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Figure 1: (a) Space-time representation of 2D Convective Flow dataset. Paths of saddle-type critical points (orange lines, extended along

observer motion (blue lines)), in an optimal frame of reference [RG20] over time [49 s, 52 s], are corrected toward distinguished hyperbolic

trajectories (DHT; green lines). DHTs are a subset of pathlines, which follows intersections of forward (red in (b)(c)) and backward (blue in

(b)(c)) FTLE ridges, i.e., locations of locally extremal separation of pathlines. Streaklines seeded along DHTs and integrated in forward (blue

surfaces) and backward (red surfaces) time represent streamsurfaces in space-time (here with short integration time for clarity) and corre-

spond to Lagrangian coherent structures (LCS). (b)(c) Time step t=50 s (right slice in (a)) and t=51 s (left slice in (a)) with streakline-based

repelling and attracting LCS (black lines), FTLE for comparison. FTLE ridges caused by shear are not topological (e.g., I, see Figure 15).

Abstract

This paper does two main contributions to 2D time-dependent vector field topology. First, we present a technique for robust,

accurate, and efficient extraction of distinguished hyperbolic trajectories (DHT), the generative structures of 2D time-dependent

vector field topology. It is based on refinement of initial candidate curves. In contrast to previous approaches, it is robust because

the refinement converges for reasonably close initial candidates, it is accurate due to its adaptive scheme, and it is efficient due

to its high convergence speed. Second, we provide a detailed evaluation and discussion of previous approaches for the extraction

of DHTs and time-dependent vector field topology in general. We demonstrate the utility of our approach using analytical flows,

as well as data from computational fluid dynamics.

CCS Concepts

• Human-centered computing → Visualization techniques; • Applied computing → Mathematics and statistics;

1. Introduction

Vector field topology (VFT) is a widely used concept for the vi-
sualization of steady vector fields [HH89]. It is defined by iso-
lated stationary points and their separatrices, which are (instanta-
neous) streamlines that converge to saddle-type critical points in
forward or reverse direction and partition the domain into regions
of similar flow behavior. While this concept can be applied to time-

dependent vector fields by freezing an instance in time, it is un-
able to capture the true Lagrangian motion of particles over time,
even if an appropriate frame of reference is chosen. Instead, the
notion of Lagrangian coherent structures (LCS) is used for the def-
inition of vector field topology in time-dependent flow. In 2D, LCS
represent material lines [SLM05], which act as transport barriers
and are locally the most attracting or repelling. They are included
in the set of ridges of the finite-time Lyapunov exponent (FTLE)

c© 2020 The Author(s).

Computer Graphics Forum published by Eurographics - The European Association for Computer

Graphics and John Wiley & Sons Ltd.

This is an open access article under the terms of the Creative Commons Attribution License, which

permits use, distribution and reproduction in any medium, provided the original work is properly

cited.

DOI: 10.1111/cgf.13982

https://diglib.eg.orghttps://www.eg.org

https://orcid.org/0000-0001-6377-1804
https://orcid.org/0000-0002-8949-8452


L. Hofmann & F. Sadlo / Extraction of Distinguished Hyperbolic Trajectories for 2D Time-Dependent Vector Field Topology

field [Hal00]. It has been shown [SW10], that ridges in the forward
and backward FTLE field intersect in distinguished hyperbolic tra-
jectories (DHT). These are (time-dependent) pathlines, that exhibit
attracting and repelling manifolds in the space-time phase space.
In this sense, DHTs take on the role of saddle-type critical points
from steady VFT, i.e., they represent points moving over time, and
generalized streaklines take on the role of their separatrices.

The main challenge posed by time-dependent vector field topol-
ogy is the extraction of the DHTs. In order to obtain intersections
of ridges in forward and reverse FTLE fields, a dense grid of parti-
cles would need to be integrated in forward and backward time. To
ensure robust extraction of the ridges, this would need to be done
at very high resolution (or in an adaptive manner). However, per-
forming this costly computation at a single instance of time would
not be enough: numerical integration started at such an intersec-
tion point exponentially accumulates errors along the repelling or
attracting manifolds in forward or backward time, and additionally
DHTs can appear and disappear over time. So far, two local extrac-
tion methods have been proposed to solve this problem. Machado
et al. [MBES16] locally track critical points in a Galilean-invariant
reference frame, and locally refine the solution toward the closest
pathline. Secondly, Rojo and Günther [RG20] solve a least-squares
optimization problem to obtain more accurate frames of reference,
in which critical points follow pathlines more closely. While the
local refinement scheme of Machado et al. does not need to con-
verge to a DHT or at all, paths of critical points in an optimal frame
of reference, as computed by Rojo and Günther, do not need to be
DHTs or even pathlines, as we are going to show in Section 6.8.

Both approaches have in common, that they are mostly local in
nature. In this work, we bridge the gap between local and global
integration-based techniques. First, we locally extract initial candi-
dates by tracking critical points in appropriately chosen reference
frames. Second, we globally compute the dynamics in the localized
flow along each initial candidate, using numerical integration. This
is similar to computing the localized FTLE [KPH∗09] along a sin-
gle pathline, but with the path given by the initial candidate instead
of pathline integration. Finally, closely following the works of Ide
et al. [ISW02] as well as Branicki and Wiggins [BW09], we com-
pute a time-dependent coordinate transformation, which decouples
repelling and attracting directions into one-dimensional systems,
which allows for separate integration along the repelling direction
in backward time and along the attracting direction in forward time,
thus refining the initial candidate toward the DHT. Having obtained
a set of DHTs, we compute streak manifolds in the 3D space-time
domain, seeded along the DHTs at an offset determined by the co-
ordinate transformation. The streaklines obtained in this way rep-
resent LCS, and thus the topology of time-dependent flow.

Our contributions include:
• We combine existing local DHT extraction techniques with

global numerical approaches [ISW02, BW09] and refinement.
• We obtain consistent offsets for seeding streak manifolds.
• We evaluate different approaches to obtain DHT candidates.
• We compare our technique with previous approaches, and vali-

date our results using the FTLE.
• We show that no purely local technique is able to accurately ex-

tract LCS-based features in general time-dependent flow.

