enhance
comparative visualisation of medical images at interactive rates.
Differences between surfaces are extracted using CSG operations
with in/out classification masking. Kanamori et al. [KSN08] used
depth-peeling to render particle-based density fields, where ray-
isosurface intersection tests are performed by iteratively peeling
layers of rasterised spheres. The iterative approach of depth peel-
ing was later replaced by A-buffer variants to further accelerate the
process of ray casting [SI12, PB13, KKP∗13].
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Liu et al. [LCD10] used a hybrid representation, based on quad-
trees and multilayer point rendering, to generate compact ray seg-
ments for empty space skipping during the ray casting stage. A
similar methodology was applied by Hadwiger et al. [HAB∗18] for
interactive visualisation of both sparse and dense volumes. In this
work, volumes are converted to a hierarchical geometric represen-
tation in advance in order to generate bounding boxes of differ-
ent volume occupancy classes. During rendering, ray-segments of
these classes are constructed and stored in per-pixel lists to enable
efficient skipping of unoccupied regions of volume space.

Lindholm et al [LFS∗15] employed an A-buffer for hybrid vi-
sualisation of both geometric and volumetric datasets. The authors
employed a depth histogram analysis with memory management
optimisations, during the post-sorting stage, in order to minimise
cache allocation and maximise throughput. As such, they enabled
interactive rendering in various applications, such as computational
fluid dynamics, space weather simulation, and biomedical data vi-
sualisation (Fig. 12).

Gunther et al. [GRT13] used per-pixel linked lists for opacity-
based visualisation of dense line fields, a method adapted later for
surface flow visualisation and other data types [GTG17]. Apart
from storing colour and depth, for blending transparent layers, they
also capture occlusion measurements between lines. This informa-
tion is used on a subsequent step as part of a minimisation function,
to adaptively fade out line parts based on their importance.

The potentially large number of layers in scientific and CAD vi-
sualisation tasks, could mandate the use of an A-buffer. Massive
dataset visualisation, with multiple overlaid surfaces or informa-
tion layers can benefit from techniques that compress the farthest
fragments, since their contribution in the composition of the final
image and therefore, any resulting error, is negligible.

5.6. Collision Detection (CD)

Screen-space intersection techniques rely on the rasterisation of
the objects in two collision groups into fragment-based represen-
tations and the determination of intersection via fragment traversal
(Sec. 4.1). By avoiding construction of spatial hierarchies, they can
support all types of rasterisable primitives and can deal well with
highly-deformable geometry. However, they rely on an approxi-
mate fragment-to-fragment intersection test that heavily depends
on the buffer resolution.

For instance, Jang and Han [JH08] proposed a hybrid CPU-GPU
screen-space collision detection method (Fig. 12). Regions of in-
terest, i.e. overlapping bounding boxes, are sent to a stencil routed
k-buffer to identify potentially colliding sets of polygons. These
sets are then fed back to the CPU for ray-triangle intersection tests.
Furthermore, Morvan et al. [MRS12] used a slightly different ap-
proach for efficient proximity queries. They identify regions of in-
terest on the GPU and store the vertices of the contained objects in
an orthographic per-pixel linked list. A subsequent pass then ren-
ders the primitives and computes potential intersections and min-
imum distances. Radwan et al. [ROW14] computed intersections
between densely sampled point clouds by rasterising the points to
multifragment buffers and merging multiple depth values to form
sampled surface boundaries.

6. Open Problems/Challenges

Despite the fact that MFR techniques have become essential in
many rendering tasks, efficient construction and processing of mul-
tiple fragments is a non-trivial process due to the large amount of
data generated even on medium-resolution displays. The optimi-
sation of current algorithms and the development of novel solu-
tions for MFR is still an ongoing and active field of research. In
the following part of this section, we summarise a number of open
and challenging issues that remain partially covered, or even un-
resolved, along with a fruitful discussion on potential directions,
which, we believe could shape the future research investigation on
this field.

Data Reuse. While taking advantage of spatio-temporal coherence
can vastly increase performance in a very large number of ren-
dering scenarios [SYM∗11], we have noticed that not many ap-
proaches have leveraged the redundancy of information over time
and space, e.g. [MMNL16]. Therefore, a very promising direction
is to exploit reprojection of fragment data from previous frames
to other MFR variants in order to achieve deep buffer construc-
tion at a lower cost. A larger amount of redundancy can be allevi-
ated by adaptively scheduling the A-buffer construction over sev-
eral frames, based on the observation that small spatio-temporal
changes occur in a limited time interval. Moreover, the k-buffer
construction process could gain a significant performance boost by
predicting the exact depth of the k-th fragment a priori, thus al-
lowing the capture of fragments with smaller or equal depth in
constant time, discarding the remaining ones [VF14]. Regarding
virtual reality, MFR strategies have not been applied for efficient
stereoscopic rendering. Specifically, data stored in a multilayer G-
buffer structure could be reprojected to render the view for each eye
with greater reprojection success ratio and smaller error, compared
to similar methods applied to single-layer depth information.

