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Abstract
Rectangular treemaps are often the method of choice to visualize large hierarchical datasets. Nowadays such datasets are
available over time, hence there is a need for (a) treemaps that can handle time-dependent data, and (b) corresponding
quality criteria that cover both a treemap’s visual quality and its stability over time. In recent years a wide variety of (stable)
treemapping algorithms has been proposed, with various advantages and limitations. We aim to provide insights to researchers
and practitioners to allow them to make an informed choice when selecting a treemapping algorithm for specific applications
and data. To this end, we perform an extensive quantitative evaluation of rectangular treemaps for time-dependent data. As
part of this evaluation we propose a novel classification scheme for time-dependent datasets. Specifically, we observe that
the performance of treemapping algorithms depends on the characteristics of the datasets used. We identify four potential
representative features that characterize time-dependent hierarchical datasets and classify all datasets used in our experiments
accordingly. We experimentally test the validity of this classification on more than 2000 datasets, and analyze the relative
performance of 14 state-of-the-art rectangular treemapping algorithms across varying features. Finally, we visually summarize
our results with respect to both visual quality and stability to aid users in making an informed choice among treemapping
algorithms. All datasets, metrics, and algorithms are openly available to facilitate reuse and further comparative studies.

CCS Concepts
• Human-centered computing → Treemaps; • Information systems → Temporal data;

1. Introduction

Treemaps are one of the best-known methods for visualizing large hi-
erarchical datasets. Given an input tree whose leaves have several at-
tributes, treemaps recursively partition a 2D spatial region into cells
whose visual attributes (area, color, shading, or annotation) encode
the tree’s data attributes. Compared to other methods such as node-
link techniques, treemaps effectively use all available screen pixels
to show data, and thus can display trees of tens of thousands of nodes
on a single screen. Most treemaps use rectangles, although there are
alternative models such as Voronoi treemaps [BDL05], orthoconvex
and L-shaped treemaps [dBSvdW14], and Jigsaw treemaps [Wat05].
In this paper, we focus exclusively on rectangular treemaps.

The input for a rectangular treemap is a rectangle R and a set of
non-negative values a1, . . . ,an together with a hierarchy on these
values (represented by a tree). The output is a treemap T , which
is a recursive partition of R into a set R = {R1, . . . ,Rn} of interior-
disjoint rectangles, where (a) each rectangle Ri has area ai, and
(b) the regions of the children of an interior node of the hierarchy
form a rectangle (associated with their parent). Such a partition of a
rectangle into a set of disjoint rectangles is also called a rectangular

layout, or layout for short. Typically the input values are normalized,
that is, the sum A =

∑
i ai corresponds to the area of R.

Nowadays, large hierarchical datasets are also available over
time. Hence, there is a need for time-dependent treemaps which
display changing trees and data values. Ideally, such time-dependent
treemaps enable the user to easily follow structural changes in the
tree and in the data. In a time-dependent setting, the input values
become functions ai : [0,X]→ R≥0 for each i, where the discrete
domain [0,X] represents the different time steps in the data. We as-
sume that the hierarchy on the values and R are not time-dependent,
and that the values ai are properly normalized for each time step
separately. We use the special value ai(t) = 0 to represent that data
element i is not present at time t; and we speak of insertions or
deletions if ai(t) starts or stops to be nonzero, respectively.

The visual quality of rectangular treemaps is usually measured
via the aspect ratio of its rectangles. This indicator can become arbi-
trarily bad: Consider a treemap that consists of only two rectangles.
If the area of one of these rectangles tends towards zero, then its
aspect ratio tends towards infinity. Nagamochi and Abe [NA07] de-
scribe an algorithm (APP) which computes, for a given set of values
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and a hierarchy, a treemap which provably approximates the optimal
aspect ratio. De Berg et al. [dBSvdW14] prove that minimizing
the aspect ratio for rectangular treemaps is strongly NP-complete.
Kong et al. [KHA10] propose perceptional guidelines to improve
treemap design and Zhou et al. [ZCYT17] perform user studies
to test the effectiveness of different rectangular treemapping algo-
rithms. Recently Lu et al. [LFH∗17] argue that the optimal aspect
ratio for treemaps should, in fact, be the golden ratio. In Section 2,
we describe the state-of-the-art of rectangular treemaps in detail
along with the various characteristics of rectangular treemaps.

For time-dependent treemaps, a second quality criterion is sta-
bility. Ideally, small changes in the data should result only in small
changes in the treemap. Such stable behavior ensures that the only
changes the user sees are due to the data, and not due to the deci-
sions the algorithm makes. In recent years a few non-rectangular
treemaps were specifically developed for time-dependent data.
Hahn et al. [HTMD14] and Hees and Hage [vHH17] describe sta-
ble versions of Voronoi treemaps. Chen et al. [CDY17] propose a
small-multiple metaphor to visualize time-dependent hierarchies.
Their algorithm computes a global layout for all time steps simul-
taneously, but does not handle insertions or deletions. Scheibel et
al. [SWD18] give an algorithm that maps changes in the data onto
an initial layout. However, “treemaps” of subsequent time steps are
not proper rectangular layouts as white space is introduced when
resolving overlaps between rectangles.

A different approach to visualizing time-varying hierarchi-
cal data is taken by Lukasczyk et al. [LWM∗17], Köpp and
Weinkauf [KW19], and Li et al. [LZD∗19], who show how to com-
pute static overviews of the entire evolution of the tree. Alternatively,
Guerra-Gómez et al. [GGPPS13] and Card et al. [CSP∗06] use in-
teractivity to explore time-varying data. For a broader perspective
on tree visualizations, Graham and Kennedy [GK10] present a sur-
vey of visualizations that compare multiple trees, while Schulz et
al. [SHS11] and Scheibel et al. [STLD20] present, respectively, a
survey and a taxonomy for the visualization of a single tree.