2. Related Work

Haller [Hal01] and Shadden et al. [SLM05] proposed to compute
the largest finite-time Lyapunov exponent on a grid and obtain La-
grangian coherent structures as ridges in these fields. This con-
cept has proven successful for the visualization of unsteady vector
fields [GLT∗09,SP09]. Instead of using a computational grid to ob-
tain the necessary flow map gradients, Kasten et al. [KPH∗09] used
the localized flow along trajectories. Generally, computing gradi-
ents of the flow map, which maps an initial position of a mass-
less particle to its position after a given integration time, requires
very fine sampling especially near LCS. To counter this, adap-
tive methods have been proposed [GGTH07, SP07, SRP11]. Sadlo
and Weiskopf [SW10] adaptively computed intersection points of
ridges of the forward and backward FTLE fields. The authors
have shown, that such points lie on DHTs, and that generalized
streak lines [WTS∗07], seeded along DHTs, represent LCS. In this
way, steady vector field topology is extended to unsteady vector
fields by replacing streamlines with generalized streaklines. This
method has been extended to 3D by Üffinger et al. [USE13]. Both
methods require numerical integration of hyperbolic trajectories,
which leads to exponential error growth due to their attracting
and repelling subspaces. A computationally expensive, but accu-
rate alternative is to compute the FTLE in dense time slices in-
stead [BSDW12, SBDW13]. Besides computational cost, using the
FTLE for time-dependent flow analysis also has the disadvantage,
that a poor choice of its integration parameter can lead to incon-
sistencies with LCS [SLM05,BW10]. Also based on the flow map,
Bujack et al. [BDZG19] defined time-dependent equivalents of sad-
dles, sinks, and sources, which are also included in the DHT defini-
tion by Ide et al. [ISW02]. In this work, we extract LCS explicitly in
geometric representation, avoiding computation of discretized flow
maps and error-prone extraction of LCS by ridges therefrom.

Steady vector field topology has been introduced by Helman
and Hesselink [HH89] for the visualization of steady vector fields.
Since it is defined by streamlines and not pathlines, it is not suitable
for visualization of general time-dependent vector fields. Theisel
et al. [TWHS04] considered a pathline topology, which splits the
space-time domain into regions of instantaneous hyperbolicity. The
extraction of vortex core lines in time-dependent vector fields is
closely related. The criterion by Sujudi and Haimes [SH95] is
widely used for their extraction in steady 3D vector fields, which
can be formulated using the parallel vectors operator [PR99], and
requires other streamlines to swirl around the vortex core line.
Weinkauf et al. [WSTH07] extract pathline cores by applying the
parallel vectors operator to the extended space-time flow. Due to
the special structure of this flow, the problem is reduced to finding
critical points in 2D or extracting 3D vortex core lines from a modi-
fied flow, where the feature flow field [TS03] is subtracted. Günther
et al. [GST16] noted, that subtracting the feature flow field can be
regarded as observing the flow in a Galilean-invariant frame of ref-
erence. Using linear optimization, Günther et al. [GGT17] obtained
locally objective frames of reference. This has been extended to
affine invariance [GT20]. Hadwiger et al. [HMTR18] formulated
the problem of finding optimal reference frames as a global op-
timization problem. Rojo and Günther [RG20] extended the local
reference frame optimization framework to displacement transfor-
mations, which includes the preceding methods as special cases
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by allowing for arbitrary spatial deformations. They define a time-
dependent vector field topology in terms of the steady vector field
topology in the steady frame of reference. Closely related to this
strictly local approach is that of Machado et al. [MBES16]. These
authors extract bifurcation lines using the parallel vectors operator
from the space-time domain, which is equivalent to tracking critical
points in the Galilean-invariant frame of reference defined by the
feature flow field. In a second step, the authors use a local refine-
ment technique [MSE13] to correct the initial line toward the near-
est pathline. The time-dependent vector field topology is finally ob-
tained as streak lines, as proposed by Sadlo and Weiskopf [SW10].
Since Rojo and Günther compute separatrices as streamlines in a
steady vector field instead, they are not limited by the time domain
of the dataset. However, as we are going to show, this approach
does not yield LCS in general.

Haller [Hal00] defined hyperbolic trajectories (here denoted
DHT), as those pathlines that stay in a hyperbolic region for
locally the longest time. His notion of hyperbolicity is based
on the determinant of the instantaneous Jacobian being negative,
and is employed by Sadlo and Weiskopf [SW10], Üffinger et
al. [USE13], and Machado et al. [MBES16]. A similar notion
based on exponential dichotomy in dynamical systems [Cop78]
is that of a distinguished hyperbolic trajectory. It was introduced
by Ide et al. [ISW02], who also formulated a numerical algo-
rithm based on Fourier transform, which computes a DHT from
an initially obtained path of critical points in the lab frame of a
dataset. Since the Fourier transform imposes time-periodicity on
the dataset, an approach geared toward more general datasets was
developed [MSW04]. For solving the integral equation associated
with a DHT, both approaches use a linear approximation of the
flow. For the extension to 3D, Branicki and Wiggins [BW09] use
a fixed-point iteration instead, which was originally used for prov-
ing existence and uniqueness theorems of DHTs [JSW03]. In our
work, we closely follow these approaches in order to correct an ini-
tial candidate line toward a DHT, while for identifying initial can-
didate lines, we rely on Haller’s definitions. In this way, we obtain
a 2D time-dependent vector field topology consistent with LCS as
obtained by FTLE ridges.

3. Fundamentals

We consider a 2D time-dependent vector field u(x, t) ∈ R
2, with

x ∈ Ω ⊂ R
2, defined over a finite time interval t ∈ [t0, tN ]. The La-

grangian motion of massless particles in such a field is described
by pathlines, which are tangent curves

d

dt
x(t) = u(x(t), t), (1)

given an initial seed point x(t0) = x0.

3.1. FTLE and Lagrangian Coherent Structures

The flow of a time-dependent vector field is given by its flow

map φφφT
t0(x), which maps a seed point x at time t0 to its final position

after advection time T . Exponential separation, the main organizing
structure of the flow, can be obtained from the FTLE field,

ς
T
t0(x) =

1

|T |
ln

√

σmax

(

(

∇φφφT
t0
(x)

)⊤
∇φφφT

t0
(x)

)

, (2)

x(t0) x(tN)

δδδe1(t0)
δδδe1(tN)

δδδe2(t0)
δδδe2(tN)

∇u ∇u ∇u

Figure 2: The localized flow along a pathline x(t) (green) de-

scribes the evolution of infinitesimal perturbations δδδe1(t0) = e1,

δδδe2(t0) = e2 (left ellipse) around it over a time interval [t0, tN ]. In

first-order approximation, the evolution is obtained from the Jaco-

bian ∇u along the pathline. The integrated perturbations δδδe1(t),
δδδe2(t) form the columns of the fundamental solution matrix Xt0(t).

where σmax(·) denotes the largest singular value. For an n-
dimensional flow, the FTLE is a spectrum of n exponents, but the
largest is typically used as a synonym. Ridges in ςT

t0(x) for nega-
tive advection time represent attracting LCS, while they represent
repelling LCS for positive advection time [Hal01]. Generally, parti-
cles separate exponentially in forward time, when they are close to
repelling LCS, and they separate exponentially in backward time,
when they are close to attracting LCS.