Data Compression. Although graphics hardware has evolved re-
markably in the past decade, graphics applications have become
aggressively more demanding in terms of content complexity and
physically-based realism, striving at the same time to meet the de-
mand for interactive framerates in high-resolution displays. As ge-
ometry and display resolution continue to grow rapidly in order
to reach the bar of expected user experience, they are simultane-
ously stretching and testing the boundaries of MFR solutions. Fol-
lowing the conventional approach of rendering via rasterisation is
marred with limitations, directly leading to the natural explosion of
the amount of dynamic and heterogeneous fragment datasets that
have to eventually be processed in each frame. Although this issue
has been sufficiently covered only for improving OIT and shadow
generation (Sec. 5.1 and 5.2), new promising directions have to
be revealed towards a breakthrough in the general multilayer im-
age/buffer compression problem guided by modest single-layer so-
lutions [HAM06].

Data Sampling. The process of rasterisation, which is the heart
of MFR, imposes some very severe limitations in the graphics
pipeline. The scan conversion procedure approximates the underly-
ing geometry; a continuous primitive is represented by discretised
samples at specific (usually regular) locations on the image plane.
This results in three main sources of spatial aliasing: (i) polygon
edges and oblique geometry are sparsely sampled, while geometry
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Table 3: Categorising the MFR papers, discussed in this report, based on the construction type and the operation(s) used to realise one
or more GPU-accelerated application use cases. Symbols correspond to OIT: Order-independent Transparency, SH: Shadows, GI: Global
Illumination, DF: Distribution Effects and Filtering, SR: Shape Representation and CD: Collision Detection.

Operations Applications
Method Z-Traversal Ray Tracing Other OIT SH GI DF SR CD

4.1 4.2 & 4.3 4.4 5.1 5.2 5.3 5.4 5.5 5.6
Depth Peeling (3.1)
[Eve01, BM08b, Thi08] - - -

√
- - - - -

[BS09]
√

- - - -
√

- - -
[KSN08, BBF∗11]

√
- - - - - -

√
-

[BCS08, LKE18]
√

- - -
√

- - - -
[LHLW09, VF13]

√
- -

√
- - - - -

[LES10]
√ √

- - - -
√

- -
[ROW14]

√
-

√
- - - - -

√

[MM14, MMNL16]
√ √

- - -
√

- - -
[FHSS18]

√ √ √
- - -

√
- -

A-buffer (3.2)
[JH08, MRS12]

√
- - - - - - -

√

[SVLL10, SDMS15, WHL15]
√

-
√

-
√

- - - -
[YHGT10, LHLW10, KLZ12, VF12, MCTB14, SBF15, JCLR19]

√
- -

√
- - - - -

[LCD10, SI12, PB13, GRT13, RFV13, HAB∗18]
√

- - - - - -
√

-
[GRT13, KKP∗13, LHL13, LFS∗15]

√
- -

√
- - -

√
-

[CFM∗13]
√

-
√ √

- - - - -
[BKKB13, VVP16a, VVP16b]

√ √
- - -

√
- - -

[SRP∗15, VAN∗19]
√

-
√

- - -
√

- -
[HBSS17]

√ √ √
- -

√
- - -

k-buffer (3.3)
[BCL∗07]

√
- -

√
- -

√ √
-

[LWXW09, YYH∗12, Sal13, TH14, HBT14, Wym16, VVPM17]
√

- -
√

- - - - -
[HHGM10]

√
- - - -

√
- - -

[SML11, MCTB13, SV14, MBG16]
√

-
√ √

- - - - -
[KS14]

√
-

√
- - -

√
- -

[VF14]
√

- -
√

- - -
√

-
[WPS∗15]