Contribution. Despite their enduring popularity, a comprehensive
evaluation of treemaps is currently lacking, even more so for the
time-dependent case. Individual papers tend to report on only a
few algorithms and evaluate only a few datasets, often without a
principled discussion of quality metrics. To provide insights to both
researchers and practitioners and to allow them to make an informed
choice when selecting a treemap for their specific application and
data, we perform an extensive quantitative evaluation of rectangular
treemaps for time-dependent data. Our three main contributions are:

(1) We introduce a new method to measure the stability of time-
dependent treemaps which explicitly considers the input data (Sec-
tion 3.2). An algorithm is stable if small changes in the input data
result in small changes in the layout, that is, data change and layout
change correlate positively. Previously proposed stability metrics
measure only the layout change and conclude that small layout
changes are a sign of a stable algorithm. However, to properly mea-
sure stability, we also need to capture the data change and then
correlate data and layout change. Here, we have to overcome the
difficulty that the data and the layout space are a priori incompara-
ble. We solve this problem by introducing the concept of a baseline
treemap T ∗ which represents the minimum amount of change that

any time-dependent treemap must incur (given the input data) when
moving from treemap T to the next treemap T ′.

(2) We propose a novel classification scheme for time-dependent
datasets. Specifically, based on our discussion of the state-of-the-
art of treemaps in Section 2, we observe that the performance of
treemaps depends on the characteristics of the datasets used. We
identify four potential representative features that characterize time-
dependent hierarchical datasets and classify all datasets used in our
experiments accordingly. We experimentally test the validity of this
classification on 2405 datasets, and analyze the relative performance
of 14 state-of-the-art rectangular treemapping algorithms across
varying features. Generally we conclude that our proposed features
do indeed have predictive value, both with respect to visual quality
and stability. We also observe that algorithms that are designed to
be stable tend to in fact be more stable across features.

(3) We perform a quantitative evaluation of 14 rectangular treemap-
ping algorithms on more than 2000 datasets. We visually summarize
our results with respect to both visual quality and stability to aid
users in making an informed choice among treemaps. All datasets,
metrics, and algorithms are openly available [URLb]. Section 5
reports on our experimental results, we conclude in Section 6.

2. Rectangular Treemaps

We next discuss the most well-known rectangular treemapping algo-
rithms. For a fair comparison during our experiments, we require
that treemap rectangles have exactly the correct areas and partition
the input rectangle. Algorithms that do not satisfy these require-
ments are not included in our evaluation. Recall that the input for a
rectangular treemap is a rectangle R and a set of non-negative values
a1, . . . ,an together with a hierarchy on these values (represented
by a tree). The children of a node in this hierarchy are given in a
particular order in the input. We distinguish two classes of treemaps,
which either do or do not use this order. For time-dependent data we
also distinguish between state-aware and stateless treemaps. Con-
trary to stateless treemaps, state-aware treemaps do not compute
the treemap separately at a time step, but (can) use the layout of
the previous time step to compute a new layout. Most treemaps are
stateless; we discuss the state-aware algorithms separately.

Unordered treemaps do not (need to) adhere to the input nodes’ or-
der when computing the layout. Typically, input weights are sorted to
help the algorithm achieve good visual quality. Unordered treemaps
in our evaluation include Squarified treemaps (SQR) [BHvW00] and
Approximation treemaps (APP) [NA07]. APP comes with a guaran-
teed upper bound on the worst-case aspect ratio, while SQR often
achieves near-optimal aspect ratios in practice. The visual quality of
unordered treemaps is relatively unaffected by high weight variance,
as reordering weights allows the layout to group similar-size rectan-
gles in the treemap, typically leading to better aspect ratios. Yet, the
sorted order of the weights may change rapidly over time, especially
if the weights change much over time or if the weight variance is
low. This can negatively affect the stability of the treemaps.

Ordered treemaps are required to adhere to the order of nodes as
given in the input, which roughly ensures that rectangles close to
each other in the input are close to each other in the resulting treemap.
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This typically improves the stability of treemaps, but may worsen
visual quality. We include nine ordered treemaps in our evaluation.
The first ordered treemaps [SW01] include the Pivot-by-Middle
(PBM), Pivot-by-Size (PBZ), and Pivot-By-Split (PBS) algorithms.
Similar algorithms are the Strip algorithm (STR) [BSW02] and the
Split algorithm (SPL) [Eng05]. Other algorithms, like the Spiral
algorithm (SPI) [TS07], and the Hilbert (HIL) and Moore (MOO)
algorithms [TC13], lay out rectangles following a space-filling curve.
Finally, the very first treemap algorithm (Slice-and-Dice (SND)) by
Shneiderman [Shn92] can also be considered an ordered treemap.
While not ordered by design, the resulting (combinatorial) layout
depends only on the hierarchy and not on weights. In fact, SND uses
the depth in the hierarchy to compute the layout (slicing vertically
on even depth and horizontally on odd depth), rather than simply
applying the same algorithm recursively. Hence, SND’s visual qual-
ity strongly depends on the number of levels in the input hierarchy.
Typically, laying out large rectangles near small rectangles leads to
poor aspect ratios. Hence, the visual quality of ordered treemaps
is negatively affected by high weight variance. However, ordered
treemaps are relatively stable over time compared to unordered
treemaps, as order is maintained. Finally, insertions and deletions
may affect the visual quality and stability of ordered treemaps to
varying degrees, depending on how they are handled exactly.

State-aware treemaps can use the layout of the previous time step
to compute a new layout and so can largely control their stability.
The treemap for the first time step is typically an existing unordered
treemap. The first state-aware treemap was introduced by Sondag et
al. [SSV18]. Their Local Moves algorithm (LM) is initialized with
APP, and allows only a small number of local modifications to the
(combinatorial) layout between time steps. They also show how to
update areas between time steps without significantly changing the
layout (layouts remain “order-equivalent”). In our evaluation we
include the Local Moves algorithm with 4 local moves between time
steps (LM4), and without local moves (LM0). A similar algorithm
is the Git algorithm (GIT) by Vernier et al. [VCT18b], which is
initialized with SQR, and does not allow any changes to the (combi-
natorial) layout between time steps. Both state-aware treemaps also
support insertions and deletions, updating the layouts locally where
necessary (for insertions, the position in the layout can be chosen
to maximize visual quality). By design, the stability of state-aware
treemaps is relatively unaffected by frequent weight changes over
time. Also, the visual quality of the initial treemaps should be rel-
atively high. However, since the layouts cannot change much over
time, the visual quality of state-aware treemaps will decrease over
time if weights change significantly. Frequent insertions and dele-
tions may also cause treemaps with poor visual quality, as treemaps
are not recomputed as a whole. However, many insertions can help
to correct rectangles with bad aspect ratio caused by weight changes
over time. This is especially helpful for state-aware algorithms that
do not allow any changes to the layout, like LM0 and GIT. Note that
SND has a fixed layout if the input hierarchy does not change and is
hence very stable, but it does not explicitly use the previous state.