3.2. Streak-Based Topology

Since LCS are material lines [SLM05], the intersection of repelling
and attracting LCS represents pathlines. These include special path-
lines, from which streaklines seeded at an offset represent the cor-
responding LCS. Interpreting these pathlines as saddle-type de-
generate streaklines motivates the definition of streak-based topol-
ogy [SW10]. The generating pathlines of this topology are the
DHTs, which are those pathlines, that reside in hyperbolic regions
(where det∇u < 0), for locally the longest time [Hal00].

3.3. Separation and Attachment at No-Slip Boundaries

In time-dependent flow with no-slip boundaries, the LCS de-
fined by DHTs need to be extended by streak manifolds seeded
along space-time separation and attachment lines at the no-slip
boundaries [MBES16]. Separation and attachment lines can be ob-
tained [Ken98] using the parallel vectors operator [PR99].

3.4. Localized Finite-Time Lyapunov Exponents

While the FTLE field conceptually describes separation of neigh-
boring particles, we now consider the (localized) finite-time Lya-
punov exponents of single pathlines. Local separation and attrac-
tion in an infinitesimal neighborhood (Figure 2) of a pathline x(t),
with x(t0) = x0, over a time interval [t0, tN ], is described by the
localized flow

d

dt
δδδx(t) =∇u(x(t), t)δδδx(t). (3)

This ODE describes the evolution of an infinitesimal neighbor-
hood δδδx(t) along x(t), which is captured entirely by its solution
with initial condition Xt0(t0) = I. We call this solution the funda-
mental solution matrix Xt0(t). In previous work, it has been used
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time

t=0 s

t=2 s

t=4 s

Figure 3: Pathline integration started at a point on an initial

path x̃(t) (yellow) for a DHT (green) in forward time (red line) is

attracted by the attracting LCS (blue surface), and repelled by the

repelling LCS (red surface). The roles are reversed for backward

integration (blue line), thus making DHT extraction by naive nu-

merical integration infeasible. At the time boundaries of the hyper-

bolic region, only one of the directions (repelling at left boundary,

attracting at right boundary) can be refined, because no attracting

or no repelling behavior (i.e., no saddle-type behavior) are present.

to compute a localized variant of the FTLE [KPH∗09], as well as
streaklines as tangent curves [WT10, WHT12]. Using the singular
value decomposition

Xt0(t) = Bt0(t)e
ΣΣΣt0

(t)
Rt0(t)

⊤, (4)

with orthogonal matrices Bt0(t), Rt0(t), and a diagonal ma-
trix ΣΣΣt0(t) with diagonal entries σ1

t0(t)≥ σ2
t0(t), the localized finite-

time Lyapunov exponent spectrum is obtained as

λ
i
t0(t) =

1

|t − t0|
σ

i
t0(t). (5)

Note, that the finite-time Lyapunov exponent is often refered to as
the largest one, i.e., ςt−t0

t0
= λ1

t0(t), which measures the exponen-
tial separation from time t0 to t. However, since integration can be
reversed, we have Xt(t0) = Xt0(t)

−1. Thus, we also obtain expo-
nential attraction from the smallest Lyapunov exponent λ2

t0(t), i.e.,
exponential separation in backward direction from time t to t0. This
fact can also be exploited for computing both FTLE fields using a
grid of pathlines from a single computation [HS11].

3.5. Distinguished Hyperbolic Trajectories

If a pathline x(t) is structurally stable, the localized flow (Equa-
tion 3) can be transformed into the linear system

d

dt
y(t) = Dt0(tN)y(t), (6)

which is defined by the diagonal, time-independent matrix

Dt0(tN) =
1

tN − t0
ΣΣΣt0(tN) =

(

λ1
t0(tN) 0

0 λ2
t0(tN)

)

. (7)

This is achieved by the time-dependent coordinate transformation
y(t) = T(t)δδδx(t) [ISW02], defined over the time interval [t0, tN ],

T(t) = e
(t−t0)Dt0 (tN)Rt0(tN)

⊤
Rt0(t)e

−ΣΣΣt0 (t)Bt0(t)
⊤. (8)

A structurally stable pathline is characterized by none of the di-
agonal entries of Dt0(tN) being zero. It is attracting if all entries
of Dt0(tN) are negative, and repelling if all entries are positive.
A hyperbolic trajectory has both positive and negative entries in
Dt0(tN) in this notation. Since with this notion, almost all trajec-
tories are hyperbolic, Ide et al. [ISW02] define a DHT as a hyper-
bolic trajectory, which remains in a bounded neighborhood B for all
time, while all other trajectories starting in B leave B at exponen-
tial rate in forward and backward time, and, in addition, the trajec-
tory it is not an intersection of attracting and repelling manifolds of
other DHTs. The latter condition is important (Section 6.3), since
such non-distinguished trajectories manifest themselves as false-
positive ridge intersections of the forward and backward FTLE
fields, but they are not topological generators of the time-dependent
flow. This definition of a DHT is more general than the notion of
Haller [Hal00], since it does not require instantaneous hyperbolic-
ity detu < 0. On the other hand, it can be shown [Cop78, p.50ff],
that under similar preconditions, instantaneous hyperbolicity im-
plies the existence of a DHT. For a discussion of the reverse, we
refer the reader to Branicki and Wiggins [BW10, p.16f].

We now use the preceding discussion to obtain a refinement
scheme, which corrects an initial candidate line x̃(t) toward a
nearby DHT. Using the same definitions as above, we change into
the coordinate frame w(t) = T(t)(x(t)− x̃(t)). The flow (Equa-
tion 1) then takes the form

d

dt
w(t) = Dt0(tN)w(t)+h(w(t), t), (9)

where the nonlinear part h(w(t), t) is given by [ISW02]

h(w(t), t) =T(t)u
(

T
−1(t)w(t)+ x̃(t), t

)

−T(t)∇u(x̃(t), t)T−1(t)w(t)−T(t) ˙̃x(t).
(10)

In Equation 9, attracting and repelling behavior is decoupled into
one-dimensional systems. Thus, we are able to integrate along at-
tracting directions in forward time, and along repelling directions
in backward time. An approximate DHT for a given finite-time in-
terval [t0, tN ] is the solution of the integral equations [ISW02]

wi(t) =

{∫ t
t0

edi(t−s)hi(w(s), s)ds, if di < 0,

−
∫ t1

t edi(t−s)hi(w(s), s)ds, otherwise,
(11)

where wi and hi denote the ith component of w and h, and di the
diagonal entries of Dt0(tN). Since integration starts and stops at the
time boundaries of the initial candidate, a solution w(t) takes the
special values

wi(t0) = 0, if di < 0,

wi(tN) = 0, otherwise.
(12)

