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Simulation of Dendritic Painting
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Figure 1: Example of dendritic painting obtained with our system. Our proposed diffusion and reaction functions capture the complex
boundary conditions of the multi-phase fluid interactions between the catalyst medium, the solvent and the ink. This demo runs at 12fps on a
high-resolution grid of size 2000x2000.

Abstract
We present a new system for interactive dendritic painting. Dendritic painting is characterized by the unique and intricate
branching patterns that grow from the interaction of inks, solvents and medium. Painting sessions thus become very dynamic
and experimental. To achieve a compelling simulation of this painting technique we introduce a new Reaction-Diffusion model
with carefully designed terms to allow natural interactions in a painting context. We include additional user control not possible
in the real world to guide and constrain the growth of the patterns in expressive ways. Our multi-field model is able to capture
and simulate all these complex phenomena efficiently in real time, expanding the tools available to the digital artist, while
producing compelling animations for motion graphics.

CCS Concepts
• Computing methodologies → Physical simulation;

1. Introduction

Dendritic painting is a form of artistic expression that lets an
artist produce rich, expressive, organic patterns without attention
to detail, and focusing instead on the flow and color of the pat-
terns [Boh11, Kow17] (Figure 3). Just a few drops of ink lead to
rich and colorful patterns, but the artist is in turn hindered by lim-
ited controllability of the result. Digital painting simulation has
emerged over the years as a solution to combine the virtues of
the physical and digital worlds. Physical simulation of the painting

media and techniques enables realistic reproduction of the physi-
cal creative processes, while automatic digitization of the painting
result endows the artist with editing and control operations sim-
ply not possible in a physical medium. Digital painting simulation
has been applied to diverse creative processes supporting highly
viscous media such as acrylic or oil paint [YJC∗13, CKIW15],
as well as highly dispersive media such as watercolor or east-
ern inks [CAS∗97, CT05, DKMI13]. Unfortunately, the simulation
methods proposed to date for the various forms of digital painting
fail to support the creative techniques of dendritic painting.
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Figure 2: Overview of our simulation model, with its three major layers, their components, and interactions. The solvent layer enables the
growth of the pattern. The darker the grey, the more solvent there is (black represents absence of solvent). The pattern layer arises from the
interplay between the base medium and the solvent (red represents the active depth ρa, the inner grey part the carved depth ρp, and the outer
grey part the catalyst density ρy). The ink layer models the advection of the ink pigment over the pattern.

In dendritic painting, the painting surface is covered first with
a base medium, typically white acrylic paint diluted with wa-
ter [Zam17]. During the creative process, the artist pours on the
base medium a mix of acrylic ink and a solvent, typically alcohol
or some acid. The complex multi-phase fluid dynamics between
solvent, ink and base medium produce rich and expressive high-
frequency branching effects on the ink as it flows and deposits. Sim-
ulating such complex branching phenomena in a physically based
way would require a multi-phase fluid simulation of very high res-
olution with complex boundary conditions, not suitable for interac-
tive digital painting.

Instead, in this paper, we propose a phenomenological simula-
tion model for dendritic painting that models the branching phe-
nomena explicitly using a pattern growth algorithm, and couples
the pattern growth to solvent and ink fluid dynamics. We split the
complexity of the full multi-phase phenomenon, while effectively
capturing the complexity and richness of the resulting paint pat-
terns. Our model is carefully designed for a painting context, where
behaviors should be intuitively linked with properties and amounts
of materials. As shown in Figure 1, our digital painting model is
able to mimic complex real-world effects.

Our work entails the following major contributions:

• We introduce a Reaction-Diffusion (RD) model for dendritic pat-

Figure 3: Examples of dendritic painting. Left: Colorful patterns
obtained with acrylic inks mixed with alcohol. Right: Similar re-
sults obtained with the mocha diffusion technique used in pottery.

terns for digital painting. Thanks to a multi-field representation
with carefully designed reaction and diffusion terms, our model
achieves rich and controllable organic branching. This is in con-
trast to previous methods for the simulation of dendritic patterns
in computer graphics, which have focused on more regular phe-
nomena [RHLH18].
• We design a two-way coupling procedure between the pattern

growth simulation and solvent and ink fluid dynamics, which ef-
fectively tackles the complex boundary conditions in the under-
lying multi-phase phenomenon.
• Overall, we provide the first simulation pipeline for dendritic

painting. We complement the pattern growth and fluid dynam-
ics simulations with pigment advection and various control and
editing operations, to empower the artist with a digital tool to
create rich and intricate artworks in a straightforward way.