Finally, note that the number of levels in the input hierarchy can
have a strong effect on all classes of algorithms. In general, more lev-
els imply less freedom in the layout strategy. As a result, unordered
treemaps become more similar to ordered treemaps. Overall, the
visual quality tends to decrease and the stability tends to increase.

3. Metrics

Wattenberg [Wat05] identifies several desirable properties of
treemaps: (1) nicely shaped regions (visual quality), (2) stability
with regard to changing leaf values, (3) stability with regard to
changing tree structure, and (4) preservation of order information.
Regarding Property (3), the tree structure can change in various
ways; for example, nodes can merge or split, nodes can change par-
ents, or there are general insertions and deletions. In our experiments
we do not make any assumptions on the type of changes to the tree
structure, and hence treat them as general insertions and deletions.
Furthermore, we do not assume that the order of the values in the
data is meaningful in general. Thus, we consider the following two
important criteria to evaluate treemaps: visual quality and stabil-
ity. We discuss well-established metrics for both below. We also
introduce a new method to measure the stability of time-dependent
treemaps which captures inherent data changes. We compute metrics
for each leaf rectangle separately and then aggregate these values for
each algorithm and dataset (see Section 5 and [URLb] for details).
Note that we do not compute metrics for non-leaf nodes.

3.1. Visual quality

The weight information in a treemap is conveyed by the areas of its
rectangles. Since areas of rectangles closer to squares are visually
easier to estimate than areas of elongated rectangles, visual treemap
quality is commonly measured by the aspect ratio of its rectangles.
Although it has been proposed that the ratio should be close to the
golden ratio [LFH∗17] instead of the minimum aspect ratio of 1,
it is commonly accepted that strongly elongated rectangles hinder
readability of treemaps. We thus aim for the overall goal of making
rectangles as square as possible, or similarly, minimizing the number
of elongated rectangles. For a rectangle Ri of width w(Ri) and height
h(Ri), we define the aspect ratio ρ(Ri) as

ρ(Ri) = min(w(Ri),h(Ri))/max(w(Ri),h(Ri)). (1)

Observe that this definition is the inverse of the usual definition for
aspect ratio. Its values range from 0 to 1, where values of ρ close to
0 are considered “bad” and values close to 1 are considered “good”.
The bounded range allows for easy aggregation. Note that, compared
to the usual definition of 1/ρ, rectangles with larger aspect ratios
have a smaller influence on the aggregated score.

3.2. Stability

Evaluating the stability of a treemap is more involved than evaluating
visual quality. Consider treemaps at two consecutive time steps
T (t) and T (t + 1). Since stability does not explicitly depend on the
value of t, we denote the former and the new treemap by T and
T ′ respectively, to simplify notation. We also denote the rectangle
areas in T and T ′ by {a1, . . . ,an} and {a′1, . . . ,a

′
n}, respectively. For a

stable treemapping algorithm, the (visual) difference between T and
T ′ should roughly correspond to the difference between {a1, . . . ,an}

and {a′1, . . . ,a
′
n}. Note that the combination of large changes in data

values and small changes in the layouts is unlikely since rectangle
areas in treemaps must exactly match the data values. Hence, we
actually want to measure instability, that is, large layout changes
that are not caused by large data changes.
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Most existing treemap stability metrics consider only the vi-
sual change in the treemap’s layout d(T,T ′), usually computed
by evaluating the change δ(Ri,R′i ) for each rectangle separately
and aggregating it over all rectangles. Shneiderman and Watten-
berg [SW01] define δ as the Euclidean distance between the vectors
(x(Ri),y(Ri),w(Ri),h(Ri)) and (x(R′i ),y(R′i ),w(R′i ),h(R′i )), where x, y,
w, and h are the coordinates of the top-left corner, width, and height
of a rectangle, respectively. They then define d as the average over
all rectangles. Hahn et al. [HTMD14, Hah15] simplify this metric
by defining δ as the distance moved by the centroid of a rectan-
gle, again defining d as the average. Tak and Cockburn [TC13] use
the same δ as [SW01], but define d as the variance over all values
computed by δ. They also propose a drift metric, which measures
how much a rectangle moves away from its average position over a
long period. Recently, Scheibel et al. [SWD18] introduced two new
layout change metrics: The average aspect ratio change defines δ
as the relative change between the aspect ratios of Ri and R′i , and
defines d as the average. The relative parent change defines δ as
the relative change of the distance between the center of a rectangle
and the center of its parent, again defining d as the average. Chen et
al. [CDY17] propose a metric to quantify the ability of users to track
time-dependent data in treemaps, which is closely related to the
drift metric [TC13]. A different approach measures layout change
using pairs of rectangles. Hahn et al. [HBD17] introduce the rela-
tive direction change, which, for every pair of rectangles Ri and R j,
measures how much the angle from the center of Ri to the center of
R j changes. Finally, Sondag et al. [SSV18] proposed the relative
position change, which, for every rectangle pair (Ri,R j), measures
how much the relative position of Ri with respect to R j changes. The
distance d is then defined as the average over all rectangle pairs.

Summarizing the above, we distinguish two types of layout
change metrics: (1) absolute metrics measure how much individual
rectangles move/change, and (2) relative metrics measure how much
positions of pairs of rectangles change relative to each other. For
our experiments, we use both an absolute and a relative metric. In
particular, as an absolute metric, we use the corner-travel distance,
which is a well-known metric used in computer vision to quantify
change between two shapes using feature points [TM07, Sze10].
In the vision community, it was established already many years
ago [ST94, Bie87] that corners are a perceptually useful feature to
identify and track. Besides this perceptual validation, the corner-
travel metric lies also within a small bounded factor of the original
metric introduced by Shneiderman and Wattenberg [SW01]. Specifi-
cally, let w(R) and h(R) be the width and height of an input rectangle
R, respectively. Let pi, qi, ri, and si (p′i , q′i , r′i , and s′i ) be the posi-
tions of the corners of a rectangle Ri (R′i ). We define the normalized
corner-travel (CT) distance for a rectangle as

δCT(Ri,R′i ) =
‖pi − p′i‖1 + ‖qi −q′i‖1 + ‖ri − r′i ‖1 + ‖si − s′i‖1

4
√

w(R)2 + h(R)2
. (2)

where ‖x‖1 denotes the `1 norm. Simply put, δCT is the corner-
to-corner correspondence distance between Ri and R′i . Note that
0 ≤ δCT(Ri,R′i ) ≤ 1, since a rectangle corner can travel by at most
the length of the diagonal of R.

