
EUROGRAPHICS 2020
R. Mantiuk and V. Sundstedt
(Guest Editors)

Volume 39 (2020), Number 2

STAR – State of The Art Report

A Survey of Temporal Antialiasing Techniques

Lei Yang, Shiqiu Liu, Marco Salvi

NVIDIA Corporation

One input frame Temporal-antialiased output Temporal-upsampled output

Figure 1: Comparison of input, temporal-antialiasing and 1.33× temporal-upsampling results. Images are rendered by Unreal Engine 4.22.

Abstract

Temporal Antialiasing (TAA), formally defined as temporally-amortized supersampling, is the most widely used antialiasing

technique in today’s real-time renderers and game engines. This survey provides a systematic overview of this technique. We

first review the history of TAA, its development path and related work. We then identify the two main sub-components of TAA,

sample accumulation and history validation, and discuss algorithmic and implementation options. As temporal upsampling is

becoming increasingly relevant to today’s game engines, we propose an extension of our TAA formulation to cover a variety

of temporal upsampling techniques. Despite the popularity of TAA, there are still significant unresolved technical challenges

that affect image quality in many scenarios. We provide an in-depth analysis of these challenges, and review existing techniques

for improvements. Finally, we summarize popular algorithms and topics that are closely related to TAA. We believe the rapid

advances in those areas may either benefit from or feedback into TAA research and development.

1. Introduction

Temporal Antialiasing (also known as Temporal AA, or TAA) is
a family of techniques that perform spatial antialiasing using data
gathered across multiple frames. Since its debut a decade ago, TAA
and its variants have quickly become the de facto standard for
antialiasing solutions in almost all video game engines and real-
time 3D renderers. Traditionally, the name temporal antialiasing

was used for techniques that aim to reduce temporal aliasing (also
known as the wagon wheel effect) [KB83]. Nowadays, the term is
somewhat of a misnomer as it is consistently used for spatial an-
tialiasing (i.e. supersampling) using temporal samples. We choose
to follow this new naming convention due to its wide acceptance in
the real-time rendering community.

Prior to TAA, hardware-accelerated Multisample Antialiasing
(MSAA) [Ake93] enjoyed the status of most used antialiasing tech-
nique in real-time engines. MSAA offers improved image qual-

ity at a small performance cost by limiting the rate of shading
to a single per-primitive invocation for each pixel, effectively de-
coupling visibility determination from shading. Unfortunately, sev-
eral challenges arise when MSAA is used in conjunction with de-
ferred shading techniques [GPB04, Har04]. First, the hardware-
accelerated mapping between visibility and shading is lost, ef-
fectively turning MSAA into costly supersampling antialiasing
(SSAA). Second, even when such mapping between different sam-
ple types is recovered [SV12, KS14] the increased storage and
memory bandwidth requirements of multisampled G-Buffers of-
ten negate any performance improvement due to running shaders
at lower rate. Due to these difficulties various post-processing an-
tialiasing techniques have been proposed to replace MSAA in de-
ferred rendering (see Jimenez et al. [JGY∗11] for an overview), but
many of them suffer from temporal stability problems due to a lack
of sufficient information to recover true pixel values.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John
Wiley & Sons Ltd. Published by John Wiley & Sons Ltd.

DOI: 10.1111/cgf.14018

https://diglib.eg.orghttps://www.eg.org

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

TAA aims to resolve subpixel detail that is missing in single-
sampled shading. Theoretically, this can be achieved by increas-
ing per-pixel sampling rate using supersampling, which is often
prohibitively expensive for real-time rendering with a brute-force
implementation. By reprojecting shading results from previous
frames, TAA effectively amortizes the cost of shading multiple
samples per pixel over consecutive frames, and achieves supersam-
pling at only a small cost on top of single-sample shading. From a
quality standpoint, when compared to single-frame post-processing
antialiasing techniques, TAA not only suppresses aliasing more ef-
fectively, but also generates more temporally stable results. TAA is
also relatively easy to integrate into existing engines. It is usually
implemented as a single post-processing pass, and requires only a
feedback input of the output image from the previous frame.

TAA does face certain challenges that are not common in pre-
vious approaches. It is sometimes criticized for producing soft im-
ages, and can introduce artifacts such as ghosting and shimmering.
We provide an in-depth analysis of such issues in existing TAA al-
gorithms (Sec. 6), leading to future research directions in this area.

1.1. Algorithm overview

Pixels in previous output frame

Accumulated temporal samples

(not individually stored)

Frame N-1 Frame N

Target pixel

New shading sample

Figure 2: Conceptual illustration of how TAA amortizes spatial

supersampling over multiple frames.

The key idea behind TAA is to reuse subpixel samples accumu-
lated from previous frames to effectively achieve supersampling.
Figure 2 illustrates the conceptual process. Assuming a number of
samples (yellow dots) were gathered for each pixel prior to frame
N, and have been averaged and stored in the history buffer as a
single-color value per pixel (green dot). For each pixel in frame N,
we map its center location (orange dot) to the previous frame N−1
based on scene motion, and resample the history buffer at that lo-
cation to obtain the history color for that pixel. With resampling,
the history color represents the average of previously accumulated
samples around that point. For the current frame N, we shade a new
sample (blue dot) at a jittered location, and merge the result with
the resampled history color. This produces the output pixel color of
frame N, which then becomes the history for frame N +1.

Putting this concept into implementation, Figure 3 shows the
components and data flow of a typical TAA algorithm. In order
to evenly sample different locations within a pixel area, a sub-pixel

Reproject

(resample)

Validate

(rectify)

Accumulate

(blend)

mulate

nd)

Reproject

(resample)

Post

processing
Render

Motion

vectors

Color

samples

Output

(history)

Output

(history)

DisplayJitter offset

Frame N Frame N + 1Frame N - 1

Figure 3: Schematic diagram of a typical TAA implementation.

Blue blocks are TAA components, and green blocks are stages of

the render engine.

jitter offset drawn from a sample sequence is used to shift the view-
port each frame (Sec. 3.1). Temporally accumulated samples from
the previous frame’s output (history) are reprojected (resampled)
using application-generated motion vectors to account for camera
and object motion (Sec. 3.2). Due to change in occlusion, lighting
or surface content, the fetched history data may be stale and in-
consistent with the data from the current frame. Using stale data
without scrutiny produces ghosting and image lag artifacts. History
validation is a critical component of TAA algorithms as it identifies
stale history data, and either rejects (Sec. 4.1) or rectifies (Sec. 4.2)
the data to avoid introducing error to the current frame. This is a
challenging and ill-posed task, as typically the only reliable in-
formation that we can use to validate previous data is the current
sparsely-sampled frame. We review challenges associated with this
problem in Sec. 6.

After history validation, the newly shaded sample is accumu-
lated (blended) into the history color to obtain a new resolved color
for each pixel (Sec. 3.3). This involves computing a weighted sum
of the history color and the current frame sample, using either a
fixed or adaptive blending weight. The blending weight has ma-
jor influence over the tradeoff between antialiasing quality (con-
vergence rate, temporal stability) and responsiveness (the speed to
adapt to changes and reject errors in history). After being saved
into a history buffer, the result can be further refined (e.g. image
post-processing) and prepared for display.

There is a recent trend to reduce the input shading sample density
to below one sample per pixel in TAA, which effectively makes it a
spatial upscaling solution. Such techniques are commonly referred
to as temporal upsampling (Sec. 5; also called temporal upscal-
ing; notice that the name should not be confused with techniques
that increase frame rate by using frame interpolation). Even though
the scene is rasterized and shaded coarsely in each frame, samples
that are gathered across multiple frames can jointly provide data
of higher density and resolution. Temporal upsampling techniques
leverage such data to recover fine details, and usually outperform
pure spatial upsampling techniques in quality. Given an increasing
demand in playing games in ultra-high-resolution today, temporal
upsampling and its variants are on its way to becoming the new
standard in modern game engines.

We review the performance characteristics of TAA and temporal
upsampling in Sec. 7. There are also a few other techniques, closely
related to TAA, that share similar building blocks as well as chal-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

608

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

lenges. Examples include variable rate shading, temporal denois-
ing, and machine learning-based reconstruction techniques. Sec. 8
gives an overview of these problems and solutions. All these tech-
niques use temporally accumulated data to improve visual quality
or to accelerate brute-force solutions.

2. A brief history of Temporal Antialiasing

Prior to the introduction of TAA, techniques that exploit tempo-
ral coherence (i.e. frame-to-frame coherence) to speed up render-
ing computation have been available for offline and interactive
ray-tracing systems for decades. An overview to this family of
techniques is given by Scherzer et al. [SYM∗12]. Such methods
typically aim at reusing shading results across multiple frames to
save expensive computation, by using either proxy geometry warp-
ing or pixel scattering to reproject data across frames. Another
related group of techniques, called motion-compensated filtering,
use spatio-temporal filters to reduce noise in image (video) se-
quences [BKE∗95]. Like TAA, such techniques also need to handle
time-variant signal, using adaptive nonlinear filters [OST93] or sig-
nal decomposition methods [KLB95].

Although the idea of using data across multiple frames for eval-
uating per-pixel integrals can be traced back to the Accumulation

Buffer [HA90], it was not until the development of the Reverse Re-

projection Cache (also known as history buffer) that this idea be-
came practical for real-time rendering. Nehab et al. [NSL∗07] and
Scherzer et al. [SJW07] both discovered that by computing a per-
pixel reprojection vector in the forward rendering pass, the idea of
accumulation buffer can be extended to handle scene motion. More
precisely, reprojection vectors track object and camera motion be-
tween frames, and allows each pixel in the current frame to retrieve
data accumulated at the exact same surface point from previous
frames. Both works proposed to use this technique to improve the
quality of shadow-mapping.

The Amortized Supersampling paper [YNS∗09] first proposed to
use data reprojection as a general solution for shading antialias-
ing. The authors identified two major difficulties in TAA to pro-
duce high-quality output: excessive spatio-temporal blur due to re-
sampling error, and slow adaptation to underlying signal changes.
Through a theoretical analysis, they proposed to store the history
buffer in 2× the target resolution to reduce blur, and introduced an
adaptive blending scheme to identify and limit error caused by blur
and signal changes.