The decoupled integration in Equation 11 reverses the repelling be-
havior of the DHT and thus corrects toward it in both forward and
backward time (see Figure 3). This also explains the initial values
in Equation 12: the DHT does not exist across these time bound-
aries, and integration beyond them, even if the data would permit it,
would not undergo the same hyperbolic behavior and thus not yield
a correction. Finally, we obtain a refinement of the initial candi-
date x̃(t) toward an approximate DHT,

x̃DHT(t) = x̃(t)+T(t)−1
w(t). (13)
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An approximate DHT x̃DHT obtained in this way, converges to
the actual DHT for infinite integration time, in cases, where a DHT
exists for all time [ISW02] and the initial candidate is within a
bounded region, depending on its Lyapunov exponents [JSW03].

4. Method

Based on the previous discussion, we extract the time-dependent
vector field topology of a vector field u(x, t) ∈ R

2 given on a time
interval [t0, tN ] using the following steps:

1. Locally extract a set of initial candidate lines x̃(t).
2. Refine the initial candidates toward DHTs.
3. Seed streaklines along the obtained DHTs.

4.1. Obtaining Initial Candidates for DHTs

Candidates x̃(t) for DHTs are obtained by tracking saddle-type crit-
ical points in a suitable frame of reference using the parallel vectors
operator in the space-time domain. Given a decomposition

u(x, t) = w(x, t)+ f(x, t), (14)

into observer motion f(x, t) and an observed vector field w(x, t),
we obtain initial polylines as paths of critical points in w, which
we filter by instantaneous hyperbolicity det∇u <−τh with a large
positive threshold τh. These short but robust solution lines are then
extended by seeding at their endpoints streamlines in the observer
motion field f in forward and reverse direction, until integration
leaves the hyperbolic region (det∇u ≥ 0), or a domain bound-
ary is reached (e.g., Figure 12o). Notice, that f is not a feature
flow field of w in general, since it neglects possible motion of ob-
served critical points in w relative to the observer motion f. In Sec-
tion 6.8, we evaluate using candidates in the lab frame [ISW02], the
Galilean-invariant frame of reference defined by the feature flow
field [MBES16], and an optimal frame of reference [RG20].

4.2. Refinement toward DHTs

The initial line x̃(t) is given as a polyline (x0, t0), . . . , (xN , tN)
in space-time. The Jacobian matrix is computed at each of these
space-time locations, J0 =∇u(x0, t0), . . . ,JN =∇u(xN , tN). From
this, the singular value decomposition (Equation 4) of the funda-
mental solution matrix X(t, t0) is computed by numerical integra-
tion of the initial value problem

d

dt
X(t) = J(t)X(t), X(t0) = I, (15)

where we linearly interpolate Ji between the discrete time
steps t0, . . . , tN to obtain J(t). To avoid numerical issues, that oc-
cur for strong hyperbolicity or long integration times, we use the
continuous SVD method (see Section 1 in the supplemental mate-
rial) to obtain the matrices Bt0(ti), ΣΣΣt0(ti), Rt0(ti) for i = 0, . . . ,N.
The coordinate transformations T(ti) as well as Dt0(tN) are then
computed according to Equation 8, and the inverse transforma-
tion T(t)−1 is obtained by inverting the factors in Equation 8, such
that no numerical matrix inversion is involved. In cases, where ϑ =
(tN − t0)max(Dt0(tN)) exceeds the floating-point precision avail-
able for numerical computation, the factors exp((ti − t0)Dt0(tN))
and exp(−ΣΣΣt0(ti)) usually cause catastrophic cancellation in the

tim
e

(a)

tim
e

(b)

Figure 4: Seeding of repelling (red) and attracting (blue) streak

manifolds along the DHT (green), here with exaggerated offset

(white lines) for illustration purposes. (a) Offset in direction of the

real eigenvectors of ∇u(x(t), t) deviates from the corresponding at-

tracting (blue FTLE ridges) and repelling (red FTLE ridges) LCS.

(b) Seeding along T(t)−1ei is approximately tangential to the LCS.

computation of T(ti). For computation using double precision,
we split [t0, tN ] into time intervals of length T = (tN − t0) · 15/ϑ.
On each of these non-overlapping intervals, as well as on inter-
vals shifted by T/2, we compute a refined DHT. The overlapping
results are averaged using cosine weights, thus ensuring a uni-
form precision along the DHT. The refinement toward the DHT
is obtained as the solution of the implicit integral Equations 11,
which we solve using a fixed-point iteration. Starting with initial
guess w(0)(t) = 0, we compute h(w(0)(t), t) according to Equa-
tion 10, and evaluate the integrals using trapezoidal rule, yielding
an approximate solution w(1)(t) of Equation 11. This process is it-
erated until ‖w( j+1)−w( j)‖ drops below a predefined threshold τ f

or a maximum number of iterations is reached. A refined DHT is
then obtained as x̃DHT(t) from Equation 13. Since the localization
of the initial path x̃(t) is fixed, we use x̃DHT(t) as new initial can-
didate, and repeat the entire process. The iteration terminates when
‖x̃

( j+1)
DHT − x̃

( j)
DHT‖ reaches a predefined threshold τi.

4.3. Seeding Streak Manifolds

The attracting and repelling manifolds of the DHTs, i.e., the LCS,
are extracted by computing streamsurfaces in space-time (streak-
lines in space), offset in the perturbation directions that belong to
the respective Lyapunov exponents. These directions yield linear
approximations of the corresponding LCS and are obtained as the
columns of T(t)−1. Previous work [USE13,MBES16] used the real
eigenvectors of the Jacobian as an estimate, which, due to their in-
stantaneous nature, are in general not well aligned with the mani-
folds (Figure 4). In general, DHTs only exist over finite time inter-
vals, which are typically shorter than the time domain. As shown by
Üffinger et al. [USE13], streak manifold integration has to continue
across the entire space-time domain, however.

4.4. Hyperbolicity Strength

The localized view on the distinguished hyperbolic trajectories in
Section 3 gives a quantitative measure for exponential separation
along the trajectory. It is given by the diagonal matrix Dt0(tN), i.e.,
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nearby trajectories separate over time as exp(tDt0(tN)). Therefore,
we may use ϑ = max(tN − t0)Dt0(tN) to measure the hyperbolicity
of a trajectory, which not only depends on the finite-time Lyapunov
exponents, but also on the duration in time.