As a relative metric, we use the relative position change [SSV18].
We established experimentally that the corner-travel and the relative
position change metric correlate clearly on more than 2000 data

sets. Hence in Section 5 we report only on experiments using the
corner-travel distance. All other data can be found here [URLb].

Data change. The stability metrics discussed above do not take data
change into account. If data changes by a large amount, then the
layouts should be allowed to change significantly without consid-
ering this to be instability. To add data change to a stability metric,
one can consider the difference or ratio between the layout change
and the data change [VCT18a, VCT18b]. However, there are two
problems: (1) we need a way to measure data change, and (2) the
metric spaces for data and layouts need to be comparable. For exam-
ple, data change can be measured in terms of changes of rectangle
areas (since these correspond to the data). However, layout changes
such as the corner-travel distance measure lengths, not areas. Areas
and lengths are not directly comparable, and thus their ratios or
differences may not be meaningful. Although such metrics could be
made comparable by suitable normalization, such adaptations are
necessarily metric-specific and ultimately result in numbers whose
meaning is not clear.

Baseline treemap. We overcome the above issues with a new
method that captures data change in the layout space. For this, we
define a baseline treemap T ∗ with respect to T and T ′. The layout
of T ∗ (that is, the combinatorial structure of the rectangular subdi-
vision which constitutes T ∗) is based on the layout of T . However,
the areas of the rectangles in T ∗ are the areas {a′1, . . . ,a

′
n} of T ′. The

idea is that T ∗ aims to minimize the layout distance to T among all
treemaps with the areas of T ′. Put differently: T ∗ approximates the
minimum amount of change that any time-dependent treemap must
incur when moving from T and its associated area values {ai} to the
next treemap T ′ and its area values {a′i }. As a result, d(T,T ∗) is a
good metric for data change in the layout space.

We construct T ∗ for each tested algorithm and each time step
using a hill-climbing algorithm, which was proven to converge
in [EMSV12]. For a rectangular layout (treemap) T , a maximal
segment is a maximal contiguous horizontal or vertical line segment
contained in the union of the borders of all rectangles in T (for
example, the green segments in Figure 1). Put simply, a horizontal
maximal segment (which is not part of the input rectangle R) always
has endpoints on the interior of two vertical segments and vice versa.
For two horizontal maximal segments s1 and s2, we say that s1 < s2
if there is a rectangle in T whose bottom side coincides with s1 and
whose top side coincides with s2. This defines a partial order on
horizontal maximal segments. We define a partial order on vertical
maximal segments analogously (Figure 1). We say that T is order-
equivalent to T ∗ if the corresponding partial orders on maximal
segments are isomorphic. For every possible set of areas, there
exists an order-equivalent treemap to T that correctly represents
those areas [EMSV12]. In particular, we can initially define T ∗ as
the treemap order-equivalent to T (computed with any of the tested
algorithms) with the areas {a′1, . . . ,a

′
n} of T ′.

If rectangles are inserted or deleted, the baseline treemap cannot
be order-equivalent to T , so we handle insertions and deletions sep-
arately. Dealing with deletions is easy: we simply let the areas go
to zero. For insertions, we must be more careful. Indeed, while we
consider only rectangles present in both T and T ′ when measuring
stability (Ri and R′i in Equation 2), inserted rectangles can strongly
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Figure 1: Left: Partial orders of the maximal segments. Middle: a layout order-equivalent to the left figure, changed maximal segments
highlighted in green. Right: a layout not order equivalent to the other two figures. Red/blue arrows: relations between maximal segments.

TT ′ T ∗

Figure 2: Treemaps T ′ (with gray rectangle inserted), T , and T ∗

(with gray area spread over maximal segments).

impact the positions of rectangles in T ∗. We observe that the base-
line treemap does not need to be a proper treemap: it only needs
to capture how much rectangles must minimally move to update
to the new data. To minimize the movement of the rectangles due
to insertions (and hence be as stable as possible), we distribute the
cumulative area of the inserted rectangles over the “walls” (borders)
of treemap T as evenly as possible. To do so, we replace every
maximal segment e in T by a rectangle, and assign each such rect-
angle a portion of the inserted area corresponding to the length of e
(Figure 2). Hence all walls become equally thick and the original
rectangles of T need to move as little as possible to yield T ∗.

The baseline treemap T ∗ as proposed here is not a perfect baseline,
as it does not always minimize the movement of every rectangle.
However, the layout change between T and T ∗ is still a very good
estimate for the minimum necessary layout change between T and
T ′, and thus a good measure for data change (see Figure 3: nearly
all points lie on or below the diagonal).
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0
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Average δ(Ri, R
′
i)

Av
er
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e
δ
(R

i
,
R

∗ i
)

Figure 3: Scatter plot of the average layout change between T and
T ′ or T ∗ for a random 25% sample of all algorithms and datasets.

Stability metric. We can now define a stability metric that takes
data change into account. Consider a rectangle Ri and the corre-
sponding rectangles R′i and R∗i in T ′ and T ∗, respectively, and let
δ be the layout change function for single rectangles. Two natu-
ral choices for spatial stability are the difference or ratio between
δ(Ri,R′i ) and δ(Ri,R∗i ). Our experiments showed that the difference
is typically more informative, that is, it exhibits clearer, more pro-
nounced patterns, than the ratio. Hence, we define the stability of a
single rectangle as

σ(Ri) = max(0, δ(Ri,R′i )−δ(Ri,R∗i )) (3)

Note that σ(Ri) = 0 if δ(Ri,R′i ) ≤ δ(Ri,R∗i ), which is possible. Indeed,
a value of 0 for σ(Ri) represents “very stable”, and R∗i is considered
to be (roughly) as stable as possible.

Limitations. The stability metrics we use focus only on consecutive
time steps. The stability of time-varying treemaps could conceivably
be influenced by effects that span multiple time steps, which our
metrics do not capture directly. However, we believe that the most
salient events influencing stability occur between consecutive time
steps and hence we focus on this scenario.

4. Data

The visual quality and/or stability of treemaps clearly depends on
the datasets used. Simply measuring the average performance over
a (large) collection of datasets does not reveal such information.
We aim to provide sufficient insight so that both practitioners and
researchers can make informed choices about which algorithm to
use for their data. For this, we study the performance of treemaps
as a function of the characteristics of the input data. We classify the
datasets into data classes along with explicit features and evaluate
the metrics of different treemapping algorithms for each class.