An important technique that makes TAA more robust in appli-
cations is the idea of using current frame samples to rectify re-
projected history data, first introduced by Lottes [Lot11]. Later
refined and referred to as neighborhood clamping (or clipping)
[Kar14, Sal16], this technique relies solely on the current-frame
input color buffer to reduce artifacts caused by stale history data.
Therefore, it significantly lessens the need for other history valida-
tion heuristics and additional input data, making TAA more robust
and easy to integrate.

Since 2010, TAA quickly became popular in game engines and
newly released titles. Halo: Reach [Lea10] uses alternate sampling
patterns across frames and then adaptively blend the last two frames
to achieve quality similar to 2× supersampling. Crysis2 [Sou11]

adds reprojection to allow accumulating multiple frames, and uses
motion and depth-based consistency check to minimize artifacts.
Starting in 2012, NVIDIA offers TXAA [NVI12] as their TAA so-
lution on Kepler+ architectures, and enabled it in nearly 20 game
titles. Major commercial game engines added TAA either as a stan-
dard antialiasing approach (e.g. Unreal Engine 4 [Kar14], Unity
[Uni16]), or in combination with other spatial antialiasing solu-
tions such as morphological antialiasing [Res09] (e.g., SMAA in
CryEngine 3 [JESG12], and TSCMAA [Kim18]). Other notable
titles and engines that implemented and enhanced TAA include
Dust 514 [Mal12], the Decima engine [Val14, dCI17], Far Cry

4 [Dro14], Quantum Break [Aal16], Rainbow Six Siege [EM16],
Inside [Ped16], and Uncharted 4 [Xu16].

TAA has been coupled with the idea of temporal upsampling
since its inception. Yang et al. [YNS∗09] proposed a reconstruction
algorithm to accumulate details at subpixel level in TAA. Herzog
et al. [HEMS10] introduced a joint spatio-temporal filter to per-
form upsampling in image space. Similar ideas have been used in
game engines to meet quickly evolving demand of high-resolution
displays [Mal12, Val14, Aal16, Epi18]. More recently, new tech-
niques that extend MSAA to shade less than once per pixel (e.g.
checkerboard rendering [Lea16, EM16, Wih17], variable rate shad-
ing [PSK∗16, XLV18]) have come to rely on TAA to filter or fill
in missing shading details. These methods that decouple the shad-
ing rate from the visibility sampling rate can reduce shading costs
while resolving geometry edges at a dense resolution, but often at
the cost of significant changes to the engine rendering pipeline.

3. Accumulating temporal samples

From a theoretical standpoint, spatial antialiasing requires convolv-
ing the continuous shading signal with a low-pass pixel filter to sup-
press excessive high-frequency components before sampling the
signal. In practice, we supersample the continuous signal before
applying the low-pass filter on the discrete samples of the signal.
TAA amortizes the cost of supersampling by generating, aligning,
and accumulating these spatial samples over multiple frames. This
section gives an overview of these procedures.

3.1. Jittering samples

For practical reasons, most TAA implementations render a single
sample per pixel in each frame. A common approach to generate
a different sample in each frame for all pixels is to add a view-
port sub-pixel jitter offset to the camera projection matrix. The per-
frame jitter offset is usually drawn from a well-distributed sample
sequence, so that every pixel is evenly covered by samples gener-
ated over multiple frames.

Since an object can appear or become disoccluded at any
time, the first sample of a pixel beginning accumulation can start
from any index in the sequence. To allow fast convergence, an
ideal sequence therefore must have the property that any subse-
quence of any length must be somewhat evenly distributed in the
pixel domain. Certain low-discrepancy sequence such as Halton
or Sobol have this property (see Christensen et al. [CKK18] for
an overview). Depending on the targeted quality and the effective
accumulated sample count, the length of the sequence can often

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

609

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

be limited to a relatively small number. For example, Unreal En-
gine 4 [Epi15] uses a 8-sample sequence from Halton(2, 3) by de-
fault, Inside [Ped16] uses a 16-sample sequence from Halton(2, 3),
SMAA T2x [Jim16] uses Quincunx, and Quantum Break [Aal16]
uses rotated grid offsets. When the target antialiasing filter kernel
is any non-negative kernel other than a common box filter, impor-
tance sampling can be used to efficiently sample the domain and
avoid explicit weighting of the individual samples [YNS∗09].

With GPU devices that support Direct3D programmable sam-

ple position feature tier 2, developers can specify a sample pattern
across a 2× 2 pixel grid, such that adjacent pixels do not have to
share the same set of samples. This helps to reduce certain aliasing
artifacts caused by the interference between the sample pattern rep-
etition frequency and the underlying signal frequency. NVIDIA uti-
lized this feature in the Multi-Frame Anti-Aliasing (MFAA) tech-
nique since their Maxwell architecture [Gru15]. Drobot [Dro14]
also uses this feature to sample in FLIPQUAD pattern over two
frames using 2× MSAA.

Motion in the scene may disrupt a well-designed sample pattern
by displacing samples accumulated over frames. With a short recur-
rent sequence, certain motion speed may cause sample locations
from multiple frames to cluster in world space, leading to biased
results (blurry or aliased). This is one of the causes of TAA qual-
ity degradation under motion (the others are discussed in Sec. 6).
By randomizing the jittering pattern, we can break regular cycles
in the pattern and lower the risk of running into those pathological
scenarios.

With TAA, sampling and integrating over pixel area provides an-
tialiasing for both geometry and texture. Since textures are usu-
ally filtered using mipmapping, they may risk being overblurred by
TAA in the output. Therefore, typically a mipmap bias is applied
to the forward pass where textures are sampled. This is particularly
important for temporal upsampling [Epi18]. The level of mipmap
bias should compensate for the ratio between the effective sample
density and the input pixel density. For example, if the effective
sample count per-input-pixel is expected to be 4 (see Sec. 3.3 and
Figure 4 for how to estimate effective sample density), then the
mipmap bias is calculated as − 1

2 log2 4 = −1.0. In practice, a less
aggressive bias between this value and 0 is sometimes preferred to
avoid hurting temporal stability as well as texture cache efficiency.

Since TAA is essentially an amortized sampling process, it can
also be applied to other effects that require integration of sam-
ples, such as ambient occlusion, shadow, order-independent trans-
parency, reflection, and diffuse global illumination. Providing ran-
domized input to these effects (preferably with high-dimensional
low-discrepancy sequences [CKK18]) allows TAA to integrate
them along with screen-space antialiasing samples. For example,
Unreal Engine 4 relies on TAA to denoise many effects that use
stochastic sampling and dithering [Kar14].

3.2. Data reprojection between frames

With scene motion between frames, each pixel needs to compute its
corresponding location in the previous frame to fetch history data.
Reverse reprojection [NSL∗07, SJW07] is widely used to perform
this step. During scene rasterization, the geometry is transformed

twice, once using previous frame’s data, and once using current
frame’s data. The offset between the current and the previous loca-
tion of every pixel is then stored into a motion vector texture (also
called velocity in some engines), which is later used by the TAA al-
gorithm to obtain the reprojected history buffer coordinate of every
target pixel.

In order to save framebuffer bandwidth, some engines only ex-
plicitly compute and store motion vectors for animated and mov-
ing objects, with all affected pixels tagged in a stencil texture. For
pixels that are not tagged, their location in the previous frame can
be determined on the fly in the TAA pass by reconstructing the
3D clip-space coordinates of each pixel using the depth buffer, and
projecting it to the previous frame using the camera matrices of the
previous and current frame:

pn−1 = Mn−1M
−1
n pn, (1)

where pn = (2x
w − 1, 2y

h − 1,z,1) is 3D clip-space location of the
current frame pixel in homogeneous coordinates, and Mn−1 and
Mn are previous and current frames’ view-projection matrices, re-
spectively. The resulting position is obtained after a perspective di-
vision. Unreal Engine 4 [Epi15] uses this approach by default.

The reprojected coordinates in the history buffer often contains
a subpixel offset, and there is no longer a 1 : 1 pixel mapping be-
tween the source and the target frames. A resampling step is needed
for obtaining history at each pixel, so that no distortion (fractional
offset snapping) artifact is introduced. Typically, a hardware accel-
erated bilinear texture fetch or a bicubic texture filtering is used
for this purpose. Section 6.1 discusses commonly used resampling
filters and how they affect image quality.

Since motion vectors cannot be antialiased, reprojection using
motion vectors may reintroduce aliasing artifacts to smooth, an-
tialiased edges along object boundaries of moving objects. A sim-
ple approach to avoid such artifacts is to dilate the foreground
objects when sampling motion vectors, so that all boundary pix-
els touched by the edge are reprojected along with these ob-
jects [Kar14]. Typically, a small 4-tap dilation window is used. An
adaptive scheme has also been proposed by Wihlidal [Wih17] to
only fetch and compare depth value when motion vectors diverge.

3.3. Sample accumulation

It is impractical to store all samples accumulated for each pixel over
previous frames. In most TAA implementations, the accumulated
samples for each pixel are averaged and stored as a single color,
which is both the output of the current frame, and the history input
of the following frame. This iterative accumulation process can be
written as [YNS∗09]:

fn(p) = α · sn(p)+(1−α) · fn−1(π(p)), (2)

where fn(p) is frame n’s color output at pixel p, α is the blend-
ing factor, sn(p) is frame n’s new sample color at pixel p, and
fn−1(π(p)) is the reprojected output (history color) from previous
frame, using the reprojection operator π(·) and resampling.

The blending factor parameter α balances the relative contribu-
tion of new sample and the history color. Most TAA implemen-
tations today use a fixed α, which effectively leads to a recursive

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

610

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

0

2

4

6

8

10

12

14

16

18

20

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

E
ff

ec
ti

v
e

#
 s

am
p
le

s
ac

cu
m

u
la

te
d

α

 5 frames

 10 frames

 15 frames

 steady state

Figure 4: Effective number of accumulated sample when using ex-

ponential smoothing with a fixed α. The curves are plotted based

on Eq. 30 listed in the appendix of Yang et al. [YNS∗09].

exponential smoothing filter [NSL∗07, SJW07, YNS∗09]:

fn(p) = α ·

(

sn(p)+(1−α)sn−1(p)+(1−α)2
sn−2(p)+ . . .

)

.