Using the method described in Section 4.1, the same DHT may
be extracted multiple times. In order to obtain a set of unique DHTs,
we filter DHTs that are too close to each other, according to mini-
mum point-wise distance, and choose those among the correspond-
ing ones, that have the largest hyperbolicity strength ϑ. By choos-
ing the distance threshold smaller than the cell size of the grid defin-
ing u(x, t), the interpolation makes it unlikely, that DHTs are fil-
tered as false negatives in this process. A thorough threshold based
on the interpolation scheme is subject of future work.

5. Implementation

We use an embedded Runge–Kutta 4/5 scheme with adaptive step
size and dense output to numerically obtain the fundamental solu-
tions of the localized systems. For our results, we use a relative tol-
erance of 10−3 and absolute tolerance of 10−6. The maximum step
size is chosen as the mean step between discrete time steps ti+1− ti
of the candidate line, and the initial step size as a 10th of this. We
use the dense output to obtain solutions at the predefined discrete
time steps ti, which may not be reached exactly due to the adaptive
step size. The iterations in the DHT refinement (Section 4.2) are
stopped if two consecutive steps differ less than τ f = τi = 10−10,
or after at most 100 steps. A C++ prototype of our DHT refinement
is provided in the supplemental material.

6. Results

In the following, we first discuss time-dependent vector field topol-
ogy at simple analytical examples, to build intuition about related
issues, and compare the efficiency and accuracy of our DHT re-
finement method to the local refinement approach by Machado et
al. [MSE13]. Finally, we evaluate the different approaches to ob-
tain initial candidate lines (Section 4.1) at two numerical flow sim-
ulation datasets, and compare the approaches by Rojo and Gün-
ther [RG20] as well as Machado et al. [MBES16] to our DHT re-
finement approach on these datasets. As ground truth, we compare
against ridges in the FTLE fields in all our examples. We imple-
mented the local bifurcation line refinement as described by the
authors [MSE13], and used the provided prototype for computing
the optimal reference frames [RG20], where we chose second-order
optimization with a neighborhood of 412 nodes.

6.1. Skewing Oscillating Gyre-Saddle

Based on the Skewing Gyre-Saddle and Oscillating Gyre-Saddle
examples proposed by Sadlo and Weiskopf [SW10], we construct
a model for a hyperbolic region, which oscillates sinusoidally be-
tween (0.2,0.8)⊤ and (−0.2,−0.8)⊤ with a period of 4 s, with the
saddle directions skewing at a period of 1 s. Figures 3 and 4 show
this dataset over the time interval [0,4]. While this dataset is time-
periodic and thus would allow to compute the FTLE beyond the
time boundaries, we choose not to do so. Since we only extract the
DHT and its attracting and repelling manifolds over this time in-
terval, the resulting topology will only be consistent with ridges in

x y
time

Figure 5: The attractor (blue) in the Beads problem can be found

by integrating in forward time from an initial candidate line (or-

ange) to obtain an approximate solution (green). The quality of the

approximate solution increases with the length of integration time.

the FTLE fields constrained to the same time interval. For example,
the forward FTLE at t=0 s (see Figure 3, front slice) can thus only
constrain the DHT to a line at this instant of time, while the forward
and backward FTLE fields at the center of the time interval (t=2 s)
constrains it to the point, where forward and backward FTLE ridges
intersect. This is perfectly consistent with the computation of streak
manifolds, as shown in Figure 3.

6.2. The Beads Problem

The Beads problem is an example for an attractor, around which
pathlines exhibit swirling motion. In the following, we use the an-
alytic model and ground truth previously used by Weinkauf and
Theisel [WT10]. While traditional feature extraction methods fail
to find this attractor, it can be extracted from particle density esti-
mation [WCW∗11], using streakline cores [WT10], or as rotational
invariant vortex core [GST16]. This attractor can be regarded as a
“sink-type DHT” [BDZG19], as it has only negative Lyapunov ex-
ponents. Note, that the definition of a DHT due to Ide et al. [ISW02]
also includes this case, since their notion of hyperbolicity means
non-zero Lyapunov exponents rather than saddle-like behavior. We
therefore may refine the erroneous parallel vectors solution toward
the attractor using the algorithm described in Section 4.2. In this
case, integrating the decoupled system (Equation 9) is equivalent
to integration of the original flow. The initial candidate is thus in-
creasingly refined toward the ground truth with increasing time (to
the right in Figure 5), while the point at the left time boundary is
left unchanged. Integration-based methods are able to extract this
attractor accurately near the beginning of the time domain, but re-
quire a dense computation of pathlines. Our method is only accu-
rate at later time steps, but only requires a localized integration.

6.3. Unsteady Saddle Connectors

In 3D steady vector fields, the separatrices of saddle-type critical
points can intersect in streamlines, which form connections be-
tween two different (heteroclinic) or one (homoclinic) saddle-type
critical point. These are also called saddle connectors [TWHS03].
Similar connections can be formed by hyperbolic trajectories in un-
steady vector fields [MW98]. They are typically formed at a time ti
by manifolds of DHTs, which have come into existence at a time in
the past (t < ti) or in the future (t > ti). For sufficiently long advec-
tion time, they can be observed as intersections of ridges in the for-
ward and backward FTLE fields, which, however, do not represent
DHTs. For illustration, we construct an analytical example, from
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tim
e

(a) (b)

Figure 6: Unsteady equivalents of saddle connectors: hetero-

clinic connection (yellow) at the intersection of the attracting man-

ifold (blue) and repelling manifold (orange) of two different DHTs

(green), and homoclinic connection (magenta) at the intersection

of the attracting manifold (cyan) and repelling manifold (orange)

of the same DHT. They are contained in the set of intersections of

ridges in the forward (red) and backward (blue) FTLE fields (slice).

two stationary saddle-type linear fields, with instantaneous critical
points at (0,0)⊤ and (1,1)⊤. Both are made nonlinear with Gaus-
sian window functions. The saddle at (1,1)⊤ is faded into and out
of existence over a short time period, resulting in a short DHT, and
one DHT that exists for all times. The DHTs and their manifolds
are shown in Figure 6. The intersection curves of their manifolds
are visible in the forward and backward FTLE fields computed at
a time slice, where the shorter DHT does not exist. These unsteady
equivalents of saddle connectors can be hyperbolic trajectories, but
they do not need to be. However, they are not DHTs, since they are
not generators of the time-dependent topology of the flow. Since
they arise from non-local mechanisms, however, local extraction
methods (such as ours) do usually not yield candidate lines for these
false-positives (cf. Figure 8).