4.1. Data features

Our methodology is inspired by the framework proposed by Smith-
Miles et al. [SMBWL14] to objectively measure the performance of
algorithms across datasets. For each dataset, we compute a number
of features that (hopefully) capture the characteristics influencing
the relative performance of treemapping algorithms. As a result,
every dataset is represented by a point in a low-dimensional fea-
ture space F . Similar feature-based approaches are also used to
measure the relative performance of dimensionality-reduction meth-
ods [EMK∗19] or in machine learning [Bis06]. Based on the dis-
cussion of treemapping algorithms in Section 2, we identify the
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following four features: 1. Levels of hierarchy, 2. Variance of node
weights, 3. Weight change, and 4. insertions and deletions.

Obviously, other features could be used to characterize (time-
dependent) trees, such as the minimum, maximum, and average
node degrees, the (im)balance of the tree structure [BO73, KY15],
and the number of nodes. Two seemingly obvious candidates for
features that we do not currently consider are the number of nodes
and the branching factor (i.e., the average internal node degree).
Arguably the number of levels in the hierarchy, the branching factor,
and the number of nodes correlate to some degree. For example, if
the hierarchy has only one level, then the branching factor and the
number of leaves are the same. Hence, we should include at most
two of these features in our analysis. Among these three features,
the number of levels is with certainty a discriminating factor be-
tween algorithms, see our discussion in Section 2. Furthermore, all
algorithms we consider, with the exception of SND, are recursive
and treat each level independent from the preceding ones. Hence
one can argue that the branching factor, which determines the num-
ber of nodes that have to be handled during a single step of this
recursion, is a more relevant data feature than the total number of
nodes. Nevertheless, we decided not to include the branching factor
in our experiments, for the following two reasons. First of all, from
the description of the algorithms, it seems that the branching factor
is likely less relevant for their relative performance than the other
four chosen features. That is, the descriptions of the algorithms do
no give an indication that the branching factor is able to predict if
an algorithm A will perform better than an algorithms B on a given
dataset. Second, it is very difficult to define meaningful value-ranges
for the branching factor and then to find datasets that cover these
ranges in combination with all other data features. Given that the
number of data classes and, correspondingly, the number of datasets
needed for a meaningful evaluation, grows exponentially with the
number of features chosen (see Section 4.2), we decided to restrict
ourselves to four features. While we cannot exclude that the branch-
ing factor may influence relative performance, we do believe that
the four features chosen have higher predictive value.

4.2. Data classes

Using the feature space F , we partition all datasets into classes.
For each feature we define a small number of subclasses based on
only that feature. The data class of a dataset is then defined as the
combination of the subclasses for each feature. We determined the
value-ranges defining the subclasses by analyzing the distribution
of feature values over our 2405 real-world tree datasets.

Levels of hierarchy (3 subclasses). We use three ranges for classi-
fication: 1 level (1L), 2 or 3 levels (2/3L), and more than 3 levels
(4+L). Most hierarchical datasets we have analyzed have 2 or 3
levels. This number of levels is quite common for datasets that are
visualized via treemaps, since they frequently concern geo-spatial
subdivisions such as countries, continents, and their subregions,
grouped by a classification scheme, such as the World Bank regional
classification. Furthermore, visually understanding the node nesting
in deeper treemaps becomes difficult [VvWvdL06, BHvW00]. A
special case are datasets with only 1 level, that is, sets of weight val-
ues. Such datasets are also often visualized by treemaps, as these are
more space-filling than alternatives such as bar charts [VvWvdL06].

These datasets are challenging for treemaps that implicitly use the
depth of the hierarchy. Finally, we consider datasets with more than
3 levels, which correspond to deep hierarchies such as, for example,
file systems or software architectures [HTMD14, HBD17, VCT18a].

Variance of node weights (2 subclasses). We distinguish between
low variance (LWV) and high variance (HWV). To ensure that the
total number of tree nodes does not strongly influence our classi-
fication, we use the coefficient of variation σ/µ to determine the
subclass. The standard deviation σ and the mean µ are computed
over all leaf weights over all time steps. We say that there is low
variance if σ/µ ≤ 1 and high variance if σ/µ > 1, respectively.

Weight change (3 subclasses). We distinguish between low weight
change (LWC), regular weight change (RWC), and spiky weight
change (SWC). The weight change of a single rectangle is measured
by the absolute difference in the relative area (with respect to the
input rectangle R) between time steps. The weight change of a
treemap between two time steps is defined as the sum of weight
changes of all rectangles. To determine the subclass of a dataset, we
use the distribution of weight changes between time steps over all
time steps in the dataset, specifically the mean µ and the standard
deviation σ. Datasets with low weight change have µ < 5% and
σ< 5%. Datasets with a larger mean (5%≤ µ < 20%) and a relatively
small coefficient of variation (σ/µ ≤ 1) are classified as having
regular weight change. The weights of these datasets steadily change
over time, without any extreme changes. Remaining datasets are
classified as having spiky weight change. In those datasets weights
change drastically (µ > 20%), or there is large variation (σ/µ > 1)
along with substantial changes (µ > 5% or σ > 5%).

Insertions and deletions (3 subclasses). We distinguish between
low insertions and deletions (LID), regular insertions and deletions
(RID), and spiky insertions and deletions (SID). We measure the
impact of insertions and deletions between two time steps t and t + 1
as the cardinality of the symmetric difference between the two sets
of rectangles with non-zero weights at t and t + 1, divided by the
number of rectangles with non-zero weights at t. We again classify
the datasets based on the distribution (µ and σ) of impact values
over all time steps. Same as for the weight change, LID is defined
by µ < 5% and σ < 5%, RID is defined by µ < 20% and σ/µ ≤ 1,
and the remaining datasets are in SID.

The full classification results in 3×2×3×3 = 54 data classes. In Sec-
tion 5, we evaluate how the performance of treemapping algorithms
depends on the classes, that is, if the classification is sensible.

4.3. Datasets

We collected a total of 2405 time-dependent hierarchical datasets
from a variety of sources, detailed below. We found at least one
dataset for 46 (out of 54) instances of our proposed data classes. See
Figure 4 for the distribution of datasets over classes: clearly not all
classes arise with equal frequency in our data sources.