Our digital dendritic painting system performs the simulation of
three different layers, depicted in Figure 2, which combine multiple
simulation methodologies. The first layer simulates the growth of
the pattern, with reaction-diffusion equations that govern the evolu-
tion of the catalyst material, as well as the active and carved pattern
depths. This layer is described in Section 3. The second layer simu-
lates the fluid dynamics of the solvent, using the Lattice-Boltzmann
method (LBM), and is described in Section 4. And the third layer
simulates the fluid dynamics and pigment mixing of the ink, using
again LBM. This layer is described in Section 5.

2. Related Work

Digital painting and dendritic patterns are two classical areas that
expand beyond the scope of this paper. In the following we discuss
the references closer to our work.

Interactive watercolor. Due to its highly dispersive nature, wa-
tercolor may be considered the closest technique to dendritic
painting. Previous watercolor simulations based on Navier-Stokes
[CAS∗97] [LVR05] and Lattice-Boltzmann [CT05] simulate the
interaction of water, pigment and paper fibers to obtain natural
flow effects and feathery patterns. However, dendritic patterns arise

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

598



J.A. Canabal, M.A. Otaduy, B. Kim & J. Echevarria / Simulation of Dendritic Painting

from the interaction between different fluids alone (inks, solvent,
medium), and previous models are not able to capture the multi-
phase interactions required for the sharp characteristic branching
patterns. On the contrary, we model explicitly the formation of den-
dritic patterns using a novel nonlinear reaction-diffusion model. Al-
ternative sparser watercolor simulations like the one proposed by
DiVerdi et al. [DKMI13] would require a completely new model
and extremely high resolution to achieve patterns like ours.

Digital oil painting. Less close to dendritic painting, but relevant
in computer graphics, are oil painting simulation techniques. Chen
et al. [CKIW15] propose a hybrid fluid simulation model combin-
ing FLIP for the paint near the brush, and an Eulerian representa-
tion in the other areas. Stuyck et al. [SDHD16], on the other hand,
propose an oil painting model for mobile devices based on the shal-
low water equations modified to suit this type of paint.

Dendritic pattern simulation. Dendritic patterns occur frequently
in nature and so different models have been proposed and adapted
for different phenomena. Kim et al. [KL03] proposed the Phase
Field model [Kob93] for ice crystal growth over a user-controllable
freezing map. Later on they proposed a more efficient hybrid
method [KHL04] combining Phase Field with Diffusion Limited
Aggregation (DLA) [WS83], with improved user control. More re-
cently, Ren et al. [RHLH18] extended such Phase Field formulation
to enable crystal growth following arbitrary orientation fields in 2D
and 3D. We experimented with phase fields to model our patterns,
but found that they tend to produce patterns that are too regular for
our use case. Our proposed reaction diffusion equations generate
more organic patterns instead.

Similar patterns can be obtained by a liquid slowly flowing be-
tween two parallel plates separated by a gap, forming so called vis-
cous fingers. Bogoyavlenskiy [Bog01] proposed modeling them us-
ing DLA. Alternatively, Segall et al. [SVBC16] identified the phe-
nomenon as a Hele-Shaw cell, and proposed an efficient solution to
its governing fluid equations based on the use of complex holomor-
phic barycentric coordinates. Unfortunately, the physical phenom-
ena behind dendritic painting and viscous fingers are different, and
the governing fluid dynamics equations do not match; therefore,
it is challenging to repurpose their models for interactive digital
painting. Viscous fingering has also been used to simulate miscible
mixing [SKK10], but their focus is on solids and liquids dissolving
or changing to other substances rather than dendritic patterns.