6.4. Convergence of Refined DHTs

We use a simple analytical model, for which the ground truth
is known, to measure convergence of our DHT refinement, and
compare it to the refinement scheme of Machado et al. [MSE13].
The vector field is defined componentwise as ui(x, t) = dixi +
Ai sin(ωit). Since it is periodic in time, the DHT for all times is
obtained [ISW02] as

xi =−Ai(d
2
i +ω2

i )
−

1
2 sin(ωit + arctan(ωi/di)) . (16)

Locations of vanishing acceleration, and thus the parallel vectors
solution, are obtained, by straightforward calculation, as

xi = −Aid
−2
i (d2

i +ω
2
i )

1
2 sin(ωit + arctan(ωi/di)) . (17)

To avoid a possible influence of the numerically evaluated parallel
vectors operator, we use this analytical representation instead. We
fix the parameters d1 = 3, d2 = −3, ω1 = 2, ω2 = 3, A1 = A2 = 1,
and sample the analytical field on a regular grid with 1003 nodes
over the domain [−10,10]2× [−5,5]. We sample the PV line at 128
equidistant instances over the time span [−3,3].

For varying numbers of iterations of our scheme, we measure the
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Figure 7: Accuracy of our method compared with the bifurcation

line refinement scheme by Machado et al. [MSE13], depending on

number of iterations (a), measured by mean squared error (MSE),

and on time length of the candidate line (b), measured at the center

point. (c) Accuracy of our DHT refinement for different thresholds

for time interval splitting with double precision, measured by MSE.

pointwise mean square error to the ground truth (Figure 7a). For the
computation of our DHT refinement, 100 fixed point iterations, to-
gether with the continuous SVD, took 28 ms on average, while 100
iterations of the bifurcation line refinement [MSE13] took 19 ms.
However, our DHT refinement converges quickly after about 20 it-
erations, while the bifurcation line refinement takes 2000 iterations
until a good solution is obtained. The MSE for both methods stays
above a rather large value. With our DHT refinement, the reason
for this are the initial values at the ends of the candidate line (Equa-
tion 12), while the bifurcation line refinement scheme cannot dis-
tinguish between the DHT and other path lines converging toward
it at the end points. The convergence in the case of a nonlinear field
is shown in Section 6.7. Next, we measure the influence of the time
length of the initial candidate on the two algorithms (Figure 7b).
For different amounts s of time, we sample the PV line over the
time interval [−s/2, s/2], while keeping the sampling density equal
to the previous experiment. Fixing the number of fixed point it-
erations at 100 for the DHT refinement, and the number of itera-
tions for the bifurcation line refinement at 2000, we measure the
distance of the center vertex to the ground truth, since both meth-
ods tend to be inaccurate at the endpoints. Since our algorithm is
integration-based, the accuracy increases smoothly with the amount
of time available along the candidate line. The bifurcation line re-
finement scheme, on the other hand, is generally unstable. Finally,
we measure the impact of splitting the time interval into intervals of
T = (tN − t0)s/ϑ for different s. This was introduced with s = 15 in
Section 4.2 to avoid numerical errors. With fluctuations due to nu-
merical errors, accuracy increases exponentially with s (Figure 7c).

6.5. Convergence of FTLE Ridges

A small area of interest (I in Figure 13e) of the streak topology
computed in the Cylinder Flow (see Section 6.8 for a detailed dis-
cussion) is shown enlarged in Figure 8. At moderate resolution, the
ridge locations in the forward and backward FTLE fields cannot be
reliably determined (Figure 8a). Only with much increased resolu-
tion (Figure 8c), the five ridges in the backward FTLE field (blue)
become apparent. Increasing resolution even further (Figure 8d),
leads to aliasing artifacts due to the Runge-Kutta 4 integrator with
fixed step size used in our implementation. We also note, that only
one of the five ridge intersections actually belongs to a DHT (Sec-
tion 6.3), as detected by our streak topology extraction. Except
near the seeding locations of the streak manifolds, where numer-
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 8: Cylinder Flow at t=5 s, enlarged region (I) of Fig-

ure 13e. Comparison of streak manifolds (white lines) with inte-

gration time 5 s, and location of DHT (green marker) at t=5 s.

Foward (red) and backward (blue) FTLE fields with 5 s advection

time, with virtual resolutions 400× 3500 (a), 1600× 14000 (b),

3200× 28000 (c), 6400× 56000 (d) exhibit ridges that converge to

our solution. (e)–(h) Extracted ridges (gray) and distance to near-

est ridge (black-body color map; black: zero, white: one cell size).

ical integration time is zero, extracted ridges in the FTLE fields
approach our streak manifolds for increasing resolutions of FTLE.
Figures 8e–8h show distances between streak manifolds and ridges.

6.6. Stability under Perturbation

We analyze the stability of our DHT refinement when applied
on a perturbed initial candidate, which investigates robustness
against inaccurate candidate extraction, and applied on the per-
turbed ground truth DHT, which investigates how far away a can-
didate is allowed to be from the DHT for convergence. We employ
two kinds of perturbations: symmetric perturbation, zero at the cen-
ter, linearly increasing outward, and asymmetric perturbation with
zero at the beginning, linearly increasing in forward time.

First, we use the same analytical model as in Section 6.4 over the
time span [−2,2], where the ground truth is known (Figure 9). The
ground truth has Lyapunov exponents 3,−3, and a spatial range of
1.0× 1.0. We introduce perturbations, that linearly vary between
zero and (0.6,0.6)⊤. In all cases, our DHT refinement is able to
compensate for the perturbations only in directions where sufficient
integration time is available. The errors of the streak manifolds are
partially corrected by streak integration. Second, we perform the
same analysis for the Cylinder Flow (Section 6.8), where we use
the path of the instantaneous critical point behind the cylinder in
the time interval [0,2.5] as initial candidate, and use the DHT com-
puted from it as ground truth. We computed its Lyapunov expo-
nents as approximately 5.56663,−5.47087, and a spatial range of
approximately 0.5×0.02. We impose, relative to the spatial scales,
similar perturbations varying between zero and (0.06,0.06)⊤. The
same results as in the analytical case can be observed here (Fig-
ure 10). However, larger perturbations have caused divergence of
the DHT computation in our experiments. While there are theoret-
ical results on this convergence [JSW03], we leave further investi-
gation at numerical datasets for future work.
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Figure 9: (a)–(d) Perturbation and refinement of the initial can-

didate. (e)–(h) Perturbation and refinement of the ground truth.