World Bank [URL18c]: (2142 datasets) World development indi-
cators such as agriculture, rural and urban development, educa-
tion, trade and health. Hierarchy either according to the World
Bank regional classification, grouping countries into subregions
and continents, or no hierarchy present.
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Figure 4: Distribution of datasets over classes.

GitHub [URL18e]: (150 datasets) Hierarchies of folders, files, and
classes, weighted by the number of code lines, extracted from all
revisions of several GitHub repositories using Scitools [URLa].

Movies: (107 datasets) Movies from MovieLens [HK16] and
TMDB [URL18d]. We constructed a time-dependent hierarchy us-
ing the group-rows-by-attribute-value partitioning method [Tel06,
VvWvdL06]. The hierarchy groups movies based on their genres,
actors, release date, and keywords. Each leaf is a movie, whose
weight corresponds to its rating over a given period of time.

Custom: (6 datasets) Several individual datasets were added: Dutch
Names [Mee16] contains the frequency of popular baby names
in the Netherlands per year; UN Comtrade Coffee [URL17] con-
tains the amount of coffee each country imported per year; ATP
contains personal information, historical rankings, and match re-
sults from 1968 to 2018 for ATP tennis players [URL18a]; and
Earthquakes contains the time, location, depth and intensity of
seismic phenomena provided by the USGS Earthquake Hazards
Program [URL18b].

Importantly, note that the above selection of dataset sources is or-
thogonal to the description of the feature space F . The former cov-
ers the origin of data (which may cover application-specific aspects
not captured by our feature space); the latter covers application-
independent data aspects as captured by the data classes of F . The
distributions of data classes covered by our different data sources
can be found in the supplementary material. The large and varied
collection of World Bank datasets is able to cover all data classes
with at most 3 levels of hierarchy (to which it is inherently limited).
The GitHub and Movies datasets further cover a number of data
classes with 4+ levels of hierarchy.

5. Experimental Results

We ran all 14 algorithms on all time steps of all 2405 datasets, gen-
erated the baselines for all these instances (Section 3), and recorded
all layouts, that is, the positions of all rectangles Ri(t) at all time
steps t. Per dataset we aggregate our results for all metrics and algo-
rithms by first by taking the mean over all rectangles in a single time
step, and then by taking the mean again over all time steps. This is
necessary since the number of rectangles may differ per time step.

We focus on two specific questions: We first explore the validity
of our data classification (Section 5.1) and then we study the perfor-
mance of all algorithms with respect to visual quality and stability
across varying data features (Section 5.2). In the supplementary
material we additionally compare the performance of all algorithms
on each data class separately. We believe that the resulting visual
summary will help researchers and practitioners choose a suitable
treemapping algorithm for their data.

5.1. Data classification analysis

We evaluate if the relative performance of treemapping algorithms
is more consistent within a data class than for an arbitrary collection
of datasets. To perform this analysis we need to establish how we
can capture the consistency of relative performance for a collection
of datasets, and how we can compare this consistency between
multiple collections. We restrict our analysis to data classes that
contain at least 50 datasets, for otherwise the observed consistency
is not sufficiently reliable. For each such data class, we randomly
sample 50 datasets to use in this analysis. We also randomly sample
50 datasets among all 2405 datasets (all classes) as a baseline for
comparison. Note that all collections must have the same number of
datasets in the analysis to ensure that the comparisons are fair.

Now consider a single collection of datasets. To measure the
consistency of relative performance among different datasets in this
collection, we cannot directly use the computed metrics for visual
quality and stability, as these values may differ greatly between
datasets. Alternatively, we could rank the algorithms per dataset,
but then algorithms with very similar performance may imply a
greater variance in relative performance than is the case. Instead, we
define the relative performance (separately for visual quality and
stability) per dataset as follows. We compute both the best value
(maximum for visual quality, minimum for stability) and the median
value over all algorithms over this dataset. The relative performance
score for each algorithm on this dataset is then computed by linearly
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Figure 5: For each data class with at least 50 datasets, the ratio
of the consistency score (visual quality on the left, stability on the
right) between the data class and the baseline.
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interpolating between these two values, where the best algorithm
receives score 0, and the median algorithm receives score 0.5. The
relative performance score is capped at 1, to avoid outliers. The
resulting scores are comparable between different datasets.

We next analyze the consistency of relative performance within
collections of datasets in two different ways. First, we use a quan-
titative approach: for each algorithm we compute the variance of
the relative performance scores over all datasets in a collection, and
we sum up these variances over all algorithms. This results in a

consistency score c for a collection of datasets. Figure 5 displays
the consistency scores (for visual quality and stability) of all data
classes (with at least 50 datasets) compared to the consistency scores
c∗ of the baseline collection (created by random sampling). A cell
is colored blue (more consistent) if c is smaller than c∗; a cell is
colored red (less consistent) if c is larger than c∗.

Nearly all data classes for visual quality and most data classes for
stability are more consistent than the baseline. This indicates that our
features are splitting the datasets into valid data classes where the
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Figure 6: Visual quality: matrix plots for each data class with at least 50 datasets plus baseline (left top). In each matrix plot, rows correspond
to algorithms, columns to datasets. The lighter the color, the better the relative performance, capped at 1 (purple).
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Figure 7: Stability: matrix plots each data class with at least 50 datasets plus baseline (left top). In each matrix plot, rows correspond to
algorithms, columns to datasets. The lighter the color, the better the relative performance, capped at 1 (purple).
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relative performance of an algorithm is easier to predict than in the
baseline. However, the stability column for high weight variance and
low weight change is less consistent than the baseline. As discussed
in Section 2, the stability of unordered treemaps becomes worse
compared to ordered treemaps when the weight variance is low or
the weight change is high, due to reordering of the input weights. As
a result, the difference with respect to stability between ordered and
unordered treemaps is less pronounced for these data classes; the
relative performance is hence influenced more by accidental details
of individual datasets and less by structural differences between the
algorithms. Additionally there are two data classes where the visual
quality is less consistent than the baseline. It is not clear to us at this
point what the cause of these inconsistencies is; one possibility are
hidden correlations in the data classes.