In the case of morphogenesis, growth of living organisms has
been simulated with Reaction-Diffusion equations [Tur52]. In com-
puter graphics, Turk [Tur91] and Witkin and Kass [WK91] demon-
strated plenty of varied patterns found in animals and nature. Wan
et al. [WLWL10] used RD to generate maze-like patterns from
images. Golding et al. [GKCBJ98] made an interesting analysis of
the mechanisms that allow growth of bacterial colonies using RD
models. Using the Fisher-Kolmogorov equation [NKGPSP37] for
biological growth, different authors have explored the dynamics of
bacterial colonies in order to replicate the organic shapes they pro-
duce. The basic idea under these models [Kit97, KMM∗97] is to
replicate the motility, reproduction and death of the bacteria by an
RD model of three different fields: living bacteria, nutrients and
dead bacteria. We have identified similarities in the morphology of
bacterial growth patterns and dendritic patterns, as well as paral-

Figure 4: Influence of nonlinear diffusion (2) on pattern branching.
From left to right, k = 1 (linear diffusion, which lacks branching),
k = 2 (our choice in the examples), and k = 2.3. Differences in size
come from the pattern growth speed (simulation time was 13, 40
and 55 seconds for these examples). Please refer to the supplemen-
tary video for an animated comparison.

lelisms between the parameters governing growth behavior. There-
fore, we have used the RD models of bacterial growth as base for-
mulation for our model, and we have adapted them to accommodate
the processes and boundary conditions present in dendritic paint-
ing. RD models were used long ago in computer graphics to pro-
duce digital painting effects [Lew84], but not with the morphology
of our patterns or coupled to fluid dynamics.

3. Dendritic Pattern Growth

As outlined in the introduction, we have designed an RD model
for the simulation of the growth of dendritic patterns. Instead of a
fully physics-based model, we devise a phenomenological model
that maps the main aspects of dendritic painting into controllable
components of the model. Our proposed RD model contains three
scalar fields, with diffusion and reaction functions that capture the
complex boundary conditions of the multi-phase fluid interaction,
and thus produce a pattern with organic branching. We start this
section with the high-level mathematical description of the model
following RD equations, and then itemize the reaction and diffu-
sion terms for the various spatiotemporal fields that represent the
pattern. We motivate the design of such terms in the context of pre-
vious literature on RD models for pattern growth, and we discuss
the modifications that induce the complex branching effects in den-
dritic painting. We conclude the section with details on discretiza-
tion and efficient handling of isotropic growth.

3.1. Reaction-Diffusion Model

In the pattern layer, we model the spatiotemporal evolution of three
scalar fields: the density of catalyst material (ρy), the active pat-
tern depth (ρa), and the carved pattern depth (ρp). As noted in our
discussion of related work, this model is inspired by works on the
numerical simulation of bacterial growth [GKCBJ98]. The catalyst
represents the amount of exposed base medium, which enables pat-
tern growth. As the pattern carves through the surface of the base
medium, the catalyst is consumed and the pattern stops growing.
The active pattern defines the growth of the pattern on its boundary,
and its evolution depends on the catalyst and the solvent. Finally,
the carved pattern defines the region where ink can flow. The active
pattern transforms into carved pattern, thus producing the effective
growth of the ink pattern.
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Figure 5: Effects of αa and αy on pattern branching and growth.
From left to right αa = 0.1,0.3,0.75. From top to bottom αy =
0.3,0.6,1.0. Differences in size come from the pattern growth speed
(simulation time was 50 seconds for these examples). Please refer
to the supplementary video for an animated comparison.

The evolution of each of the three scalar fields can be described
using a generic RD equation:

∂ρi

∂t
= Di +Ri, (1)

where Di represents a generic diffusion function, dependent on the
Laplacian of the scalar field, ∇2

ρi, and Ri represents a generic re-
action function. i ∈ {y,a, p} represents, respectively, the catalyst,
the active pattern, and the carved pattern. The diffusion and reac-
tion functions for the three scalar fields depend in complex ways
on each other, as well as the density of solvent, ρs, simulated in the
second layer. We achieve the complex branching effects in dendritic
painting partly thanks to the versatility produced by the interaction
of three scalar fields, and partly thanks to a careful choice of the
reaction and diffusion functions, which we describe next.

3.2. Active Pattern

Most of the complexity of our pattern growth model lies in the RD
functions of the active pattern. In addition to the catalyst and the
already carved pattern depth, the RD functions of the active pattern
depend on the density of solvent, ρs. In this way, the RD functions
capture the complex effects occurring at the boundary of the sol-
vent. We describe the simulation of the solvent layer later in Sec-
tion 4, but we anticipate that the solvent is also influenced by the
pattern to account for two-way coupling.