(3)
This equation progressively assigns older samples lower weights,
which in some cases is a desirable property, since older samples are
more likely to become stale due to changes in the scene. Note that
from a variance reduction perspective, this is suboptimal. The opti-
mal variance reduction is achieved when all samples are weighted
equally in the sum [YNS∗09]. This is not the case when a fixed α is
used, which may compromise the quality of the results at both low
and high sample counts. Figure 4 shows the relation between α and
the effective number of samples accumulated if uniform weights
were used, with a matching degree of variance reduction. For ex-
ample, with a commonly used α = 0.1, a result from 5 accumulated
frames is equivalent to 2.2 samples per pixel, 10 frames equivalent
to 5.1 samples, and 15 frames equivalent to 9.8 samples. At steady
state with an infinite number of input frames accumulated, α = 0.1
results in 19 effective samples at its best.

As an alternative to weighting samples equally, we can store a
per-pixel accumulated sample count Nt(p) in the alpha channel of
the history buffer [YNS∗09]. This value is initialized to 1 whenever
the pixel is refreshed, and is incremented every frame. By setting
α = 1/Nt(p), Eq. 2 assigns the same weight to all history samples.
It then enables optimal convergence rate at the cost of an additional
storage channel. This method is used in some applications that re-
quire fast convergence after disocclusion [WMB19, KIM∗19], par-
ticularly when target frame rate is low.

It should be noted that when α is small, the result becomes sus-
ceptible to resampling errors (Sec. 6.1) or temporal lag (Sec. 6.2).
To avoid those artifacts, α is often clamped to a lower bound to en-
sure a minimum amount of history refresh. Yang et al. [YNS∗09]
propose a theory to derive an adaptive α lower bound based on
fractional motion speed, such that accumulation of bilinear resam-
pling error is prevented. CryEngine 3 [Sou11] and Unreal En-
gine 4 [Epi15] use simple heuristics to increase α with larger mo-
tion speeds. Also, when history rejection (Sec. 4.1) or rectification
(Sec. 4.2) happens, effective accumulated sample count Nt(p), if
tracked, needs to be updated accordingly to match α [YNS∗09].

3.3.1. Sample accumulation in HDR color space

In most rendering engines, physically-correct post processing ef-
fects are implemented in linear HDR (i.e. radiometrically linear)
color space. It is desirable to place TAA before all these effects to
avoid aliased high-energy color samples being exaggerated by ef-
fects such as bloom or lens flare. This requires TAA to take input
samples in linear HDR space. On the other hand, since tonemap-
ping is typically non-linear, filtering operations such as antialiasing
are best applied in the post-tonemapped space to produce correct
edge gradient on display. A workaround to solve this conflict is
to tonemap the samples before applying TAA, and invert tonemap
the output back to linear HDR space to feed the rest of the post
processing chain [Pet15]. In practice this is typically implemented
with an invertible tonemapping operator like the Reinhard opera-
tor 1/(1+ x), which acts as a surrogate to the final tonemapping
function.

To avoid desaturating colors when tonemapping, Karis [Kar13,
Kar14] uses a luminance-adaptive weight when accumulating new
samples to history:

w(c) =
1

1+L(c)
, (4)

where L(c) is the luma channel of color c, and w(c) is applied as
a bilateral weight when blending current frame samples and his-
tory color using Eq. 2. This effectively tonemaps the input samples
and can avoid generating extremely high-energy color pixel in the
output, sometimes referred to as “fireflies”. A similar technique is
implemented in Call of Duty: Advanced Warfare [Jim14] to stabi-
lize bloom effect.

4. Validating history data

In reality, history pixel data reprojected from the previous frame
should never be trivially reused without checking. They can either
be invalid due to scene occlusion changes, or stale due to lighting
and shading changes. Failure to properly handle such cases can re-
sult in strong temporal artifacts such as ghosting. In this section,
we review commonly used techniques for validating history data.

4.1. History rejection

A straightforward approach to handle stale or invalid data is to re-
ject the data when error is detected. Rejection is done by setting α

to 1 in Eq. 2. A soft refresh is also possible by limiting α to a lower
bound threshold, allowing a faster than regular update to the ac-
cumulated history color. In general, there are two types of sources
that can be used to determine the confidence of the history: geom-
etry data (depth, normal, object ID and motion vector), and color
data.

Geometry data is typically used to identify invalid history data
reprojected from mismatching surfaces due to occlusion changes.
Figure 5 shows an example. By comparing reprojected depth of p

and previous depth of πt−1(p) against a small error tolerance, we
can identify disoccluded pixels like p1 and avoid reusing history
data there [NSL∗07]. To achieve more robust matching, other ge-
ometry information such as surface normal and object ID can also

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

611

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

t-1 t

p
1

p
2

pppppppπt-1(p1
)

πt-1(p2
)

Figure 5: Checking for disocclusion changes. Pixel coordinates p1
in frame t is reprojected to coordinates πt−1(p1) in frame t − 1,

where it is occluded by another piece of geometry. By checking

geometry data (depth, surface normal, or object ID), the occlusion

can be identified and properly handled. In contrast, pixel p2 finds

a match and can safely be reused. Diagram adapted from Nehab et

al. [NSL∗07]

be used additional indicators of consistency. In the TAA implemen-
tation of Crysis 2 [Sou11], Sousa also proposes to increase α when
motion speed increases, in addition to a depth-based consistency
check. Note that, although geometry information tends to corre-
late strongly with shading color, it is only a part of the shading
inputs. Shading changes in effects like lighting, shadows and re-
flections cannot be detected using geometry information. The un-
filterable nature of geometry data may re-introduce discontinuity
into smooth, antialiased edges. Therefore, relying only on geome-
try information to reject history is often a brittle solution.

Comparing color between history buffer fn−1 and current frame
samples sn can provide a more direct indicator of the validity of
history data. This is useful for detecting when history data is either
stale due to visible lighting or shading change, or distorted due to
resampling error and incorrect motion vectors. Since the current
frame samples sn are expected to be aliased (otherwise we would
not need antialiasing), directly comparing fn−1(p) and sn(p) gives
us biased estimates of the error, meaning that it can be both spatially
and temporally unstable. Yang et al. [YNS∗09] observe this and
propose to filter the error estimate:

εn(p) = B3 ∗ (fn−1 − sn)(p), (5)

where B3 is a box filter of radius 3. The error estimate is then used
to set a lower limit on α to enforce a minimum amount of refresh of
the history. Herzog et al. [HEMS10] compute the temporal gradient
of the reconstructed color, and apply spatial and temporal smooth-
ing to the gradient to improve stability. Malan [Mal12] computes
the color extent (bounding box) of the neighborhood in current
frame samples. The history color is kept if it is inside or close to
the bounding box. The technique also biases α based on the extent
of the color bounding box: a small bounding box (flat color) would
increase α to avoid visible ghosting, whereas a large bounding box
(sharp discontinuity) would reduce α to increase accumulated sam-
ples and suppress temporal artifacts. The use of color bounding box
is related to history rectification techniques (Sec. 4.2).

One option to reliably detect temporal changes is to compare
raw samples that are shaded at the exact same surface location
across frames. In Killzone: Shadow Fall [Val14] and following
HRAA technique [Dro14], an alternating odd-even frame sample

new sample
color

chromaticity (x)

c
h

ro
m

a
ti
c
it
y
 (

y
)

history color

(b) Convex hull clipping(a) New samples in the 3 x 3

neighborhood of a pixel

c
h

ro
m

a
ti
c
it
y
 (

y
)

chromaticity (x)

clamped color

clipped
color

(c) AABB clipping and clamping

c
h

ro
m

a
ti
c
it
y
 (

y
)

chromaticity (x)

(d) Variance clipping

clipped color

Figure 6: Common history rectification techniques illustrated. For

simplicity we visualize the color samples and their extent over a 2D

chromaticity space. In practice they are defined in a 3D color space

(e.g. RGB, or YCoCg).

pattern (e.g. temporal FLIPQUAD) is used, such that frame N and
N − 2 have matching sample locations. Samples in those frames
can therefore be directly compared when no motion is present.
For ray-tracing applications with a higher shading rate budget,
Schied [SPD18] proposes to forward-project a subset of previous
shading samples to the current frame, and shade new samples at
exact same locations to reliably compute shading change (temporal
gradient). The sparsely computed gradients are then upscaled with
a joint-bilateral filter, and are used to control α to keep the history
always up to date.

4.2. History rectification

Rejecting stale or invalid history data effectively resets the per-pixel
integration process, and can lead to increased temporal artifacts.
History rectification ameliorates this issue by making the otherwise
rejected data more consistent with the new samples. As in most
TAA implementations today, the rectified history is then blended
with the current frame, leading to more visually acceptable results.

Most history rectification algorithms assume that the current
frame samples provide reliable information of the extent (or distri-
bution) of the colors covered by each pixel. Since the current frame
samples are often sparse and aliased, a 3× 3 or larger neighbor-
hood of each pixel is considered for pulling the color information
(Figure 6(a)), with the assumption that more neighboring samples
provide a better estimation of the distribution of local color varia-
tions. The convex hull of the neighborhood samples in color space
represent the extent of the colors we expect around the center pixel.
If the history color falls inside the convex hull, it is assumed to be

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

612

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

consistent with the current frame data and can be reused safely. If
it falls outside the convex hull, we need to rectify it to make it con-
sistent with the current frame data. We do so by connecting history
color with the current-frame sample color, and clip the line segment
against the convex hull. The intersection point is the best estimate
of history that is consistent with the current frame samples.

In practice, computing a convex hull and the ray-hull intersec-
tion per pixel can be prohibitively expensive. A common approxi-
mation to this is to compute an axis-aligned bounding box (AABB)
of the colors using a min/max filter, and either clip or clamp the
history color against the AABB (Figure 6(c)) [Lot11, Kar14]. This
is related to Malan’s rejection technique [Mal12], where the same
AABB is used to either accept or reject history data (see Sec-
tion 4.1). While an AABB is simple to compute, the approximation
trades off temporal stability for an increased likelihood of ghost-
ing artifacts. Karis [Kar14] further reduces ghosting by clipping
to color AABB in YCoCg space. Compared to RGB, the YCoCg
space typically leads to a tighter AABB, because it decorrelates
chroma (Co, Cg) channels from the luma (Y) channel, in which
local contrast usually dominates.

Note that min/max filtering of very dark or bright outliers can
inflate the volume of the bounding box, leading to accepted history
data that would otherwise be rectified. Variance clipping [Sal16]
addresses outliers by using the local color mean and standard de-
viation to center and size the color extents used for rectification:

Cmin = µ− γσ,

Cmax = µ+ γσ,
(6)

where µ and σ are the mean and standard deviation of the color
samples in the local neighborhood, and γ is a scalar parameter typ-
ically chosen between 0.75 and 1.25. The computed Cmin and Cmax

are used in place of the AABB extent for history clipping (Fig-
ure 6(d)).

