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Abstract
Automatic synthesis of realistic gestures promises to transform the fields of animation, avatars and communicative agents. In
off-line applications, novel tools can alter the role of an animator to that of a director, who provides only high-level input
for the desired animation; a learned network then translates these instructions into an appropriate sequence of body poses.
In interactive scenarios, systems for generating natural animations on the fly are key to achieving believable and relatable
characters. In this paper we address some of the core issues towards these ends. By adapting a deep learning-based motion
synthesis method called MoGlow, we propose a new generative model for generating state-of-the-art realistic speech-driven
gesticulation. Owing to the probabilistic nature of the approach, our model can produce a battery of different, yet plausible,
gestures given the same input speech signal. Just like humans, this gives a rich natural variation of motion. We additionally
demonstrate the ability to exert directorial control over the output style, such as gesture level, speed, symmetry and spacial
extent. Such control can be leveraged to convey a desired character personality or mood. We achieve all this without any manual
annotation of the data. User studies evaluating upper-body gesticulation confirm that the generated motions are natural and
well match the input speech. Our method scores above all prior systems and baselines on these measures, and comes close to
the ratings of the original recorded motions. We furthermore find that we can accurately control gesticulation styles without
unnecessarily compromising perceived naturalness. Finally, we also demonstrate an application of the same method to full-body
gesticulation, including the synthesis of stepping motion and stance.

CCS Concepts
• Computing methodologies → Motion capture; Animation; Neural networks;

Keywords: Gestures, Motion capture, Data-driven animation,
Character control, Probabilistic models

1. Introduction

The ability to automatically synthesise gestures is a key endeav-
our to provide compelling and relatable characters for many appli-
cations including animation, crowd simulation, virtual agents and
social robots. This has however proved to be a particularly difficult
problem. A major challenge is the lack of coherence in gesture pro-
duction – the same speech utterance is usually accompanied by dif-
ferent gestures from speaker to speaker and time to time. Previous
rule-based or deterministic methods fail to model this massive vari-
ation. Data-driven regression techniques minimising a mean square
error instead lead to “average” gestures that are unlikely to be seen
in real life. In order to model realistic motion, we need to move
from deterministic to generative models that are capable of mod-
elling the full space of plausible motion.

In this paper, we present a probabilistic generative model for
speech-driven gesture synthesis that builds upon recent work
on normalising flows with autoregression, especially MoGlow

[HAB19]. The model can be trained on large sets of unstructured
motion data without any need for manual labelling. Instead of di-
rectly regressing motion from speech, we train our system to model
the conditional probability distribution of the motion given speech
as input. Novel gestures can be sampled repeatedly from the prob-
ability distribution, yielding different but plausible gestures every
time. This is not only consistent with human behaviour, but also
provides great benefits for applications in virtual agents and ani-
mation. For virtual agents, the non-deterministic nature gives a rich
set of gestures making the interaction more varied. For off-line ap-
plications, animators can effortlessly generate several gesture ex-
amples and then pick the one that best suits their scenario.

For any motion synthesis it is desirable to control or modify the
style of the output motion. In gesture synthesis, use cases include
artistic control over gesturing style to match a desired personality
or mood, or automatic control over, e.g., gesture- or gaze direction.
Research has found that motion statistics like average gesture ve-
locity, spacial extent and height are correlated with the perception
of personality traits [SN17, CN19, KG10]. Such statistics are eas-
ily extracted from unstructured motion data in data-driven scenar-
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ios. In this paper, we show that our probabilistic model is ideally
suited for this kind of style control. As a demonstration, we au-
tomatically extract control parameters for average gesture speed,
height, spacial extent and lateral symmetry, and then generate out-
put gestures conditioned on this control. Evaluations show that the
synthetic gestures obey the style control without unnecessarily sac-
rificing naturalness. Finally, we show that our method not only is
capable of generating upper body gestures, but also generalises to
the full body, including stance shifts, stepping and giving full-body
emphasis to prominent words. For this scenario, we additionally
demonstrate control over character location and direction.