Kozlovsky et al. [KCGBJ99] required an RD model with four
coupled fields to achieve fine organic branching patterns. In their

Figure 6: Effects of βa and βy on pattern branching and growth.
From left to right βa = 0.75,1.0,1.5. From top to bottom βy =
0.75,1.0,1.5. The examples with βa = 0.75 took 10 times longer
than the examples with βa = 1.5 to reach the extent shown. Differ-
ences in size come from the pattern growth speed (simulation time
was 50 seconds for these examples). Please refer to the supplemen-
tary video for an animated comparison.

model, the subtle differences between two of the fields produce
the instabilities that lead to branching. Alternatively, Kawasaki et
al. [KMM∗97] found that these two fields can be merged into a
single field with nonlinear diffusion, which produces comparable
instabilities and branching, but with reduced computational com-
plexity. Our RD model is inspired by the one of Kawasaki et al.,
but we modify the various reaction and diffusion terms to account
for the coupling with the solvent’s fluid dynamics, and to support
other boundary conditions. Following Kawasaki et al., we propose
a nonlinear diffusion function for the active pattern. In our case, it
takes the form

Da = H (ρs−δ) ξαa∇2
ρ

k
a. (2)

where the degree of nonlinearity k enhances instability at the front
of the pattern, leading to the branching effect. We use k = 2 in all
our examples, since we found it produces patterns closer to the real
ones in our experiments. Figure 4 evaluates its influence.

The diffusion coefficient αa affects strongly the thickness and
sharpness of pattern branches, with smaller values leading to thin-
ner and sharper branches (Figure 5). H(·) is a Heaviside function
that models solvent boundary effects. Diffusion takes place only
when the solvent density is above a threshold δ (0.1 in our exam-
ples). Finally, ξ is a noise function that provides random isotropic
growth and guides the creation of sub-branches, and is discussed in
more detail in Section 3.4.
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Figure 7: Exploring the effect of the diffusion noise function. From
left to right: (i) ξ0 = 0.01; (ii) ξ0 = 0.2; (iii) ξ0 = 0.8. Please refer
to the supplementary video for an animated comparison.

.

We propose a reaction function for the active pattern of the form

Ra = βa ρs ρy ρa (1−ρa)−βp ρa. (3)

This function combines two effects: i) A pattern depth increase re-
sulting from the combination of catalyst and solvent, with coeffi-
cient βa. This effect grows progressively as the active depth grows,
and then vanishes as the active depth saturates. ii) A transformation
of active depth into carved pattern depth, modulated by a coefficient
βp. We use a constant value of βp = 0.15 in all our examples. βa,
on the other hand, affects strongly the speed at which the pattern
grows (Figure 6).

3.3. Carved Pattern and Catalyst

The carved pattern evolves due only to the transformation of active
depth, as already accounted for in (3), with no diffusion. The RD
functions of the carved pattern amount then to

Dp = 0, Rp = βp ρa. (4)

As mentioned above, the catalyst represents the local amount of
base medium that is exposed to pattern growth. Then, the catalyst
is initialized to a maximum value at places with base medium, and
its density is reduced as the pattern depth grows. In particular, we
model the evolution of the catalyst using a linear diffusion function
and a reaction function that is bilinear w.r.t. the catalyst density and
the active pattern depth.

Dy = αy∇2
ρy, Ry =−βy ρa ρy, (5)

where αy and βy are, respectively, diffusion and reaction coeffi-
cients. Larger values of αy produce thicker, less detailed branches
(Figure 5), while smaller values of βy also produce thicker
branches, but preserve most of the detail (Figure 6).

3.4. Discretization and Random Isotropic Growth

Dendritic paint patterns grow following random isotropic branches.
However, a standard discretization of our RD model on a regu-
lar grid suffers anisotropy artifacts, with preferential growth along
the axes of the grid. Moukarzel [Mou92] proposed a discretization
based on random lattices to model the growth of isotropic patterns,
and thus avoided the artifacts of regular grids. Nevertheless, regular
grids are beneficial for efficient massively parallel implementation.

Figure 8: Left: Random isotropic growth of the pattern, thanks to
our diffusion noise function (6) and a 9-point Laplacian stencil.
Middle: With noise function but a 5-point Laplacian stencil. Right:
With the 9-point Laplacian stencil but no diffusion noise (ξ = 1).
Please refer to the supplementary video for an animated compari-
son.