One special technique related to history rectification is the pixel
history linear models by Iglesias-Guitian et al. [GMK∗16]. Their
method derives pixel color from a running “feature”, which is accu-
mulated, stable low frequency color information at each pixel. The
feature is transformed to output pixel color by a per-pixel param-
eterized linear model, updated per frame to keep up with shading
signal changes. During update, neighborhood clamping is also used
to refine the color prediction model. The technique as a whole aims
to find a superior balance between temporal coherence and respon-
siveness, at the cost of more per-pixel storage of history data.

5. Temporal upsampling

Temporal upsampling is a natural extension of TAA, by further re-
ducing the effective sampling rate from one sample per pixel to
a fraction of a sample per pixel. This is often desired by applica-
tions with heavy pixel workload, and is becoming increasingly pop-
ular in games targeting high-resolution displays. Temporal upsam-
pling essentially accumulates lower-resolution shading results, and
produces higher resolution images that often contain more details
than pure spatial upsampling results. Although it shares many ba-
sic building blocks with TAA, such as sample jittering, reprojection

and history validation techniques, the accumulation step requires
special handling to achieve the best image quality. In this section,
we propose a general framework that covers a variety of existing
upsampling techniques [YNS∗09, HEMS10, Mal12, Aal16, Epi18],
and discuss some improvement strategies.

5.1. Scaling-aware sample accumulation

Temporal upsampling differs from TAA in that input samples are
accumulated into a buffer of higher pixel density. Since there is no
longer a 1 : 1 mapping between input samples and output pixels,
we first upscale the input samples to the output resolution using:

s̄n(p) =
1

w(p) ∑
i∈Ω(p)

δ(oi)si, (7)

where Ω(p) is a collection of input samples in a fixed-sized neigh-
borhood of output pixel p, si is the i-th sample in Ω(p), oi is dis-
tance between si and p, and δ is a reconstruction filter kernel cho-
sen for the target pixel. The normalization factor w(p) is the sum
of weights:

w(p) = ∑
i∈Ω(p)

δ(oi). (8)

Essentially, Eq. 7 computes a weighted sum of input samples that
fall under the reconstruction kernel δ of the target pixel. The re-
construction kernel δ can either be a Gaussian kernel [HEMS10,
Epi18], a 1-pixel-wide bilinear tent (hat) function [YNS∗09], or
other filtering kernels with wider support than the input sample grid
size. The fixed-sized neighborhood of Ω(p) is chosen to match the
filter size.

While the upscaled input samples s̄n(p) could be directly
plugged into Eq. 2 for accumulation, doing so will not produce out-
put images with desired sharpness. By nature of upscaling, the set
of values s̄n contain mixed quality output samples, where some with
proximity to input samples receive direct copies of those (higher
quality), and others are interpolated from more distant samples
(lower quality). With a fair per-frame jittering pattern, an output
pixel should receive a higher quality sample every few frames.

The key to producing consistent high quality in all pixels is to
selectively blend input samples into history based on a confidence-
of-quality factor β(p) defined for each output pixel p. For that pur-
pose, the recursive accumulation step (Eq. 2) can be rewritten as:

fn(p) = α ·β(p) · s̄n(p)+(1−α ·β(p)) · fn−1(π(p)). (9)

The confidence factor β(p) is a value in [0,1] that is designed
to bias the accumulation towards retaining the history when the
quality of s̄n(p) is expected to be low. Unreal Engine 4 [Epi18]
uses the following term to compute the confidence:

β(p) = max
i∈Ω(p)

δ(oi), (10)

where δ(oi) is the same Gaussian kernel used in Eq.7. Most other
temporal upsampling algorithms that scatter samples into the high-
resolution accumulation buffer can be viewed as using a box kernel
as δ(oi) that matches the target pixel size [YNS∗09,Mal12,Aal16].

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

613

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

As an example, consider the special case where the input sam-
ples are of 2× lower resolution in each dimension, and kernel δ(p)
is a box of target pixel size. There is a fixed 1 : 4 mapping between
input samples and output pixels. Since samples are jittered inside
the source pixels, in each frame only one out of four pixels in target
2× 2 pixel block has a valid sample that fall into its covered area.
In that pixel the box kernel in β(p) evaluates to 1, and the sam-
ple is accumulated into fn(p). The other three pixels all have β(p)
evaluates to 0, leaving the history values unchanged. Notice that
arbitrary upsampling ratio is supported by this scheme. Examples
of different upsampling ratios are illustrated in Figure 7.

No upsampling 1.5× upsampling 2× upsampling

Figure 7: Spatio-temporal sample accumulation in temporal up-

sampling. Upper: Input color samples from four frames (green,

brown, orange, yellow) and how they overlap target pixel grid with

1× (no upsampling), 1.5×, and 2× upsampling rate per dimen-

sion. Lower: When using a target pixel-sized box kernel as δ(p),
the updated pixels in one frame (highlighted) are those touched by

the samples shaded in that frame.

5.2. Miscellaneous improvements

History validation in temporal upsampling shares the same type
of challenges with that in TAA, but it is more difficult because
sparser input samples relative to output pixels provide less reliable
information about the real content. As will be further discussed in
Sec. 6.1.2, Sec. 6.2 and Sec.6.3, the quality of history rectification
suffers when input samples are sparse, which would ultimately lead
to worse trade-off between ghosting, temporal instability and blur-
riness artifacts.

During temporal upsampling, the typical 3 × 3 neighborhood
used for color bounding box calculation in the input image now
covers more than 3× 3 pixel area in the target image, leading to
an increased chance of overestimating the color gamut. To avoid
that, Unreal Engine 4 [Epi18] computes a shrink-sized neighbor-
hood based on subpixel offset for color bounding box calculation.
Samples far away from the target pixel center are not included by
the bounding box, leading to less ghosting artifacts. Similarly, An-
dersson et al. [ANS∗19] propose to clamp each history pixel only
to its immediate neighboring 2×2 samples.

To improve temporal stability and sharpness in temporal upsam-
pling, Quantum Break [Aal16] choose to adaptively relax the color
bounding box based on pixel motion speed. On objects that are
close to stationary, accumulating samples is encouraged over ag-
gressive clamping. This will lead to more stable and sharper images
during static shots, but at the cost of potential ghosting on dynamic
lighting and shadows, or animated textures, since these changes are
not reflected by the motion vectors.

In the context of applying temporal upsampling to ray tracing,
Andersson et al. [ANS∗19] observe significant quality differences
when the sampling order interacts with motion. With regular sam-
pling patterns, they recognize two main sampling order modes,
hourglass and bowtie. They propose an adaptive scheme to dy-
namically switch between the two modes per pixel based on the
fractional part of motion speed and motion direction, resulting in
reduced image error and visible artifacts.

5.3. Checkerboard rendering

Checkerboard rendering (CBR) is a special type of temporal up-
scaling technique. It became popular after game console platforms,
such as PlayStation 4 Pro and XBox One X, use it as a tool to tar-
get 4K resolution [Lea16]. Unlike other temporal upscaling tech-
niques that rely on random jittered samples to cover the target pixel
grid, CBR deterministically shades two opposing pixels on the di-
agonal line in each 2 × 2 pixel quad (hence the name “checker-
board”) in one frame, and flips that pattern next frame to shade the
other two pixels in the quad. The technique to shade samples in
a checkerboard pattern can be a 45◦ rotated framebuffer [dCI17],
hardware accelerated 2× MSAA [EM16, ML18], programmable
sample positions [Dro14], or variants of target-independent raster-
ization [Wih17]. Such techniques often leverage hardware depen-
dent and are orthogonal to the topics of this paper.

Since every single frame only shades half of the target pixels,
temporal data reuse is needed to generate a complete image in
each frame. The common TAA and temporal upscaling techniques
such as reprojection, sample accumulation and history clamping
are directly applicable to CBR. The distribution of new samples
in a checkerboard pattern is also inherently more friendly to in-
terpolation or neighborhood clamping steps than earlier temporal
upsampling attempts like temporal interlaced rendering [Val14].
But a CBR implementation usually requires significant engine code
changes, due to the non-standard sample layout and the large num-
ber of shading and postprocessing passes that interact with it. Like
temporal upscaling, CBR techniques usually resolves upscaling
and antialiasing in a single pass. A special post-processing pass
can be used to avoid producing visible saw-tooth pattern in final
rendering [EM16]. With support of special hardware, visibility in-
formation such as depth and object/primitive ID can be decoupled
from shading and sampled at target resolution to improve the qual-
ity of final pixel resolve [Wih17]. Unlike temporal upsampling,
CBR assumes a fixed 1 : 2 input-to-output pixel ratio. Therefore,
it is sometimes coupled with a traditional resolution scaling tech-
nique to support varying workloads [Wih17].

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

614

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

6. Challenges

Amortizing sampling and shading across multiple frames does
sometimes lead to image quality defects. Many of these problems
are either due to limited computation budget (e.g. imperfect resam-
pling), or caused by the fundamental difficulty of lowering sam-
pling rate on spatially complex, fast changing signals. In this sec-
tion we review the common problems, their causes, and existing
solutions.

6.1. Blurriness

There are two sources that accounts for the “soft” look of TAA
results: the error introduced by resampling when history is repro-
jected, and the error introduced by history rectification where accu-
mulated detail in history color is clipped or clamped.

6.1.1. Resampling blur

Resampling happens when motion causes target pixels to repro-
ject to fractional pixel locations in the previous frame. Using a
hardware-accelerated bilinear texture filtering can efficiently inter-
polate the color value of the four nearest pixels in the history buffer,
around the reprojected pixel center (π(p) in Eq. 2). However, bilin-
ear filters soften the resampled image, since they perform poorly in
retaining high-frequency contents. Since the history is reprojected
in every frame, the filtering error accumulates and quickly result
in an objectionable, blurry look. This blur can be quantified using
a statistical analysis [YNS∗09]. This analysis led to strategies to
avoid the excessive blur by both clamping α to an adaptive lower
threshold based on motion speed (because the amount of blur varies
with fractional motion speed), and using a higher resolution his-
tory buffer (in order to relax the bandwidth of the bilinear filter).
In applications that do not require regular sampled outputs (e.g. ray
tracing [CSK∗17]), forward reprojection can be used to avoid re-
sampling, together with explicit hole filling steps.