Our proposed method has the benefits of requiring no manual la-
belling, being non-deterministic (yielding unlimited gesture varia-
tion), and being able to output full-body gestures. The contributions
of our paper include 1) adapting MoGlow to speech-driven gesture
synthesis, 2) adding a framework for high-level control over gestur-
ing style, and 3) evaluating the use of these methods for probabilis-
tic gesture synthesis. Videos can be found in the supplement as well
as with the code at github.com/simonalexanderson/StyleGestures.

2. Related work

Gestures are essential to human non-verbal communication.
McNeill [McN92] categorises co-speech gestures into iconics,
metaphorics, beats, deictics and emblems. Out of these categories,
we focus on beat gestures, since our model only takes acoustic fea-
tures as input, while appropriately triggering gestures in the other
categories requires a higher degree of speech understanding.

Synthesis of body motion and, in particular, gestures has recently
shifted from rule-based systems – comprehensively reviewed in
[WMK14] – towards data-driven approaches. Below, we discuss
only data-driven methods, since we continue this line of research.

2.1. Data-driven human body-motion generation

Several recent works have used neural networks to generate body-
motion aspects such as locomotion [HHS∗17, HKS17, HAB19],
lip movements [SSKS17] and head motion [GLM17, SB18]. A
challenge in these domains is the large variation in the output
given the same control. Different approaches have been employed
to overcome this issue. For locomotion synthesis, studies have
leveraged constraints from foot contacts to simplify the problem
[HSK16, HKS17, HHS∗17]. Unfortunately, this is not applicable
to speech-driven gestures. Closer to our domain is speech-driven
head-motion synthesis, where Greenwood et al. [GLM17] apply
a conditional variational autoencoder (CVAE) while Sadoughi &
Busso [SB18] use conditional generative adversarial networks, but
these methods have not been evaluated for gesture synthesis.

2.2. Deterministic and probabilistic gesture generation

Like body motion in general, data-driven methods are on the rise
in gesture generation. Levine et al. [LKTK10] used an intermedi-
ate state between speech and gestures and a hidden Markov model
to learn the mapping. They selected motions from a fixed library,
which limits the range of gestures their approach can generate. Our
model, in contrast, is capable of generating unseen gestures.

Recently, Hasegawa et al. [HKS∗18] designed a speech-driven
neural network capable of producing 3D motion sequences.
Kucherenko et al. [KHH∗19] extended this work to incorporate rep-
resentation learning for the motion, achieving smoother gestures
as a result. Yoon et al. [YKJ∗19] meanwhile used neural-network
sequence-to-sequence models on TED-talk data to map text tran-
scriptions to 2D gestures. Some recent works used adversarial loss
terms in their training to avoid mean-collapse, while still remaining
deterministic [FNM19,GBK∗19]. In another recent work, Ahuja et
al. [AMMS19] conditioned pose prediction not only on the audio
of the agent, but also on the audio and pose of the interlocutor.
All these methods produce the same gesticulation every time for
a given input, while our method is probabilistic and can produce
different gestures for the same input through random sampling.

Several researchers have applied probabilistic methods to ges-
ture generation. For example, Bergmann & Kopp [BK09] applied
a Bayesian decision network to learn a model for generating iconic
gestures. Their approach is a hybrid between data-driven and rule-
based methods because they have rules, but they learn them from
data. Chiu & Marsella [CM11] took a regression approach: a net-
work based on restricted Boltzmann machines (RBMs) was used
to learn representations of arm gesture motion, and these repre-
sentations were subsequently predicted based on prosodic speech-
feature inputs by another network also based on RBMs. Later, Chiu
et al. [CMM15] proposed a method to predict co-verbal gestures
using a machine learning model which is a combination of a feed-
forward neural networks and Conditional Random Fields (CRFs).
They limited themselves to a set of 12 discrete, pre-defined ges-
tures. Sadoughi & Busso [SB19] used a probabilistic graphical
model for mapping speech to gestures, but only experimented on
three hand gestures and two head motions. We believe that methods
that learn and predict arbitrary movements, like the one proposed
herein, represent a more flexible and scalable approach than the use
of discrete and pre-defined gestures.