We achieve random isotropic growth while retaining a regular-
grid discretization, thanks to the inclusion of the noise function
ξ in the diffusion of the active pattern (2). Specifically, the noise
function is defined as

ξ = 1+ξ0 rand(x), (6)

where rand(x) is a function that generates a random number in the
interval [−1,1]. The noise amplitude ξ0 affects the probability of
growing sub-branches, as shown in Figure 7.

The solution to the RD equations requires the discretization of
the Laplacian. To this end, we use a 9-point stencil based on the
weights of the D2Q9 discretization used in Lattice Boltzmann sim-
ulations. This discretization method avoids grid artifacts of the
standard 5-point Laplacian [TAAS13]. Figure 8 demonstrates the
combined effect of the diffusion noise function (6) and the D2Q9
discretization of the Laplacian.

4. Solvent Simulation

The complex interaction of solvent, ink, and base medium occur-
ring at the interface of the solvent is handled through the pattern
layer described in the previous section. Then, we model the solvent
as a 2D fluid, with the pattern defining its effective simulation do-
main. We have adopted the Lattice Boltzmann method (LBM) to
compute the fluid dynamics of the solvent, inspired partly by the
successful application of LBM to the 2D simulation of ink disper-
sion [CT05,EWK∗13]. SPH or MPM are alternative choices for the
simulation of the solvent, but we did not explore them due to the
success with LBM. No matter the method of choice, the complexity
lies in the design of the boundary conditions.

We begin this section with a summary of LBM and our choice
of discretization. Then, we describe the boundary conditions that
account for the boundary of the pattern, and we conclude with the
interaction between solvent and ink in the interior of the pattern.

4.1. Lattice-Boltzmann Model

LBM has been studied thoroughly in computer graphics. It enjoys
important features that enable an efficient massively parallel im-
plementation, and hence interactive digital painting at high reso-
lutions: it handles incompressibility through efficient local opera-
tions (albeit at the price of memory, which is however a minor issue
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in 2D), and it can resolve the boundary conditions of free-surface
fluids with a single-phase simulation [Thü03]. Recent advances in-
clude efficient simulations on adaptive grids [TR09], or two-phase
methods for highly detailed effects [GLX17].

LBM solves fluid dynamics by modeling particle operations on
a lattice. It stores distribution functions of particles according to
lattice-aligned velocities, and performs streaming and collision op-
erations on these distribution functions to model, respectively, ad-
vection and incompressibility. The density and velocity of the fluid
can be recovered at any time from the particle distributions.

Our LBM model of the solvent follows overall the formulation
designed by Chu and Tai [CT05] for watercolor. However, it should
be possible to use more modern LBM models, such as multiple-
relaxation-time [LL00]. Our model adopts the D2Q9 lattice dis-
cretization, which is characterized by 8 vectors ei (i ∈ {1 . . .8})
connecting a lattice point to its 8 neighbors, and 9 particle dis-
tribution functions fi (i ∈ {0 . . .8}). f0 represents the distribution
function of particles at rest, while fi (i ∈ {1 . . .8}) represent the
distribution functions of velocities along ei.

The solvent density ρs and velocity u can be reconstructed from
the distribution functions as

ρs =
8

∑
i=0

fi, u =
1
ρs

8

∑
i=1

fi ei. (7)

The streaming step computes tentative distribution functions due
to advection:

f ′i (x, t +∆t) = fi(x− ei, t). (8)

In practice, the streaming step amounts to copying the values of
the distribution functions to adjacent lattice points along the vector
directions. Note that f0 is not streamed.

The collision step requires the definition of equilibrium distribu-
tion functions:

f̃i = wi

(
ρs +ψρ̄s

[
3
c2 eT

i u+
9

2c4

(
eT

i u
)2
− 3

2c2 uT u
])

. (9)

c = ∆x
∆t , and in our examples we set ∆x = ∆t = c = 1 for simplicity.

ρ̄s is the average solvent density, which is set to 1 in our examples.
wi are constant weights, with w0 = 4/9, wi = 1/9 for directions
aligned with lattice axes, and wi = 1/36 for diagonal directions.
ψ is a coefficient borrowed from the work of Chu and Tai [CT05]
to account for boundary conditions in the advection step, and is
described in detail in the next subsection.

The collision step interpolates between the tentative and equilib-
rium distribution functions from (8) and (9):

fi(x, t +∆t) = (1−ω) f ′i (x, t +∆t)+ω f̃i, (10)

with ω a relaxation parameter, in the interval 0≤ω≤ 2 for stability
(ω = 0.5 in our examples).