Other than limiting α and increasing history resolution, ad-
vanced resampling filters are also commonly used to reduce the
reprojection blur. Drobot [Dro14] uses Back and Forth Error Com-
pensation and Correction (BFECC) [DL03, NABW12] to signifi-
cantly reduce the error of bilinear sampling. Cubic interpolating
splines like Catmull-Rom [CR74] are also commonly used as a re-
sampling function in TAA to avoid blur accumulation. For example,
TAA in Unreal Engine 4 [Kar14, Epi15] and SMAA T2x [Jim16]
both use an approximate, optimized version of Catmull-Rom in-
terpolator with as few as five bilinear texture fetches. As shown
in Figure 8, both BFECC and Catmull-Rom offer significant im-
provement over bilinear results after 100 frames of repeated resam-
pling of accumulated history. Recently, Nehab and Hoppe [NH14]
study generalized filter kernels that demonstrate superior resam-
pling quality over traditional convolutional filters. The latest filter
of this kind [SN15] produces almost visually lossless results af-
ter 100 frames of resampling (Figure 8, last column shows the re-
sults using their cubic quasi-interpolator). The generalized filters
are implemented as a traditional linear, quadratic or cubic resam-
pling filter followed by a linear recursive filter pass, which can be
efficiently implemented on the GPU using parallel recursive filter-
ing [NM16].

Bilinear Catmull-RomBilinear + BFECC Sacht-NehabOriginal

H
al

f-
p
ix

.
o
ff

se
t

R
an

d
o
m

 o
ff

se
t

R
an

d
.
+

 r
ef

re
sh

Figure 8: Comparison of resampling blur using different filtering

techniques. All images except the original are generated by re-

peated translating and resampling the image 100 times. The first

row of images uses half-pixel translation in both horizontal and

vertical directions to demonstrate worst-case resampling quality.

The second row uses random translation offset to simulate the aver-

age case. The third row applies exponential smoothing (Eq.2) with

α = 0.1 after every resampling step, using ground-truth translated

image as input (sn). It shows that the resampling blur can be ame-

liorated to some extent when new input is blended into the resam-

pled history every frame.

6.1.2. History rectification-induced blur

History rectification techniques (Sec. 4.2) are based on the assump-
tion that the current frame samples in the neighborhood of each
pixel contain the entire gamut of surface colors covered by that
pixel. Since the current frame samples are sparse (≤ 1 sample per
pixel), the hope is that any thin feature in geometry or shading is
at least covered by one pixel in any 3×3 neighborhood it touches.
Unfortunately, with highly detailed content, this assumption is of-
ten violated. Figure 9(a) demonstrates a common case where a sub-
pixel wide thin line is missing in the input of certain frames, caus-
ing the underestimated color bounding box to clip or clamp away
the line color from history. This happens commonly in highly de-
tailed scenes, where small, sharp features are smoothed out in the
output (Figure 9(b-d)).

Since history rectification is essential in most modern TAA im-
plementations, and must be adjusted to avoid more severe artifacts
like ghosting (Sec. 6.2), detail preservation is sometimes sacrificed.
To regain some of the sharp, detailed appearance, some renderers
apply a sharpening filter, such as a discrete Laplacian, to the result
of TAA output [Dro14, Xu16, Wih17]. An adaptive sharpening fil-
ter [Kra19] can be used to avoid producing out-of-gamut colors in
sharpening.

6.2. Ghosting and temporal lag

Ghosting is a common type of artifact seen in screen-space tem-
poral data reuse techniques. Ghosting often appears in newly dis-
occluded regions caused by moving objects, where invalid history
data is not completely removed from the current frame by history
rejection or rectification techniques. That region can then appear as
a second copy of the moving object, and it may be carried through

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

615

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

chromaticity (x)

c
h
ro

m
a
ti
c
it
y
 (

y
)

Sample location

& Color BBox Frame 1Frame 0 Frame 3Frame 2

Foreground Background
Foreground color samples

Background color samples

(a) Illustrative example: incorrect clamping of foreground colors

(b) An input frame (c) TAA w/ clamping (d) TAA w/o clamping

Figure 9: History rectification-induced blur. In the illustrative ex-

ample (a), a thin foreground object is sampled in frame 0 and 2, but

is completely missed in frame 1 and 3. The foreground color is then

removed from the accumulated history in frame 1 and 3, leading to

biased results. Screenshots of a forest scene shows that a heavily

undersampled input (b) causes missing tree branches and other de-

tails in a converged TAA image with clamping (c), when compared

to the result without clamping (d).

in subsequent frames. Other than disocclusion, incorrect motion
vectors can also lead to invalid reprojected history in a false shape
of a moving object. Common effects that produce to incorrect mo-
tion vectors are transparency, particles and reflection, which are
known challenging cases for TAA to handle. When motion is ab-
sent, but the history data is stale due to fast changing shading (e.g.
specular highlights or animated shadows), the result may simply
appear as being blurred or blended across multiple frames. This is
often referred to as temporal lag.

Both ghosting and temporal lag could be avoided if history recti-
fication mechanisms are effective. However, the effect of history
rectification techniques like history clipping or clamping is of-
ten compromised near high-contrast object boundaries. Figure 10
shows a common case in games, where the input samples from the
current frame contain dense high contrast edges (b), which lead
to large color bounding boxes in the area (c). The large bounding
boxes are ineffective to represent the color gamut of the pixel col-
ors, and thus allow the invalid history colors to pass during clipping
or clamping.

To avoid ghosting artifacts, TAA in Unreal Engine 4 [Kar14]
adds a “responsive AA” flag on translucent materials, which is writ-
ten to a stencil buffer and used by the TAA pass to increase α

and allow faster refresh of incorrect history. A similar technique
is used in Uncharted 4 [Xu16] to mask out materials that are prone

(a) TAA result (b) Input samples (c) Color BBox Vis.

Figure 10: An example of ghosting artifact in TAA: (a) a running

character leaves a ghosting trail over disoccluded grass; (b) the

input samples have high luminance and chrominance complexity in

the grass-covered regions; (c) visualization of the large luma extent

of the per-pixel neighborhood color bounding box, which is used to

clip the history color.

to ghosting. TAA in Uncharted 4 also uses a dilated stencil mask
to avoid ghosting trail near smooth, antialiased edges, since half of
the pixels on the edge may not carry the mask. Jimenez [Jim16]
combine history rejection and rectification, to force refresh history
pixels that fails the depth comparison. The TAA technique used in
INSIDE [Ped16] transitions TAA output to motion-blurred pixels
with increasing motion velocity to hide some of the ghosting arti-
facts.

To fix incorrect reprojection of reflections, Xu [Xu16] describe
a method to obtain correct vector for planar reflective surfaces.
There are also other related techniques that aim at warping re-
fracted and reflected contents [LRR∗14, ZRJ∗15, LRBR16] and
shadows [LSR17], by using additional data structures to track cor-
respondence.

6.3. Temporal instability

One of the main goals of TAA is to reduce temporal instability of
aliased frames, such as flickering or shimmering artifacts. Since
a different jitter offset is applied to the viewport in each frame,
the shading sample computed for a pixel changes every frame even
when the camera stays stationary. Typically, the difference is ab-
sorbed by the sample accumulation step (Sec. 3.3) to provide the
correctly filtered pixel. However, history rejection or rectification
algorithms may mistakenly invalidate or clamp history due to jitter-
induced sample color change. Figure 11 shows such an example
where a low frequency Moiré pattern causes a complete gamut
change in the neighborhood of some pixels, forcing the history
color to be clipped or clamped to the new sample value in every
frame, effectively disabling accumulation. Disabling or relaxing
history rectification avoids the flickering (third row in Figure 11),
but may expose the output to ghosting or temporal lag. In fact,
avoiding ghosting and flickering are often contradicting goals in
the design of history rejection or rectification algorithms.

The fundamental problem that causes temporal instability is sim-

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

616

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

Frame N Frame N+1 Frame N+2 Frame N+3

In
p

u
t

sa
m

p
le

s

T
A

A
 w

it
h

re
ct

if
ic

at
io

n

T
A

A
 w

it
h

o
u

t

re
ti

fi
ca

ti
o

n

Figure 11: An example of temporal instability introduced by history

rectification using strongly aliased input. Low frequency Moiré pat-

tern in the input images changes the local pixel gamut completely

every frame (first row of close-up views), forcing history rectifi-

cation to clip or clamp colors to the unstable input(second row).

Results is stable and much less aliased if history rectification is

disabled (third row).

ilar to the cause of the problems introduced earlier: the under-
sampled input does not carry enough information to allow reli-
able detection of invalid or stale history. False positives in detection
(valid history treated as invalid) causes blur and temporal instabil-
ity, whereas false negatives (invalid history treated as valid) causes
ghosting and temporal lag. In temporal upsampling algorithms, the
artifacts are often more pronounced than in regular TAA, since the
input is more heavily undersampled. The alternating sample pat-
tern [Dro14] and selective reshading [SPD18] techniques discussed
in Sec. 4.1 are aimed at mitigating this problem, but they are not
compatible with mainstream TAA techniques discussed earlier.

There are several heuristic algorithms that can reduce temporal
instability under certain scenarios. A test of motion coherency be-
tween the previous and the current frame [Sou11,Dro14,EM16] can
provide extra input to bias the clamping towards preserving more
history, but only if shading is known to be stable. Karis [Kar14]
reduces blend factor α when history is near clamping, in order
to soften temporal change after clamping happens. Extending that
method, Jimenez [Jim16] proposes to track spatial contrast changes
between frames as an indicator of flickering artifacts, and increase
convergence time when flickering is detected.

6.4. Undersampling artifacts

Since TAA reduces aliasing by integrating samples over time, vis-
ible aliasing may exist in areas where accumulated sample count
is low. This is commonly seen at camera cuts, where the first few

frames after transition usually have an overly sharp and aliased ap-
pearance. Regions that are newly disoccluded or with rapid shading
changes are also prone to contain undersampling artifacts.