Second, we use a more qualitative approach to assess the consis-
tency of relative performance. For each data class we create a matrix
plot, that shows the relative performance scores of all algorithms
for all datasets in the collection (see Figures 6 and 7). Each column
in the matrix plot represents a dataset, and each row represents an
algorithm. The color of every “cell” in the matrix plot indicates
the relative performance score of an algorithm on a dataset, where
lighter colors indicate better (lower) relative performance scores.
Relative performance scores that were capped at 1 are indicated with
purple. To better enable the visual assessment of consistency among
the different datasets in a collection, we order the datasets (columns)
so that those with similar scores are next to each other as much as
possible. Also, we order the algorithms (rows) so that the algorithms
with better average score are lower in the matrix plot. In particular,
the order of algorithms in the matrix plots for different data classes
can be different. Figure 6 shows the matrix plots for visual quality,
with the corresponding matrix plot for the baseline collection at the
left-top. Figure 7 shows the matrix plots for stability.

First consider the matrix plot for visual quality (Figure 6). For
the low weight variance subclass we indeed see that the matrix plots
are much smoother than the baseline, which confirms the results in
Figure 5. We also observe an increasing number of irregularities
when going from 1 level treemaps to 2/3 levels or 4+ levels, since
more levels impose more restrictions on the layout and hence all
algorithms perform more similarly.

Consider now Figure 7. First of all, we notice that there is a set
of four algorithms at the bottom of every matrix plot. These are the
state-aware algorithms and SND. For nearly all datasets, regardless
of the specific data class, these four algorithms are much more stable
than any of the others. There is a large difference between the low
weight variance and high weight variance subclasses. For low weight
variance there is a set of algorithms that perform consistently much
worse than the median (purple cells). These include the unordered
treemaps which are particularly sensitive to changes in such data.

5.2. Performance analysis across features

The analysis in Section 5.1 shows that our data classification is
valid. We now study how visual quality and stability depend on
the features of the datasets. We aim to understand how sensitive a
given algorithm is to variations in one or several features of its input
data. For each data class we calculate the average visual quality and

stability. For each subclass of a feature we then take the average
over all data classes that belong to it. This ensures that even though
we have different numbers of datasets in each data class, they are
all weighted equally. We show this data in Figures 8,9,10,11. Each
point in each figure represents the score for one algorithm on one
subclass of the feature, for example, low weight variance. We draw
a polyline that connects the points of one algorithm and use glyphs
to indicate the different subclasses. The different algorithms are
indicated with categorical colors (see figure legends).

Recall that a low value for the stability metric indicates a stable
algorithm and that the visual quality metric (aspect ratio) is bounded
between 0 and 1. In particular, note that visual quality (ρ) of 0.5 for a
single rectangle indicates a 2-by-1 rectangle. A ρ of 0.25 however is
perceptually much worse than a ρ of 0.5 in terms of area perception
as can be inferred from Kong et al. [KHA10], coming close to their
"extreme aspect ratios" of 4.5.

Levels of hierarchy. Figure 8 considers the levels of hierarchy
feature, which has three values: 1L, 2/3L, and 4+L. From Figure 8,
we see that all algorithms, in particular the stateless ones, are more
stable as the number of levels increase. In contrast to most other
algorithms, the visual quality of state-aware algorithms (LM0, LM4,
GIT) as well as SND increases with the number of levels. We also
see that SQR and PBS have the longest polylines, that is, they are
the most sensitive to the number of levels.

Variance of node weights. Figure 9 considers the weight variance
feature, which has two values: LWV and HWV. Increasing the
weight variance decreases the visual quality for all algorithms, ex-
cept for APP (and SND). Additionally we see that the unordered
treemaps are indeed more sensitive to this feature in terms of stabil-
ity compared to the other algorithms. These algorithms reorder the
data based on the weight to determine their layout, and if the weight
are close to each other this happen more often.

Weight change. Figure 10 considers the weight change feature,
which has 3 values: LWC, RWC, and SWC. The near-vertical poly-
lines for the stateless algorithms show that visual quality seems to be
largely unaffected by this feature. The stability however decreases
quickly. Conversely, for the state-aware algorithms the polylines are
mostly near-horizontal: the stability is largely unaffected, but the
visual quality decreases. As the only state-aware algorithm that al-
lows changes to the layout, LM4 makes an explicit tradeoff between
stability and visual quality (see the slightly sloping line).

Insertions and deletions. Finally, Fig. 11 considers the insertions
and deletions feature, which has three values: LID, RID, and SID.
The plot shows a similar variation of visual quality and stability as
seen for the weight change feature (Fig. 10). Yet, the polylines for
the stateless algorithms now show a ‘kink’ at the midpoint (RID, reg-
ular insertions/deletions). Hence these algorithms are most unstable
for regular insertions/deletions, and stabler for linear and spiky inser-
tions/deletions. Interestingly, the state-aware methods (LM0, LM4,
GIT) show a similar kink but oriented differently. These methods
thus achieve poorest visual quality for regular insertions/deletions
and highest quality on the other two values of this feature.
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Figure 8: Visual quality vs stability as function of the levels of
hierarchy feature.
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Figure 9: Visual quality vs stability as function of the variance of
node weights feature.

APP

HIL

MOO

SPI

Git LM4
LM0

PBM

PBS

PBZ

SPL

SQR

STR

SND
0

0.04

0.08

0.12

0.16

0.20

0 0.2 0.4 0.6 0.8 1

SND

SPL

PBS

MOO
SPI

STR

SQR
APP

LM4
LM0
GIT

PBM
PBZ

HIL

Visual Quality

S
ta

bi
lit

y

spiky weight change (SWC)
regular weight change (RWC)
low weight change (LWC)

Figure 10: Visual quality vs stability as function of the weight
change feature.
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Figure 11: Visual quality vs stability as function of the insertions
and deletions feature.

6. Discussion and Conclusion

We performed an extensive quantitative evaluation of rectangular
treemaps for time-dependent data. To do so, we introduced a new
methodology based on baseline treemaps to measure the stability of
time-dependent treemaps. Baseline treemaps enable us to measure
the change in the input data in a manner that is mathematically
comparable to the measures for the layout change of the corre-
sponding treemaps. Furthermore, we proposed a novel classification
scheme for time-dependent data sets via a four-dimensional feature
space (weight variance, weight change, tree depth, and the pattern
of insertions and deletions). These four features naturally arose
from a discussion on various types of state-of-the-art treemapping
algorithms. Our experimental analysis shows that our proposed clas-

sification is valid in general and that most data classes are well suited
to predict the performance of treemapping algorithms. For most data
classes, our visual summary comparing all algorithms across all data
classes and both metrics can hence serve as a reliable resource for
researchers and practitioners. Last but not least, all datasets, metrics,
and algorithms used in our evaluation are openly available [URLb].