4.2. Boundary Conditions

As noted earlier, the active pattern defines the boundary of the sim-
ulation domain for the solvent, which effectively translates into
the simulation of the solvent as a free-surface fluid. Fortunately,

as demonstrated by Chu and Tai [CT05], this is possible using a
single-phase simulation, through small modifications to the regu-
lar LBM equations. We adapt their solution to our case, where the
solvent domain is bounded by the active pattern.

We perform two modifications over the regular LBM equations.
First, the computation of equilibrium distribution functions (9) with
ψ = 1 could cause negative solvent density values at the boundary.
Instead, we modulate the advection with the function ψ to ensure it
acts only when the solvent density is large enough (i.e., sufficiently
away from the boundary). In practice, we define ψ as a smooth
step from 0 to 1 in the density range ρs ∈ [0,µ]. We implement the
smooth step using Hermite interpolation, and we set the threshold
density µ = 0.5 in all our experiments.

The second modification to the regular LBM equations accounts
for the extent of the pattern to define boundary conditions on
the streaming step. Specifically, we apply a half-way-bounce-back
scheme [SY02] at the pattern boundaries. To identify the pattern
boundaries, we compute a blocking factor κ = ρy/ρ̄y, where ρ̄y is
the initial catalyst density. Lattice points with κ > 0 indicate that
the catalyst has not been fully consumed, hence they are treated as
part of the pattern boundary. Given a boundary point, we compute
a directional blocking factor κi for each direction ei by averaging
the blocking factor with the adjacent lattice point. Based on this
directional blocking factor, we redefine the streaming step (8) as

f ′i (x, t +∆t) = (1−κi) fi(x− ei, t)+κi f j(x, t), (11)

where f j is the distribution function in the direction opposite to ei.
If no catalyst is consumed yet (i.e., κi = 1), the distribution function
is bounced, and the solvent is effectively stopped at the boundary.

4.3. Coupling of Solvent and Ink

In the boundary of the pattern, the interaction between the various
fluid phases is handled by our RD pattern simulation. In the interior
of the pattern, however, the solvent and the ink mix in a smooth
way. We solve this mixing by introducing viscous forces between
the solvent and ink layers.

After streaming (11), and before computing the equilibrium dis-
tribution functions (9), we apply viscous forces to the solvent ve-
locities. Given ink velocity uk and a viscosity factor γ (0.1 in our
examples), we recompute the solvent velocity as:

u⇐ κu+(1−κ) (γuk +(1− γ)u) . (12)

Recall that the blocking factor κ identifies pattern boundaries,
hence viscosity is not applied at boundaries.

5. Ink Simulation

In this section we describe the last layer of our dendritic painting
simulation, the ink. We account for three major phenomena: the dy-
namics of the ink flowing over the pattern, the mixing of pigments
as they flow, and evaporation leading to dry ink.

5.1. Ink Fluid Dynamics

In our real-world experiments, we have observed that the solvent
adopts a coarser pattern at its interface with the base medium, while
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Figure 9: Left: Pattern rendered based on a solid color modulated
by ρp. Right: Colorful pattern rendered through the proposed ink
advection scheme.

the ink fits a finer and richer pattern within the domain occupied by
the solvent. We model this effect by letting the solvent carve the
pattern, regardless of the presence of ink or not, and then simu-
lating the ink as a fluid that flows over the pattern. As described
in Sections 3 and 4, we simulate the pattern and solvent layers in
a coupled manner, with the catalyst density defining the boundary
conditions for the solvent. To define the boundary conditions for
the ink, we use instead the active and carved pattern depths.

Following the same approach as for the solvent, we simulate the
ink using LBM. The algorithmic details are analogous, with the
only exception of the computation of blocking factors. For the ink,
we define the blocking factor κ as

κ = max(1− (ρa +ρp) ,0) , (13)

such that κ > 0 indicates lattice points where the pattern has not
reached a minimum depth, hence they are treated as part of the
pattern boundary.

In Section 4.3 we have described viscous forces that couple the
solvent and the ink in the interior of the pattern. In the ink simu-
lation, we apply the same forces to the ink, with opposite sign, to
account for action-reaction.