2.3. Style control

Control over animated motion can be exerted at different levels of
abstraction. while animators and actors have explicit control over
motion, it is often of interest to control higher-level properties that
relate to how they are perceived. The relation between low-level
motion and these properties has been extensively studied. Studies
have uncovered a significant correlations between statistical prop-
erties of the motion (such as gesticulation height, velocity and spa-
tial extent) and the perception of personality along the Big Five per-
sonality traits [Lip98,KG10,SN17] and emotion [NLK∗13,CN19].
In particular, Smith & Neff [SN17] modify statistical properties of
existing gestures and demonstrate that these modifications create
distinctly perceived personalities. Normoyle et al. [NLK∗13] used
motion editing to identify links between motion statistics and the
emotions and emotion intensities recognised by human observers.

Another line of research considers how to use machine learn-
ing to modify motion expression, based not on emotional cate-
gories or low-level statistics but on transferring stylistic properties
from other recordings onto the target motion [HPP05, XWCH15,
HHKK17, SCNW19]. This is known as style transfer. Style can
also be controlled in some underlying parameter space. Aristidou et
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al. [AZS∗17] present a system to modify emotional expression (va-
lence and arousal) of a given dance motion, while Brand & Hertz-
mann [BH00] jointly synthesise both style and choreography with-
out motion as an explicit input. In our work, we similarly pursue
the synthesis of novel motion with continuous and instantaneous
control of expression. Our approach is agnostic to the level of ab-
straction of the desired control space and we refer to this broadly
as style control although our experiments are limited to controlling
mid-level statistical correlates of the motion.

2.4. Probabilistic generative sequence models

This sub-section reviews probabilistic models of complex sequence
data, especially multimedia, to connect our method of choice –
MoGlow [HAB19] – to related methodologies and applied work.

Early works on probabilistic human locomotion modelling in-
vestigated Gaussian process dynamical models [WFH08], along
with their predecessors GP-LVMs [GMHP04, LWH∗12], as ap-
proaches that combined autoregressive aspects with a continuous-
valued hidden state. In this work, we will model pose sequences us-
ing a similarly autoregressive approach that incorporates recurrent
neural networks (RNNs) for the hidden state. Unlike approaches
like [GH00], where dynamics are linear if the hidden state is fixed,
we use so-called “deep autoregression” [WTY18], which has pro-
duced impressive results in diverse problems such as generating
intonation [WTY18], locomotion [HAB19] and video [KBE∗20].

To escape inflexible distributional assumptions, variational au-
toencoders (VAEs) [RMW14, KW14] can generate samples from
more complex distributions by incorporating an unobservable (la-
tent) variable. Lately, generative adversarial networks (GANs)
[GPAM∗14, Goo16] – another deep-learning method using a la-
tent variable – have been the state-of-the-art in, e.g., natural image
generation [BDS19]. Especially notable for this paper are applica-
tions of GANs to synthesising speech-driven head motion [SB18]
and video of talking faces [VPP19,PAM∗18,PWP18]. While GANs
have been found to be capable of producing highly convincing ran-
dom samples, they are notoriously difficult to train [LKM∗18].

In this work, we will use normalising flows [KD18,PNR∗19] for
speech-driven gesture generation. Flows have gained interest since
they have the same advantage as GANs of generating output by
non-linearly transforming a latent noise variable, but by using a re-
versible neural network to do this it becomes possible to compute
and maximise the likelihood of the training data, just like in classi-
cal probabilistic models like GMMs. Recent work has shown that
normalising flows successfully can generate complex data such as
natural images [KD18, CBDJ19], audio waveforms [PVC19] and
motion data [HAB19] with impressive quality. This paper builds
on the latter work by adapting it to gesture generation.

3. Method

This section introduces normalising flows and how they can be used
to model speech-driven gesticulation. We will use underline to sig-
nify sequences, bold type for vectors, and non-bold type for scalars,
including vector elements. Random variables and limits of summa-
tion are written in upper case, with lower case denoting specific
distribution outcomes or indexing operations.