(a)(e) Symmetric perturbation. (c)(g) Linear perturbation. Per-

turbed candidate shown in magenta, ground truth in green. Refined

DHT colored by point-wise distance to ground truth (black-body

color map; black: 0, white: 10−4 times dataset domain size). Right

column: streak manifolds computed from the refined DHTs, colored

by pointwise distance to the manifolds of the ground truth (black-

body color map; white: 0, black: 10−4 times dataset domain size).
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Figure 10: First 2.5 s of the Cylinder Flow dataset, analogous per-

turbation analysis to Figure 9. (a)–(d) Perturbed initial candidate.

(e)–(h) Perturbed DHT. Same coloring scheme used as in Figure 9.

6.7. Local Predictability of DHTs

Since part of our DHT extraction consists of the local extraction of
initial candidates, the question arises, whether the local extraction
itself could be fixed, such that it would yield the exact location
of the DHT. The discussion in Section 3.5 suggests, that a local
extraction is not possible. We construct two vector fields u(1)(x, t),
u(2)(x, t) based on Shadden’s double gyre model [SLM05],

u
(i)(x,y, t) =− sin

(

π f
(i)(x, t)

)

cos
(

π f
(i)(y, t)

)

d f (i)

dz
(y, t), (18)

v
(i)(x,y, t) = cos

(

π f
(i)(x, t)

)

sin
(

π f
(i)(y, t)

)

d f (i)

dz
(x, t), (19)

f
(i)(z, t) = a

(i)(t)z2 +
(

1− 2a
(i)(t)

)

z, (20)
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(a) (b) u(1) (c) u(2)
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tim
e
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Figure 11: Forward and backward FTLE at t=0 s of the coun-

terexamples u(1)(x, t), u(2)(x, t) coincide for 5 s advection time (a),

but differ for advection time of 15 s (b)(c). While the location of

the critical point in the optimal frame of reference [RG20] (or-

ange) is independent of the time span considered, only at advection

time greater 5 s, the DHT (green) becomes defined. (d) Started from

the path of the critical point in u(2)(x, t), the DHT refinement (two

fixed-point iterations, i to ii to iii) reaches the FTLE ridge intersec-

tion, since it incorporates information along the entire interval (e).

a
(1)(t) =

1

2
cos (max(|tπ/10|,π/2)) , (21)

a
(2)(t) =

1

2
cos (max(|tπ/10|,π)) . (22)

The vector fields are defined on the spatial domain [0,0] ×
[2,2]. They contain a saddle-type critical point at approximately
(1+a(i)(t),1+a(i)(t))⊤. Starting from t = 0, in u(1), the critical
point moves from (1.5,1.5)⊤ to (1,1)⊤ over 5 s, while the critical
point in u(2) moves to (0.5,0.5)⊤ over 10 s. Both fields are sym-
metric in time, and they coincide over the time interval [−5s,5s].
Thus, any local algorithm, that at most considers data on this inter-
val, would yield the same result at t = 0s. However, as Figure 11
shows, the location of the DHT, which starts to become visible us-
ing the FTLE over the time interval [−10s,10s], differs tremen-
dously in the two flows. We therefore conclude, that hyperbolic
trajectories are not defined by local properties of the flow, but by
the global dynamics. The convergence of the DHT refinement is
shown in Figures 11d and 11e. After the first fixed-point iteration (i
to ii, white to brown), the exact location is not yet reached, since
the localized flow along the initial candidate (orange sphere) was
used. The result of this is used to recompute the localized flow and
start a second fixed-point iteration in our scheme (ii to iii), which
quickly reaches the intersection of FTLE ridges.

6.8. Cylinder Flow

We now evaluate our method at a CFD simulation of a flow behind
a cylinder. It was computed using the Gerris flow solver [Pop04]
and is provided by Günther et al. [GGT17]. We compute DHTs
and the time-dependent vector field topology over the first ten sec-

onds of the dataset. We compare the different extraction methods
for obtaining initial candidates, and compare the computation of
DHTs with the bifurcation line refinement method by Machado et
al. [MSE13]. The results are evaluated using the distance to the
nearest intersection of ridges in the FTLE fields. Since extracting
ridge lines or ridge surfaces in the space-time domain [BSDW12]
requires a prohibitively large FTLE resolution (see Section 6.5), we
extract those local maxima in the product of the two FTLE fields,
that have a persistence greater than 0.5. The topological simplifi-
cation was performed using TTK [TFL∗17]. Using an FTLE reso-
lution of 2000× 1000, this approach yields reasonably noise-free
results (see Figures 12k–12m), except where the FTLE field does
not exhibit sharp ridges or ridges are too close to each other.

Extracting critical points from the lab frame of reference, only
results in short candidate lines (Figure 12a), because the saddles
and nodes, that are periodically generated behind the cylinder, can-
cel each other out after a short amount of time in this frame of ref-
erence. Both our DHT refinement (Figure 12c) and the bifurcation
line refinement [MSE13] (Figure 12b) are only able to make mi-
nor corrections, since both methods rely on sufficiently long candi-
date lines. Computing streak manifolds from these short segments
misses most of the repelling LCS, but is already able to obtain large
parts of the attracting LCS (Figure 12u).

Extracting critical points in the Galilean-invariant frame of ref-
erence defined by the feature flow field [MBES16], and in an opti-
mal frame of reference [RG20] both result in missing line segments
due to numerical noise in the area behind the cylinder. Therefore,
we obtain initial robust segments by filtering, where det∇u >−10,
i.e., τh=10, and integrate from their ends along the respective ob-
server motions (Figures 12o and 12p), as long as integration stays
in a hyperbolic region. While in the Galilean-invariant reference
frame, integration for some candidate lines leaves the hyperbolic
region before the domain boundary is reached, using an optimal
reference frame, the domain boundary is always reached. An ex-
ception is the first hyperbolic trajectory, which is created at the be-
ginning of the simulation. This hyperbolic trajectory stops existing
before t=5 s, since the backward FTLE ridge belonging to its at-
tracting manifold does not intersect with a forward FTLE ridge at
this instance of time (II in Figure 13e). In the accompanying video
this event can be observed at around t=4 s of the dataset.

While the candidate lines in the optimal frame of reference are
more accurate, our DHT refinement reaches similar results in both
cases, which very closely follow FTLE ridge intersections (Fig-
ures 13a–13d), except near the right domain boundary, where the
ends of the initial candidates are reached. The bifurcation line re-
finement is very unstable near the cylinder, where the refined lines
oscillate. Furthermore, it deviates more from the FTLE ridge inter-
sections near the right domain boundary than our DHT refinement.
Streak manifolds computed from the DHTs obtained from both ap-
proaches capture most of the attracting and repelling LCS (Fig-
ures 12v and 12w). Since initial candidates obtained using the op-
timal reference frame [RG20] are longest, they yield larger streak
manifolds. Thus, this is the most accurate option, and we use this to
obtain candidates for DHT refinement in our streak-based topology.