√ √
- - -

√ √
- -

(ii) either parallel to the view direction or (iii) residing outside the
view frustum are skipped entirely. Although conservative rasteri-
sation [HAMO05], which guarantees that a fragment will always
be generated as long as there exists some partial overlap between
a pixel and a primitive, can resolve the first issue, zero area pro-
jected primitives will not generate any fragments making the sec-
ond sampling issue inevitable. In order to limit view dependencies
to a minimum, voxelisation [HHZ∗14, KFR∗16] and GPGPU-ray
tracing [GD15,MBJ∗15,WMB19] have been cooperatively operat-
ing alongside traditional rasterisation in order to accurately capture
and accelerate certain effects that demand accurate partial visibil-
ity such as global illumination. Further on, the launch of NVIDIA’s
RTX platform for hardware-accelerated ray tracing computations
got an enthusiastic welcome from the games industry, showing the
significance of switching to more physically accurate solutions for
real-time graphics [HAM19]. Although this architecture modifica-
tion can provide a significant performance and quality boost for
certain types of content and visual effects, it is not enough to sup-
port full, photorealistic global-illumination in generalised and dy-
namic geometry streams [KVBB∗19]. So, we strongly believe that
harnessing this trend and hardware support to devise smart, hybrid

MFR/ray-tracing methods can be the key direction on which novel
research may endeavour.

Presentation Device. The possible graphics applications are
rapidly growing to include casual users on mobile de-
vices [AGM∗17] or immersive devices such as virtual and aug-
mented reality devices [KAS∗19]. On the one hand, mobile graph-
ics hardware has huge constraints in terms of energy, power and
silicon area they use, resulting in lower bandwidth, performance
and more conservative use of texturing, compared to their desk-
top counterparts. On the other hand, regarding the visual aspect of
mixed reality, making the transition from 2D display graphics to an
immersive display poses several significant challenges, including
dramatically increased resolutions under lower latency constraints,
to preserve the continuous illusion of reality. Thus, thorough re-
search investigation and exploitation of MFR is necessary to ex-
pand the boundaries of realism and immersion, under these limited
budget constraints and strict rendering requirements, for the rapidly
developing application domain of virtual and augmented reality in
current and emerging platforms.
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Graphics Hardware. Over the past decade, graphics hardware has
undergone an incredible transformation mainly driven by the video
game industry and its economic momentum. Although the rapid
evolution of GPUs has greatly impacted the multifragment pro-
cessing capabilities in more that one ways, including atomic op-
erations, dynamic memory location writes [YHGT10] and pixel
synchronisation [Sal13], novel specialised modifications to the cur-
rent hardware pipeline are ultimately required to enable full hard-
ware support of k-buffer or A-buffer solutions on future GPUs. Pre-
dicting fragment storage overflow at the global graphics hardware
(Sec. 3.2.1) as well as improving GPU local memory caching and
occupancy (Sec. 3.2.2) when highly-irregular per-pixel fragment
sampling is manifested, should be of major importance. Moreover,
augmenting variable rate shading in the depth domain via selec-
tive MFR strategies [VVPM17] can be a promising direction for
investigation.

Application Domain. In the most part, improving the quality and
performance of OIT (Sec. 5.1) was the driving force for advanc-
ing the MFR domain in both software and hardware throughout the
past few years (Tab. 3). The requirement of correct and convincing
display of transparent geometry in real-time framerates in games
had excessively revealed several bottlenecks and challenges with
respect to fragment sampling and processing in graphics hardware.
However, despite the rapid increase of number of graphics appli-
cations that progressively rely on MFR solutions to develop visu-
ally convincing images, we observe that the MFR is inadequately
covered to a full extent, allowing immediate opportunities for fu-
ture research. For example, screen-space reflections, which is cur-
rently a trend in the video games industry [Ulu14], can be highly
accelerated by optimising the pixel-space ray traversal operation
(Sec. 4.2). Last but not least, we have identified that a mapping of
successful rendering methods, such as photon mapping and motion
blur, to the screen-space paradigm is still missing.

7. Conclusion

In this survey, we have described the principles and fundamen-
tals of multifragment rendering. This paper aimed to include the
majority of the most relevant and state-of-the-art MFR solutions
categorised by the approach taken for storing and processing the
generated fragment samples. We have showed that a large body of
applications have successfully explored MFR for many aspects of
rendering and visualisation domains. We have also identified as-
pects, inadequately covered by existing literature, that may provide
immediate opportunities for future research.

Historically, the divergent design considerations between offline
and real-time applications have resulted in two key approaches to
resolve direct and indirect visibility: rasterization and ray tracing.
Despite the tremendous progress on the landscape of both fields, we
believe that the MFR, alone or in hybrid schemes, will continue to
play an important role of handling partial visibility determination.
Working closely with the field of ray tracing and the application do-
mains we can uncover, and find solutions, in an area with renewed
research interest, where high potential for software and hardware
improvements is feasible in the near future.
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