A common technique to mitigate such undersampling artifacts
is to increase the spatial reuse for these regions. Several TAA
implementations [Epi15, Xu16] use a low pass filter on the new
samples to reduce aliasing artifacts and the overly sharp look of
newly shaded pixels that appear different from converged results.
Alternatively, screen space spatial antialiasing like morphologi-
cal antialiasing techniques [Res09, Lot09] can help to antialias
the raw samples from the current frame [JESG12, Dro14, Jim16,
dCI17,Kim18]. In addition to the approximation techniques, Adam
et al. [MSG∗18] adaptively use ray tracing to gather more sam-
ples in region where raster samples are sparse. Similarly, Yang
et al. [YNS∗09] adaptively supersample the shading of the disoc-
cluded region to reduce shading aliasing where applicable. In prac-
tice, adaptive supersampling can often be used on inexpensive pro-
cedures inside pixel shaders, such as alpha testing [Wih17].

7. Performance

In modern rendering engines, TAA is typically implemented as a
single compute shader or a full-screen pixel shader pass. An opti-
mized TAA implementation runs reasonably fast on modern GPUs.
Table 1 shows the typical cost of TAA in Unreal Engine 4 [Epi15].
As an image-space technique, the cost of TAA or temporal upsam-
pling scales relative to the output image resolution (except for mo-
tion vector generation cost on dynamic objects). Therefore, it is
usually stable and scene-independent, which is a desirable prop-
erty for the engine to maintaining a constant frame rate. In con-
trast, the cost of MSAA, which is tied to the forward shading pass,
varies based on factors such as geometry density, depth complexity,
multi-sample count, and hardware implementation characteristics.
That said, MSAA is often cheaper than TAA on lower-end plat-
forms (especially tile-based mobile GPUs), and are sometimes a
preferred option on forward renderers.

Target Resolution
Technique 1920×1080 2560×1440 3840×2160

TAA 0.14ms 0.24ms 0.52ms
TAAU 0.15ms 0.24ms 0.50ms

Table 1: Performance of the TAA and the temporal upsampling

(TAAU) pass in Unreal Engine 4 running on an NVIDIA RTX 2080

Ti GPU. All TAAU experiments use a 2× per dimension upsampling

factor.

Temporal upsampling may sometimes incur a performance over-
head to the engine. Unlike conventional image-based upsampling
filters, which are typically applied before the image sent to display,
temporal upsampling pass usually precede certain postprocessing
passes [Epi18]. This is because temporal upsampling doubles as an
antialiasing technique, which is responsible for removing aliasing
and temporal instability from the input to the postprocessing effects
(Sec. 3.3.1). As a result, these postprocessing effects have to be
computed at the upsampled resolution. The impact of this change
varies by the cost of these effects and the upsampling factor.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

617

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

8. Other related techniques

There are several techniques and applications that either leverage or
extend TAA techniques to achieve better image quality. This sec-
tion provides a brief overview of these areas.

8.1. Variable rate shading

Variable rate shading (VRS, also known as coarse pixel shading, or
CPS) [VST∗14, HGF14] decouples the rate of visibility and shad-
ing computations by extending multisampling antialiasing [Ake93]
to image regions larger than a pixel. VRS has been adopted by
graphics hardware and major graphics APIs [NVI18]. It is effec-
tive at improving performance by reducing the overall number of
fragment shader invocations, but it can also introduce spatial and
temporal artifacts, since all pixels belonging to a coarse pixel share
a uniform color. To mitigate this problem, several techniques adapt
and leverage the spatial-temporal filter in TAA to improve fine pixel
reconstruction from coarsely shaded ones.

Patney et al. [PSK∗16] accelerate foveated rendering by using
coarse pixel shading in the periphery of the image, where under-
sampling artifacts caused by shading less than one fragment per
pixel are addressed via variance clipping (see Section 4.2). The
impact of calculating the mean and standard deviation of color
over large image regions can be avoided by exploiting the linearity
of raw moments, which are pre-integrated over tiles (e.g. 16×16
pixel) and reconstructed at intermediate scales using hardware tri-
linear filtering [Sal16, PSK∗16]. Xiao et al. [XLV18] tailors TAA
to coarse pixel shading by adopting a jittering sequence that gen-
erates a distribution of visibility and shading samples with blue
noise properties. Furthermore, ghosting artifacts introduced by us-
ing variance clipping at coarse pixel scale are reduced by adap-
tively rescaling color variance around edges where a large number
of shading samples are available from overlapping surfaces.

8.2. Temporal denoising

Stochastic algorithms in real time rendering often produce noisy
results due to having a low sample budget. TAA-like temporal
reuse algorithms can be used together with or in place of spa-
tial filtering as a means to achieve variance reduction. Exam-
ples include soft shadows [NSL∗07, SSMW09], screen-space am-
bient occlusion (SSAO) [MSW10, BA12], screen-space reflection
(SSR) [Sta15], global illumination [Xu16], and other temporal
dithering effects [WM17]. Temporal reuse of data allows spatial
filtering to effectively achieve larger filter support at a fixed com-
putation cost and output quality.

Reprojection-based temporal data reuse has also been widely
applied in denoising ray-traced images. Many techniques rely
on TAA-like temporal filter to denoise path-traced images ren-
dered at very low sampling rates [SKW∗17, MMBJ17, SPD18,
KIM∗19, LLCK19, WMB19, SA19, BBHW∗19]. One major prob-
lem of reusing samples in path-tracing is the difficulty to obtain
correct motion vectors for secondary shading effects like reflections
and lighting. Zimmer et al. [ZRJ∗15] use a generalized version of
manifold exploration [JM12] to estimate motion vector for objects

seen after specular bounces during rendering, and also use image-
based optical flow for estimating the complex motion in irradiance
components.

8.3. Machine learning-based methods

Salvi [Sal17] enhances TAA image quality by using stochastic gra-
dient descent (SGD) to learn optimal convolutional weights for
computing the color extents used with neighborhood clamping and
clipping methods (see Section 4.2). Image quality can be further
improved by abandoning engineered history rectification methods
in favor of directly learning the rectification task. For instance, vari-
ance clipping can be replaced with a recurrent convolutional au-
toencoder which is jointly trained to hallucinate new samples and
appropriately blend them with the history data [Sal17].

On the denoising side, Chaitanya et al. [CKS∗17] introduce re-
current connections in a deep U-Net structure to improve temporal
stability. Vogels et al. [VRM∗18] propose a kernel-predicting net-
work (KPN) based temporal filter, which uses both the previous and
the future frames (reprojected to the current frame) as the input for
temporal feature extraction and denoising.

9. Conclusion and future work

The past decade has witnessed great advances and success of tem-
poral antialiasing and upsampling techniques in the gaming indus-
try. We have presented a general overview of the existing tech-
niques, and organized them in a framework that encompasses most
commonly used building blocks. In particular, we discuss how spa-
tial samples are gathered and accumulated temporally, how history
data are validated, and how temporal samples can be leveraged to
enhance spatial resolution. Most techniques discussed are built into
shipped games and production game engines, and many of them
are established as current best practices. The wide applications and
adoptions make this topic extremely practical.

Antialiasing in real-time rendering has never been a solved prob-
lem, and likely will not be in the near future. TAA is not an ex-
ception. We have identified and discussed the main challenges in
TAA we are facing today, and summarized existing solutions and
workarounds. TAA still need to make a great leap to achieve true
cinematic-level quality and robustness. Particularly, we think that
the robustness and reliability of history rectification needs to be fur-
ther improved to fully utilize the temporal data available. In the near
future, we expect advances in both analytical and machine learning-
based solutions to surpass today’s best techniques in this area, and
bring the image quality of TAA to the next level.

Acknowledgement

We thank Diego Nehab for providing help in testing the Sacht-
Nehab filter for resampling quality comparison. We are also grate-
ful to Kevin Shih, Robert Pottorff and the anonymous reviewers
for their help in proofreading the manuscript and giving valuable
suggestions.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

618

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

References

[Aal16] AALTO T.: Towards cinematic quality anti-aliasing in quantum
break. In Game Developers Conference Europe (2016). 3, 4, 7, 8

[Ake93] AKELEY K.: Reality engine graphics. In Proceedings of the 20th

Annual Conference on Computer Graphics and Interactive Techniques

(1993), SIGGRAPH ’93, pp. 109–116. 1, 12

[ANS∗19] ANDERSSON P., NILSSON J., SALVI M., SPJUT J.,
AKENINE-MÖLLER T.: Temporally dense ray tracing. In High-

Performance Graphics (2019). 8

[BA12] BAVOIL L., ANDERSSON J.: Stable SSAO in battlefield 3 with
selective temporal filtering. In Game Developers Conference 2012

(2012). 12

[BBHW∗19] BARRÉ-BRISEBOIS C., HALÉN H., WIHLIDAL G., LAU-
RITZEN A., BEKKERS J., STACHOWIAK T., ANDERSSON J.: Hy-
brid rendering for real-time ray tracing. In Ray Tracing Gems: High-

Quality and Real-Time Rendering with DXR and Other APIs, Haines E.,
Akenine-Möller T., (Eds.). Apress, 2019, pp. 437–473. 12

[BKE∗95] BRAILEAN J. C., KLEIHORST R. P., EFSTRATIADIS S.,
KATSAGGELOS A. K., LAGENDIJK R. L.: Noise reduction filters for
dynamic image sequences: A review. Proceedings of the IEEE 83, 9
(1995), 1272–1292. 3

[CKK18] CHRISTENSEN P., KENSLER A., KILPATRICK C.: Progres-
sive multi-jittered sample sequences. Computer Graphics Forum 37, 4
(2018), 21–33. 3, 4

[CKS∗17] CHAITANYA C. R. A., KAPLANYAN A. S., SCHIED C.,
SALVI M., LEFOHN A., NOWROUZEZAHRAI D., AILA T.: Interactive
reconstruction of monte carlo image sequences using a recurrent denois-
ing autoencoder. ACM Trans. Graph. 36, 4 (July 2017), 98:1–98:12. 12

[CR74] CATMULL E., ROM R.: A class of local interpolating splines.
In Computer Aided Geometric Design, Barnhill R. E., Riesenfild R. F.,
(Eds.). Academic Press, 1974, pp. 317 – 326. 9

[CSK∗17] CORSO A. D., SALVI M., KOLB C., FRISVAD J. R., LEFOHN

A., LUEBKE D.: Interactive stable ray tracing. In Proceedings of High

Performance Graphics (2017), HPG ’17, pp. 1:1–1:10. 9

[dCI17] DE CARPENTIER G., ISHIYAMA K.: Decima engine: Advances
in lighting and aa. In ACM SIGGRAPH Courses: Advances in Real-Time