Limitations and future work. Our experiments show that our iden-
tified features and the resulting feature space generally work well
and result in a meaningful classification of datasets. However, there
are whole sets of data classes for which we could not find sufficiently
many (or even any) datasets. This is partially inherent in the classi-
fication and somewhat natural: data sets with low weight variance
hardly ever exhibit spiky weight change behavior, so that particular
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column in our table is essentially empty. But among the 18 classes
of treemaps with 4 or more levels we found a significant number
of datasets only for two classes, which both are essentially popu-
lated by datasets stemming from software repositories. The question
remains if there are other significant types of time-dependent hierar-
chical datasets which have four or more levels and which escaped
our searches. As it is, the results for these two particular classes are
representative for only a restricted type of data.

Our classification works well for visual quality, with the exception
of two cases (2/3 level, spiky insertions and deletions, high weight
variance, and low or spiky weight change). We have a large number
and variety of datasets at our disposal for these two classes, but
nevertheless, it is unclear to us what causes these inconsistencies in
the performance of the tested algorithms. There might be a hidden
correlation in these datasets and one or more additional features
might be needed to separate these classes further.

While we do have a significant number of datasets at our disposal
and hence can validate our claims with some certainty, we still might
be observing some bias in our collection. As stated above, essentially
all datasets with 4 or more levels stem from software repositories.
Furthermore, all World Bank datasets have at most 3 levels. It would
be interesting to analyze if and how this bias in the data influences
our results. To overcome possible data bias, we would also like to
construct, and evaluate on, synthetic datasets. Doing so is not trivial;
creating datasets that avoid sampling biases and are representative
of real-world datasets (for a suitable definition of “real-world”) is a
challenging (but important) question in its own right in information
visualization in particular and in data science in general.

To complement our quantitative evaluation it would naturally be
of interest to evaluate the performance of treemapping algorithms
in various usage scenarios through user studies. The two metrics
we use for visual quality and stability are both perceptually salient
according to studies performed in previous work. However, a study
that evaluates the combination of and the trade-offs between visual
quality and stability could deliver important insights as to where on
the Pareto-front an optimal treemapping algorithm should lie.

Finally, our evaluation currently does not measure the run-time
and correspondingly the scalability of the algorithms used in our
experiments. Our implementations are not (equally) optimized and
hence a fair comparison is currently impossible. Scalability is clearly
an important factor in online usage scenarios, and we hope to be able
to complement our current set of implementations with optimized
versions in the near future.
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layout algorithm for evolving tree data. In Proc. International Conference
on Information Visualization Theory and Applications (2018), pp. 273–
280. 2, 4

[Sze10] Szeliski R.: Computer Vision: Algorithms and Applications.
Springer, 2010. 4

[TC13] Tak S., Cockburn A.: Enhanced spatial stability with Hilbert and
Moore treemaps. IEEE Transactions on Visualization and Computer
Graphics 19, 1 (2013), 141–148. 3, 4

[Tel06] Telea A.: Combining extended table lens and treemap techniques
for visualizing tabular data. In Proc. VGTC Conference on Visualization
(2006), pp. 120–127. 7

[TM07] Tuytelaars T., Mikolajczyk K.: Local invariant feature detectors:
A survey. Foundations and Trends in Computer Graphics and Vision 3, 3
(2007), 177–280. 4

[TS07] Tu Y., Shen H.: Visualizing changes of hierarchical data using
treemaps. IEEE Transactions on Visualization and Computer Graphics
13, 6 (2007), 1286–1293. 3

[URLa] Scitools. https://scitools.com. 7

[URLb] Treemap resources. https://eduardovernier.github.io/
dynamic-treemap-resources-eurovis. 2, 3, 4, 10

[URL17] UN Comtrade Database. https://comtrade.un.org, ac-
cessed 15-02-2017. 7

[URL18a] ATP Tennis Rankings. https://github.com/
JeffSackmann/tennis_atp, accessed 03-07-2018. 7

[URL18b] USGS Earthquakes. https://earthquake.usgs.gov/
earthquakes/browse/stats.php, accessed 03-07-2018. 7

[URL18c] Worldbank indicators. https://data.worldbank.org/
indicator/, accessed 04-07-2018. 6

[URL18d] The Movie Database. www.themoviedb.org, accessed 10-02-
2018. 7

[URL18e] Github. https://github.com, accessed 16-07-2018. 7

[VCT18a] Vernier E., Comba J., Telea A.: Quantitative comparison of dy-
namic treemaps for software evolution visualization. In IEEE Conference
on Software Visualization (2018), pp. 96–106. 4, 6

[VCT18b] Vernier E., Comba J., Telea A.: A stable greedy insertion
treemap algorithm for software evolution visualization. In IEEE Confer-
ence on Graphics, Patterns and Images (2018), pp. 158–165. 3, 4

[vHH17] van Hees R., Hage J.: Stable and predictable Voronoi treemaps
for software quality monitoring. Information and Software Technology
87 (2017), 242–258. 2

[VvWvdL06] Vliegen R., van Wijk J. J., van der Linden E. J.: Visual-
izing business data with generalized treemaps. IEEE Transactions on
Visualization and Computer Graphics 12, 5 (2006), 789–796. 6, 7

[Wat05] WattenbergM.: A note on space-filling visualizations and space-
filling curves. In Proc. IEEE Symposium on Information Visualization
(2005), pp. 181–186. 1, 3

[ZCYT17] ZhouM., Cheng Y., Ye N., Tian J.: Effectiveness and efficiency
of using different types of rectangular treemap as diagrams in cartography.
In International Cartographic Conference (2017), pp. 187–206. 2

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

404

https://www.meertens.knaw.nl/nvb
https://scitools.com
https://eduardovernier.github.io/dynamic-treemap-resources-eurovis
https://eduardovernier.github.io/dynamic-treemap-resources-eurovis
https://comtrade.un.org
https://github.com/JeffSackmann/tennis_atp
https://github.com/JeffSackmann/tennis_atp
https://earthquake.usgs.gov/earthquakes/browse/stats.php
https://earthquake.usgs.gov/earthquakes/browse/stats.php
https://data.worldbank.org/indicator/
https://data.worldbank.org/indicator/
www.themoviedb.org
https://github.com