Figures 13e–13h show a comparison of the VTF in a steady
frame of reference as proposed by Rojo and Günther [RG20] with
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Figure 12: Extraction of DHTs in the Cylinder Flow. Initial candidates obtained from the lab frame (a), the Galilean-invariant frame of

reference defined by the feature flow field (d), and an optimal frame of reference [RG20] (g), are corrected toward DHTs using local refine-

ment [MSE13] (b)(e)(h) and our method (c)(f)(i). Color (j) indicates distance to nearest FTLE ridge intersection. Ground truth (n) obtained

as persistent local maxima in the product of the FTLE fields (m), instead of intersection of ridge lines (k) or ridge surfaces in space-time (l) (at

t=5 s). Space-time view ((q): lab frame, (o): feature flow field, (p): optimal frame of reference) showing initial line segments (orange), ex-

tended along observer motion (blue) and refinement (magenta: [MSE13], green: ours), enlarged regions in (r)–(t). (u)–(w) Forward (blue)

and backward (red) streak manifolds computed from the DHTs (green) at time t=5 s, with initial candidates from each of the three approaches.
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(a) (b)

(c) (d)

I

II

(e) ours (f) [RG20]

(g) ours (h) [RG20]

Figure 13: Refinement (bifurcation lines [MSE13] magenta, and ours green) of initial candidate lines (initial segments yellow, extended by

feature flow blue) of critical points in the Galilean-invariant frame of reference defined by the feature flow field, at t=5 s (a) and t=7.5 s (c),

and of critical points in the optimal frame of reference [RG20], at t=5 s (b) and t=7.5 s (d). Streak topology and VFT in the steady frame of

reference [RG20] at t=5 s (e)(f) and t=7.5 s (g)(h). (I) Shown enlarged in Figure 8. (II) The attracting manifold of the DHT that exists during

the first 4 s retains its separating structure also at t=5 s. It does not intersect with a repelling manifold, because its DHT has ceased to exist.

our method, for the time steps t=5 s and t=7.5 s. While our streak-
based topology closely matches ridges in the FTLE fields, critical
points in the steady VFT only are accurate in regions, where the
LCS are moving at constant speed. Separatrices in the steady VFT
only follow FTLE ridges for short amounts of time, if at all. Since
streamlines of a steady vector field cannot intersect, intersections of
the repelling and attracting LCS cannot be captured by this concept
(see Section 6.3 and Figure 8).

6.9. Convective Flow

We now consider a CFD simulation of bouyant air flow with two
obstacles. This flow differs from the flow behind a cylinder, because
it is confined to a closed container on a spatial domain of 0.1 m2

with no-slip boundaries. We consider the time interval [49s,52s]
of this dataset. Much of its unsteady topology is generated by a
slow moving DHT near the center of the domain, for which an
initial candidate can be obtained by tracking critical points in the
lab frame. As in the previous section, initial candidates obtained
from the optimal frame of reference [RG20] yield the most accu-
rate results (see Section 2 in the supplemental material). The streak
manifolds in the space-time domain are shown in Figure 1. In Fig-
ure 14, we compare the streak topology obtained in this way with
the steady VFT proposed by Rojo and Günther [RG20]. Again, in

the steady VFT, neither do the critical points resemble LCS in-
tersections, nor do separatrices follow LCS for longer integration
times. On the other hand, in this dataset, many FTLE ridges are not
captured by our approach. Some of these cases are investigated in
Figure 15, where we seed pathlines across some of those missed
FTLE ridges. We have found, that these either correspond to sep-
aration induced by shear, or other weak separation, and are thus
false-positives in the FTLE field.

6.10. Performance

Computing LCS directly from the FTLE over the entire time do-
main of a dataset requires ridge extraction from densely evaluated
FTLE fields for different starting times [BSDW12]. Our method,
on the other hand, computes LCS as streamsurfaces in the space-
time domain seeded at an offset from locally extracted DHTs, re-
sulting in a geometric representation of LCS that varies smoothly
over time and is not affected by FTLE resolution. Unless reference
frame optimization [RG20] is used for obtaining initial candidates,
our method differs from that of Machado et al. [MBES16] only in
the DHT refinement step, which has a comparable computational
cost (see Section 6.4). As the authors have shown, their approach is
about two orders of magnitude faster than a dense computation of
FTLE fields, and, thus, so is our method.
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(a) ours (b) [RG20]

(c) ours (d) [RG20]

Figure 14: Comparison of the streak topology in the Convective

Flow at t=50 s (a) and t=51 s (c), obtained from DHTs (green;

black: manifolds) and separation (red) and attachment (blue)

lines (magenta: manifolds), and VFT in a steady frame of refer-

ence [RG20] (green: saddle points) at the same time slices (b)(d).

7. Limitations

Since the DHT refinement is integration-based, it requires suffi-
ciently long initial candidates, depending on the dataset. The sharp-
ness of ridges in the FTLE fields computed within the time interval
of an initial candidate can give an indication whether the candidate
is sufficiently long. In turbulent flows, the extraction methods for
obtaining initial candidates can miss features or only yield short
segments. This could be partially overcome by enforcing temporal
coherence in the local extraction methods, i.e., considering a larger
time interval at increased computational cost.

8. Conclusion

We presented an approach to 2D time-dependent vector field
topology, that similarly to the previous work of Machado et
al. [MBES16] relies on local extraction of candidate lines for hy-
perbolic trajectories, from which distinguished hyperbolic trajec-
tories are refined. Our algorithm for refining DHTs closely fol-
lows the work of Ide et al. [ISW02], as well as Branicki and Wig-
gins [BW09]. We have shown, that this approach is faster and more
reliable than the previous method [MSE13], and that the resulting
streak-based topology is more accurate than vector field topology
in a steady frame of reference [RG20]. While the extension of the
notion of a DHT to 3D is straightforward [BW09], they should
be replaced by hyperbolic path surfaces in the 4D space-time do-
main [USE13]. We therefore want to treat this case in future work.

I

II

III

time

Figure 15: Space-time view of the Convective Flow dataset, with

DHTs (green), separation (red lines) and attachment lines (blue

lines). Pathlines, colored by FTLE at their seeding points, seeded

across some of the ridges not covered by the streak topology (I, II)

do not exhibit strong separation, while ridges, that belong to the

streak topology (black lines), are caused by strong separation (III).
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