Rendering in Games (2017). 3, 8, 11

[DL03] DUPONT T. F., LIU Y.: Back and forth error compensation and
correction methods for removing errors induced by uneven gradients of
the level set function. Journal of Computational Physics 190, 1 (2003),
311 – 324. 9

[Dro14] DROBOT M.: Hybrid reconstruction anti-aliasing. In ACM SIG-

GRAPH Courses: Advances in Real-Time Rendering in Games (2014).
3, 4, 6, 8, 9, 11

[EM16] EL MANSOURI J. E.: Rendering ‘Rainbow Six | Siege’. In Game

Developers Conference (2016). 3, 8, 11

[Epi15] EPIC GAMES: The Unreal Engine 4 source code. https://

www.unrealengine.com/en-US/ue4-on-github, 2015. Ac-
cessed in August 2019. 4, 5, 9, 11

[Epi18] EPIC GAMES: Unreal Engine 4.19: Screen percentage with tem-
poral upsample. https://docs.unrealengine.com/en-US/
Engine/Rendering/ScreenPercentage/index.html, Mar.
2018. Accessed in August 2019. 3, 4, 7, 8, 11

[GMK∗16] GUITIÁN J. A. I., MOON B., KONIARIS C., SMOLIKOWSKI

E., MITCHELL K.: Pixel history linear models for real-time temporal
filtering. Comput. Graph. Forum 35 (2016), 363–372. 7

[GPB04] GELDREICH R., PRITCHARD M., BROOKS J.: Deferred light-
ing and shading. In Game Developers Conference (2004). 1

[Gru15] GRUEN H.: New GPU features of NVIDIA’s Maxwell architec-
ture. In Game Developers Conference (2015). 4

[HA90] HAEBERLI P., AKELEY K.: The accumulation buffer: Hardware
support for high-quality rendering. SIGGRAPH Comput. Graph. 24, 4
(Sept. 1990), 309–318. 3

[Har04] HARGREAVES S.: Deferred shading. In Game Developers Con-

ference (2004). 1

[HEMS10] HERZOG R., EISEMANN E., MYSZKOWSKI K., SEIDEL H.-
P.: Spatio-temporal upsampling on the GPU. In Proceedings of the 2010

ACM SIGGRAPH Symposium on Interactive 3D Graphics and Games

(2010), I3D ’10, pp. 91–98. 3, 6, 7

[HGF14] HE Y., GU Y., FATAHALIAN K.: Extending the graphics
pipeline with adaptive, multi-rate shading. ACM Trans. Graph. 33, 4
(July 2014), 142:1–142:12. 12

[JESG12] JIMENEZ J., ECHEVARRIA J. I., SOUSA T., GUTIERREZ D.:
SMAA: Enhanced morphological antialiasing. Computer Graphics Fo-

rum (Proc. EUROGRAPHICS 2012) 31, 2 (2012). 3, 11

[JGY∗11] JIMENEZ J., GUTIERREZ D., YANG J., RESHETOV A., DE-
MOREUILLE P., BERGHOFF T., PERTHUIS C., YU H., MCGUIRE M.,
LOTTES T., MALAN H., PERSSON E., ANDREEV D., SOUSA T.: Filter-
ing approaches for real-time anti-aliasing. In ACM SIGGRAPH Courses

(2011). 1

[Jim14] JIMENEZ J.: Next generation post processing in call of duty:
Advanced warfare. In ACM SIGGRAPH Courses: Advances in Real-

Time Rendering in Games (2014). 5

[Jim16] JIMENEZ J.: Filmic SMAA: Sharp morphological and tempo-
ral antialiasing. In ACM SIGGRAPH Courses: Advances in Real-Time

Rendering in Games (2016). 4, 9, 10, 11

[JM12] JAKOB W., MARSCHNER S.: Manifold exploration: a markov
chain monte carlo technique for rendering scenes with difficult specular
transport. ACM Transactions on Graphics (TOG) 31, 4 (2012), 58. 12

[Kar13] KARIS B.: Tone mapping. http://

graphicrants.blogspot.com/2013/12/tone-
mapping.html, Dec. 2013. Accessed in August 2019. 5

[Kar14] KARIS B.: High quality temporal supersampling. In ACM SIG-

GRAPH Courses: Advances in Real-Time Rendering in Games (2014).
3, 4, 5, 7, 9, 10, 11

[KB83] KOREIN J., BADLER N.: Temporal anti-aliasing in computer
generated animation. SIGGRAPH Comput. Graph. 17, 3 (July 1983),
377–388. 1

[Kim18] KIM S.: Temporally stable conservative morphological
anti-aliasing (TSCMAA). https://software.intel.com/
en-us/articles/temporally-stable-conservative-

morphological-anti-aliasing-tscmaa, Jan. 2018. Ac-
cessed in January 2020. 3, 11

[KIM∗19] KOSKELA M., IMMONEN K., MÄKITALO M., FOI A., VI-
ITANEN T., JÄÄSKELÄINEN P., KULTALA H., TAKALA J.: Blockwise
multi-order feature regression for real-time path-tracing reconstruction.
ACM Trans. Graph. 38, 5 (June 2019), 138:1–138:14. 5, 12

[KLB95] KLEIHORST R. P., LAGENDIJK R. L., BIEMOND J.: Noise
reduction of image sequences using motion compensation and signal de-
composition. IEEE Transactions on Image Processing 4, 3 (1995), 274–
284. 3

[Kra19] KRAMER L.: Fidelityfx cas. https://gpuopen.com/
gaming-product/fidelityfx/, June 2019. Accessed in Octo-
ber 2019. 9

[KS14] KERZNER E., SALVI M.: Streaming g-buffer compression for
multi-sample anti-aliasing. In Proceedings of High Performance Graph-

ics (2014), HPG ’14, pp. 1–7. 1

[Lea10] LEADBETTER R.: Tech analysis: Halo: Reach.
http://www.eurogamer.net/articles/digitalfoundry-
halo-reach-tech-analysis-article, Sept. 2010. Accessed
in August 2019. 3

[Lea16] LEADBETTER R.: Inside playstation 4 pro: How
sony made the first 4k games console. https://

www.eurogamer.net/articles/digitalfoundry-2016-
inside-playstation-4-pro-how-sony-made-a-4k-

games-machine, Oct. 2016. Accessed in August 2019. 3, 8

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

619

https://www.unrealengine.com/en-US/ue4-on-github
https://www.unrealengine.com/en-US/ue4-on-github
https://docs.unrealengine.com/en-US/Engine/Rendering/ScreenPercentage/index.html
https://docs.unrealengine.com/en-US/Engine/Rendering/ScreenPercentage/index.html
http://graphicrants.blogspot.com/2013/12/tone-mapping.html
http://graphicrants.blogspot.com/2013/12/tone-mapping.html
http://graphicrants.blogspot.com/2013/12/tone-mapping.html
https://software.intel.com/en-us/articles/temporally-stable-conservative-morphological-anti-aliasing-tscmaa
https://software.intel.com/en-us/articles/temporally-stable-conservative-morphological-anti-aliasing-tscmaa
https://software.intel.com/en-us/articles/temporally-stable-conservative-morphological-anti-aliasing-tscmaa
https://gpuopen.com/gaming-product/fidelityfx/
https://gpuopen.com/gaming-product/fidelityfx/
http://www.eurogamer.net/articles/digitalfoundry-halo-reach-tech-analysis-article
http://www.eurogamer.net/articles/digitalfoundry-halo-reach-tech-analysis-article
https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine
https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine
https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine
https://www.eurogamer.net/articles/digitalfoundry-2016-inside-playstation-4-pro-how-sony-made-a-4k-games-machine

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

[LLCK19] LIU E., LLAMAS I., CAÑADA J., KELLY P.: Cinematic ren-
dering in ue4 with real-time ray tracing and denoising. In Ray Trac-

ing Gems: High-Quality and Real-Time Rendering with DXR and Other

APIs, Haines E., Akenine-Möller T., (Eds.). Apress, 2019, pp. 289–319.
12

[Lot09] LOTTES T.: FXAA whitepaper. https://

developer.download.nvidia.com/assets/gamedev/
files/sdk/11/FXAA_WhitePaper.pdf, Feb. 2009. Accessed in
August 2019. 11

[Lot11] LOTTES T.: TSSAA: Temporal supersamping AA.
http://timothylottes.blogspot.com/2011/04/tssaa-
temporal-super-sampling-aa.html, Apr. 2011. Accessed in
August 2019 via archive.org. 3, 7

[LRBR16] LOCHMANN G., REINERT B., BUCHACHER A., RITSCHEL

T.: Real-time Novel-view Synthesis for Volume Rendering Using a
Piecewise-analytic Representation. In Vision, Modeling and Visualiza-

tion (2016), Hullin M., Stamminger M., Weinkauf T., (Eds.), The Euro-
graphics Association. 10

[LRR∗14] LOCHMANN G., REINERT B., RITSCHEL T., MÃIJLLER S.,
SEIDEL H.-P.: Real-time Reflective and Refractive Novel-view Synthe-
sis. In Vision, Modeling and Visualization (2014), Bender J., Kuijper
A., von Landesberger T., Theisel H., Urban P., (Eds.), The Eurographics
Association. 10

[LSR17] LEIMKÜHLER T., SEIDEL H.-P., RITSCHEL T.: Minimal warp-
ing: Planning incremental novel-view synthesis. In Computer Graphics

Forum (2017), vol. 36, pp. 1–14. 10

[Mal12] MALAN H.: Real-time global illumination and reflections in dust
514. In ACM SIGGRAPH Courses: Advances in Real-Time Rendering in

Games (2012). 3, 6, 7

[ML18] MCFERRON T., LAKE A.: Checkerboard render-
ing for real-time upscaling on intel integrated graphics.
https://software.intel.com/en-us/articles/
checkerboard-rendering-for-real-time-upscaling-

on-intel-integrated-graphics, Aug. 2018. 8

[MMBJ17] MARA M., MCGUIRE M., BITTERLI B., JAROSZ W.: An
efficient denoising algorithm for global illumination. In Proceedings of

High Performance Graphics (July 2017), ACM. 12

[MSG∗18] MARRS A., SPJUT J., GRUEN H., SATHE R., MCGUIRE M.:
Adaptive temporal antialiasing. In Proceedings of the Conference on