5.2. Pigment Mixing

We model the pigment, i.e., the color, as a passive medium advected
by the ink fluid. Specifically, we represent the pigment field us-
ing a 3D vector field p, corresponding to the CMY color space.
We advect the pigment field using a semi-Lagrangian advection
scheme [Sta99]:

p(x, t +∆t) = p(x−∆t uk, t), (14)

where uk is the ink velocity. In practice, the semi-Lagrangian ad-
vection scheme may attempt to fetch color values from lattice
points beyond the pattern’s boundary. In such cases, we simply can-
cel the color update (14).

This approach also supports the advection of parameters for
more accurate color mixing models like Kubelka-Munk [HM92],
but a simple CMY interpolation was enough to produce colorful
patterns in our case (Figure 9).

Figure 10: The user can combine the dendritic patterns with tra-
ditional drawings. This demo runs at 44fps with a grid size of
1500x1500.

5.3. Evaporation and Dry Ink

During a painting session, ink gets dry over time, and it stops
flowing along the pattern. To model this effect, we add a secondary
pigment field pd , which represents dry pigment. On every simu-
lation step, we convert wet pigment into dry pigment following a
linear relationship with drying coefficient βd :

∂p
∂t

=−βd p, ∂pd
∂t

= βd p. (15)

The drying coefficient can be set at will by the artist to stop or
accelerate evaporation.

In the real world, the addition of solvent softens previously dried
ink. We model this effect by converting dry pigment into wet pig-
ment.

6. Results

6.1. Implementation Details

The described methods were implemented in C++ and OpenGL 4.5
and videos were recorded running on a Nvidia GTX 970. All the
simulation pipeline runs on GPU using Compute Shaders, making
the code suitable for a large range of hardware. We use a regular
grid with the same resolution for all the layers of our system.

To store the data we use OpenGL textures. We use one RGB tex-
ture for the reaction-diffusion model, storing the scalar fields on
each of its components. For the solvent we need four RGBA tex-
tures. Three of them for the nine distribution functions, density and
velocity fields. The blocking factor and mask are stored in a the
fourth one. The ink layer uses the same number of textures for the
Lattice Boltzmann Method, but in this case, two additional RGBA
textures are needed to store the color information, one for the flow-
ing ink and another one for the pigment that has been fixed.
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Figure 11: Our model can also be guided by arbitrary vector fields.
In this example we used a sinusoidal field (as shown on the inset).
The supplementary video contains the whole animation.

We used the following parameter values in our examples. Pat-
tern: k = 2; αa ∈ [0.1,0.4]; αy ∈ [0.3,0.8]; βa = 3.0; βy = 2.0;
ξ0 = 0.8. Solvent: ω = 0.5; µ = 0.5; γ = 0.1. Ink: βd = 0.01. In
the example in Figure 1, the parameters vary smoothly across the
domain according to a Perlin noise function.

6.2. Performance

Dendritic patterns can grow at different speeds depending on the
mixtures used for the catalyst and inks. As seen in Section 3 and
the supplementary videos, the same happens in our simulation de-
pending on the choice of parameters. Independent from the param-
eters, our simulation runs at a frame rate that depends only on the
grid size. In a similar way as other fluid simulations, changing the
resolution affects the simulation results. The size and performance
of the various examples is: teaser (Figure 1), 2000×2000 at 12 fps;
butterfly (Figure 12) and girl (Figure 10), 1500×1500 at 44 fps; all
other demos, 720×720 at 120 fps.

For typical parameters and the 720× 720 grid, interactions can
happen at a speed comparable to the real phenomena. We use an
explicit integration scheme for all the examples, and this causes
small time steps specifically in the reaction diffusion model. The
size of the time step does not affect the results of our simulations, as
long as the time step if small enough to satisfy stability. Due to the
time-step limitation, we perform 8 steps per frame for the reaction-
diffusion part, which affects performance significantly. The sup-
plementary videos have been sped up by the corresponding factor
indicated on them.

Average timing distribution for the simulations on the 720×720
grid is: 0.12 ms for the solvent simulation; 7.3 ms for the pattern
simulation in total; and 3.3 ms for the ink model. Due to sub-
stepping, the reaction-diffusion part is the bottleneck in our im-
plementation. It might be possible to extend the method to adaptive
grids [TR09], and thus increase performance. Moreover, in our im-
plementation the reaction-diffusion model is computed on all cells,
and it should be possible to restrict it to active cells.