High-Performance Graphics (2018), HPG ’18, ACM, pp. 1:1–1:4. 11

[MSW10] MATTAUSCH O., SCHERZER D., WIMMER M.: High-quality
screen-space ambient occlusion using temporal coherence. Computer

Graphics Forum 29, 8 (Dec. 2010), 2492–2503. 12

[NABW12] NETZEL R., AMENT M., BURCH M., WEISKOPF D.: Spec-
tral Analysis of Higher-Order and BFECC Texture Advection. In In-

ternational Symposium on Vision, Modeling and Visualization (VMV)

(2012). 9

[NH14] NEHAB D., HOPPE H.: A Fresh Look at Generalized Sampling.
Now Publishers Inc., Hanover, MA, USA, 2014. 9

[NM16] NEHAB D., MAXIMO A.: Parallel recursive filtering of infinite
input extensions. ACM Trans. Graph. 35, 6 (Nov. 2016), 204:1–204:13.
9

[NSL∗07] NEHAB D., SANDER P. V., LAWRENCE J., TATARCHUK

N., ISIDORO J. R.: Accelerating real-time shading with reverse
reprojection caching. In Proceedings of the 22Nd ACM SIG-

GRAPH/EUROGRAPHICS Symposium on Graphics Hardware (2007),
GH ’07, pp. 25–35. 3, 4, 5, 6, 12

[NVI12] NVIDIA: TXAA: Temporal anti-aliasing. https://

www.geforce.com/hardware/technology/txaa, 2012. Ac-
cessed in August 2019. 3

[NVI18] NVIDIA: Variable rate shading. https:

//developer.nvidia.com/vrworks/graphics/
variablerateshading, 2018. 12

[OST93] OZKAN M. K., SEZAN M. I., TEKALP A. M.: Adaptive
motion-compensated filtering of noisy image sequences. IEEE transac-

tions on circuits and systems for video technology 3, 4 (1993), 277–290.
3

[Ped16] PEDERSEN L. J. F.: Temporal reprojection anti-aliasing in IN-
SIDE. In Game Developers Conference (2016). 3, 4, 10

[Pet15] PETTINEO M. J.: Rendering the alternate history of the order:
1886. In ACM SIGGRAPH Courses: Advances in Real-time Rendering

(2015). 5

[PSK∗16] PATNEY A., SALVI M., KIM J., KAPLANYAN A., WYMAN

C., BENTY N., LUEBKE D., LEFOHN A.: Towards foveated rendering
for gaze-tracked virtual reality. ACM Trans. Graph. 35, 6 (Nov. 2016),
179:1–179:12. 3, 12

[Res09] RESHETOV A.: Morphological antialiasing. In Proceedings of

the Conference on High Performance Graphics 2009 (2009), HPG ’09,
pp. 109–116. 3, 11

[SA19] SMAL N., AIZENSHTEIN M.: Real-time global illumination with
photon mapping. In Ray Tracing Gems: High-Quality and Real-Time

Rendering with DXR and Other APIs, Haines E., Akenine-Möller T.,
(Eds.). Apress, 2019, pp. 409–436. 12

[Sal16] SALVI M.: An excursion in temporal supersampling. In Game

Developers Conference (2016). 3, 7, 12

[Sal17] SALVI M.: Deep learning: The future of real-time rendering?
In ACM SIGGRAPH Courses: Open Problems in Real-Time Rendering

(2017). 12

[SJW07] SCHERZER D., JESCHKE S., WIMMER M.: Pixel-correct
shadow maps with temporal reprojection and shadow test confidence. In
Proceedings of the 18th Eurographics Conference on Rendering Tech-

niques (2007), EGSR’07, pp. 45–50. 3, 4, 5

[SKW∗17] SCHIED C., KAPLANYAN A., WYMAN C., PATNEY A.,
CHAITANYA C. R. A., BURGESS J., LIU S., DACHSBACHER C.,
LEFOHN A., SALVI M.: Spatiotemporal variance-guided filtering: Real-
time reconstruction for path-traced global illumination. In Proceedings

of High Performance Graphics (2017), HPG ’17, pp. 2:1–2:12. 12

[SN15] SACHT L., NEHAB D.: Optimized quasi-interpolators for image
reconstruction. IEEE Transactions on Image Processing 24, 12 (2015),
5249–5259. 9

[Sou11] SOUSA T.: Anti-aliasing methods in CryENGINE 3. In ACM

SIGGRAPH Courses: Filtering Approaches for Real-Time Anti-Aliasing

(2011). 3, 5, 6, 11

[SPD18] SCHIED C., PETERS C., DACHSBACHER C.: Gradient esti-
mation for real-time adaptive temporal filtering. Proc. ACM Comput.

Graph. Interact. Tech. 1, 2 (Aug. 2018), 24:1–24:16. 6, 11, 12

[SSMW09] SCHERZER D., SCHWÄRZLER M., MATTAUSCH O., WIM-
MER M.: Real-time soft shadows using temporal coherence. In Advances

in Visual Computing: 5th International Symposium on Visual Computing

(ISVC 2009) (Dec. 2009), Springer, pp. 13–24. 12

[Sta15] STACHOWIAK T.: Stochastic screen-space reflections. In ACM

SIGGRAPH Courses: Advances in Real-time Rendering (2015). 12

[SV12] SALVI M., VIDIMČE K.: Surface based anti-aliasing. In Proceed-

ings of the ACM SIGGRAPH Symposium on Interactive 3D Graphics and

Games (2012), I3D ’12, pp. 159–164. 1

[SYM∗12] SCHERZER D., YANG L., MATTAUSCH O., NEHAB D.,
SANDER P. V., WIMMER M., EISEMANN E.: Temporal coherence
methods in real-time rendering. Computer Graphics Forum 31, 8 (12
2012), 2378–2408. 3

[Uni16] UNITY TECHNOLOGIES: Unity effects documentation:
Anti-aliasing. https://docs.unity3d.com/Packages/
com.unity.postprocessing@2.1/manual/Anti-
aliasing.html, June 2016. Accessed in August 2019. Release
note. 3

[Val14] VALIENT M.: Taking Killzone Shadow Fall image quality into
the next generation. In Game Developers Conference (2014). 3, 6, 8

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

620

https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
https://developer.download.nvidia.com/assets/gamedev/files/sdk/11/FXAA_WhitePaper.pdf
http://timothylottes.blogspot.com/2011/04/tssaa-temporal-super-sampling-aa.html
http://timothylottes.blogspot.com/2011/04/tssaa-temporal-super-sampling-aa.html
http://web.archive.org/web/20120120082628/http://timothylottes.blogspot.com/2011_04_01_archive.html
https://software.intel.com/en-us/articles/checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics
https://software.intel.com/en-us/articles/checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics
https://software.intel.com/en-us/articles/checkerboard-rendering-for-real-time-upscaling-on-intel-integrated-graphics
https://www.geforce.com/hardware/technology/txaa
https://www.geforce.com/hardware/technology/txaa
https://developer.nvidia.com/vrworks/graphics/variablerateshading
https://developer.nvidia.com/vrworks/graphics/variablerateshading
https://developer.nvidia.com/vrworks/graphics/variablerateshading
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.1/manual/Anti-aliasing.html
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.1/manual/Anti-aliasing.html
https://docs.unity3d.com/Packages/com.unity.postprocessing@2.1/manual/Anti-aliasing.html
https://forum.unity.com/threads/temporal-anti-aliasing.412482/
https://forum.unity.com/threads/temporal-anti-aliasing.412482/

L. Yang & S. Liu & M. Salvi / A Survey of Temporal Antialiasing Techniques

[VRM∗18] VOGELS T., ROUSSELLE F., MCWILLIAMS B., RÖTHLIN

G., HARVILL A., ADLER D., MEYER M., NOVÁK J.: Denoising with
kernel prediction and asymmetric loss functions. ACM Transactions

on Graphics (Proceedings of SIGGRAPH 2018) 37, 4 (2018), 124:1–
124:15. 12

[VST∗14] VAIDYANATHAN K., SALVI M., TOTH R., FOLEY T.,
AKENINE-MÖLLER T., NILSSON J., MUNKBERG J., HASSELGREN J.,
SUGIHARA M., CLARBERG P., JANCZAK T., LEFOHN A.: Coarse pixel
shading. In Proceedings of High Performance Graphics (2014), HPG
’14, pp. 9–18. 12

[Wih17] WIHLIDAL G.: 4k checkerboard in Battlefield 1 and Mass Effect
Andromeda. In Game Developers Conference (2017). 3, 4, 8, 9, 11

[WM17] WYMAN C., MCGUIRE M.: Hashed alpha testing. In Proceed-

ings of the 21st ACM SIGGRAPH Symposium on Interactive 3D Graph-

ics and Games (2017), I3D ’17, pp. 7:1–7:9. 12

[WMB19] WILLBERGER T., MUSTERLE C., BERGMANN S.: Deferred
hybrid path tracing. In Ray Tracing Gems: High-Quality and Real-Time

Rendering with DXR and Other APIs, Haines E., Akenine-Möller T.,
(Eds.). Apress, 2019, pp. 475–492. 5, 12

[XLV18] XIAO K., LIKTOR G., VAIDYANATHAN K.: Coarse pixel shad-
ing with temporal supersampling. In Proceedings of the ACM SIG-

GRAPH Symposium on Interactive 3D Graphics and Games (2018), I3D
’18, pp. 1:1–1:7. 3, 12

[Xu16] XU K.: Temporal antialiasing in Uncharted 4. In ACM SIG-

GRAPH Courses: Advances in Real-Time Rendering in Games (2016).
3, 9, 10, 11, 12

[YNS∗09] YANG L., NEHAB D., SANDER P. V., SITTHI-AMORN P.,
LAWRENCE J., HOPPE H.: Amortized supersampling. ACM Trans.

Graph. 28, 5 (Dec. 2009), 135:1–135:12. 3, 4, 5, 6, 7, 9, 11

[ZRJ∗15] ZIMMER H., ROUSSELLE F., JAKOB W., WANG O., ADLER

D., JAROSZ W., SORKINE-HORNUNG O., SORKINE-HORNUNG A.:
Path-space motion estimation and decomposition for robust animation
filtering. Computer Graphics Forum 34, 4 (2015), 131–142. 10, 12

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

621