Figure 12: The user can provide a binary mask, and we add this
mask as an obstacle to the simulation, confining the growth of the
pattern without unnatural stopping of the branches. This demo runs
at 44fps with a grid size of 1500x1500. Please see the supplemen-
tary video for the full animation.

6.3. Artist Control

Due to its nature, dendritic painting is hard to control. We provide
different tools that allow the user to have more control over the final
result of the painting.

6.3.1. Guidance Field

Apart from the radial patterns from the real world, our model
supports being guided by arbitrary velocity fields, opening the path
for custom behaviors that can be useful for motion graphics or more
custom patterns. The user can thus provide a guidance field v cre-
ated procedurally or extracted from an image (Figure 11).

To enforce the guidance field, we modify the RD model (1) of
the active pattern depth to add another reaction term R′a to (3).

R′a = βv ρa vT∇ρa. (16)

This reaction is stronger when the gradient of the active pattern
depth is aligned with the guidance field v, inducing faster growth.
βv controls the global scale of the guidance (1.9 in the example).

6.3.2. Boundary Shapes

It is also interesting to constrain the growth of the patterns within
a specific region of the canvas. Figure 12 shows an example where
growth has been constrained to the inside of a logo. To achieve the
effect with the branches progressively stopping without artifacts,
we introduce obstacles as Neumann boundary conditions [Bri08]
in the simulation of the active pattern and the catalyst. The den-
sity fields ρi, i ∈ {a,y} satisfy nT ∇ρi = 0, where n is the normal
direction of the obstacle.

6.3.3. Other Painting Results

We have also experimented with the features of our painting sys-
tem to produce effects possible in the real world, but difficult to

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

604



J.A. Canabal, M.A. Otaduy, B. Kim & J. Echevarria / Simulation of Dendritic Painting

Figure 13: Frames from another example of a painting session with our system (animated in the supplementary video).

control. Figure 14 shows an example where the artist pours catalyst
medium on a grown pattern, to produce an inward growing effect
on the ink pattern. We show that our method produces results that
match qualitatively those in the real world. Currently, the initial
drop has a strong effect in our simulation due to our choice for the
initialization of the various layers when the drop is added. We use
a hard-edge circle as an input shape, but this input shape could be
blurred, and hence make the initial drop less dominant.

Figure 13 shows the evolution of a painting session, where the
artist merges and superimposes patterns of different colors. Notice
how new pigments flow along previously carved patterns. Figure 1
shows the final result of another painting session.

7. Conclusions

We have presented the first system for the simulation of dendritic
painting. For doing that, we leveraged the vast amount of previous
work on these fascinating patterns, extending and adapting it to an
interactive painting context. Our methods expands the current tools
for the digital painter, while producing mesmerizing procedural an-
imations that can be used in motion graphics.

In this work we focused on the core experience of this pecu-
liar type of painting. However, additional interesting effects are yet
to be explored. We set the parameters for our phenomenological
model empirically to match the features of recurrent observed be-
haviors. Due to the inherent simplification, it is possible that our
model may miss to reproduce some complex behaviors. Further re-
search on the interaction of the ink and the solvent would allow
to simulate some violent reactions we have seen in our real experi-
ments that lead to more intricate behaviors of the ink inside the pat-
terns. Concerning neighboring patterns, we choose boundary con-
ditions that prevent the patterns from touching, as evidenced in real
painting videos†. In some cases neighboring patterns may merge.
However, this effect is present under larger ink amounts, where the
flow of ink dominates the behavior. We can alter the blocking factor
of the ink boundary conditions when the flow of ink is large.

Also, given the liquid state of the catalyst medium, additional
interactions can be enabled my manipulating the whole simulation
domain using arbitrary velocity fields, or interactive fluid simula-
tions, as done in digital marbling simulations.

† https://youtu.be/hZy4kGqoJq8?t=453

In the same spirit of some previous work, future research may
include simulation over 3D manifolds for 3D object ornamenta-
tion. The extension of our model to generate 3D patterns is also an
interesting line of research, enabling never-seen-before volumetric
dendritic painting for immersive media.

Beyond the specific application of dendritic painting, our work
shows how to approximate a complex multi-phase fluid problem
through a phenomenological model that couples pattern growth and
a simpler fluid simulation. We believe this could be inspiring for the
simulation of other dendritic growth phenomena or other complex
painting techniques. One example is acrylic pour painting, where
cell shaped structures emerge by mixing acrylic paint with silicone,
and whose growth is affected by temperature.
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