3.1. Normalising flows and Glow

The idea of the motion models in this paper is to learn the multidi-
mensional next-step distribution of poses XXX in a stationary autore-
gressive model of pose sequences xxx = [xxx1, . . . , xxxT ] using normalis-
ing flows [PNR∗19]. The latter are a general technique for repre-
senting a large variety of continuous-valued distributions p(xxx) in a
manner that allows both efficient inference (probability computa-
tion) and efficient sampling from the distribution. The idea is to de-
scribe a complicated distribution XXX on RD as an invertible nonlinear
transformation fff : RD → RD of a simple latent input distribution
ZZZ, here a standard normal distribution ZZZ ∼N (000; III), a setup that re-
sembles the generator structure used in many contemporary GANs.
Normalising flows then construct the transformation fff by chain-
ing together a number of simpler invertible sub-transformations
fff n : RD → RD, colloquially called “flows”, such that the overall
transformation and its intermediate results can be written

xxx = fff (zzz) = fff 1 ( fff 2 (. . . fff N (zzz))) (1)

zzzn (xxx) = fff−1
n

(
. . . fff−1

1 (xxx)
)

, (2)

where zzz0 (xxx) = xxx and zzzN (xxx) = zzz. The probability of any given dat-
apoint xxx under the full distribution XXX = fff (ZZZ) can then be using
the chain rule, and depends on the prior probability pZZZ

(
fff−1 (xxx)

)
and the log-determinants of the Jacobian matrices ∂zzzn/∂zzzn−1 of the
sub-transformations fff−1

n at zzzn (xxx). One can use this straightforward
computation to tune the transformations fff n to maximise the exact
log-likelihood of the training data using gradient-based methods.

The central design challenge of normalising flows is to devise
a parametric family of fff n-transformations that are flexible yet in-
vertible, differentiable and has fast-to-compute Jacobian determi-
nants. Recently, Kingma & Dhariwal [KD18] introduced a particu-
lar choice of fff−1

n called Glow, and demonstrated impressive results
for synthesising facial images. Each flow in Glow consists of three
sub-steps, of which two are learned affine transformations while
the third step, called an affine coupling, is a an invertible nonlinear
transformation whose parameters are determined by a neural net-
work. Each sub-step has a Jacobian log determinant that is a simple
sum of D terms that readily arise during the computations.

3.2. MoGlow for gesture generation

MoGlow [HAB19] extends Glow to the problem of modelling and
generating motion, by using Glow to describe the next-step dis-
tribution in an autoregressive model. It also adds control over the
output and uses recurrent neural networks for long-term memory
across time. To make the Glow transformations conditional on
other information, such as the previous poses xxxt−τ:t−1 and a cur-
rent control signal ccct , MoGlow simply feeds this additional condi-
tioning information into all neural networks in the system (i.e., the
affine coupling layers), similar to [PVC19]. The resulting autore-
gressive sequence-to-sequence model can be written

pXXX |CCC (xxx |ccc) = pXXX1:τ (xxx1:τ)

·
T

∏
t=τ+1

pXXX t |XXX t−τ:t−1,CCCt
(xxxt |xxxt−τ:t−1, ccct , hhht) (3)

hhht+1 = ggg(xxxt−τ:t−1, ccct , hhht) . (4)
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Figure 1: Autoregressive speech-driven gesture generation.
The yellow box is the MoGlow-based next-step distribution
pXXX t |XXX t−τ:t−1,CCCt

. Inputs to the synthesis are coloured green while
outputs (the next pose and the unobserved LSTM state) are blue.

We assume stationarity, meaning that pXXX t |XXX t−τ:t−1 CCCt
and ggg do not

depend on t. Eq. 4 represents the (hidden) LSTM-state evolution.
In this work, we will use a sequence of neutral (mean) poses for the
initial motion xxx1:τ, although many other choices are possible.

For speech-driven gesture generation, the control information ccct
will be a sub-sequence excerpted from an acoustic feature sequence
aaa = [aaa1, . . . , aaaT ] time-aligned with xxx. [HAB19] found it neces-
sary to apply data dropout to the poses in the autoregressive inputs
xxxt−τ:t−1 to the next-step distribution, as models learned without
such dropout were found not to respect the other control inputs ccct .

While the original MoGlow focussed on locomotion control with
zero algorithmic latency, this is not a good match for speech-driven
gesture generation. Human gestures that co-occur with speech are
segmented into preparation, stroke, and a retraction phase. In or-
der to synchronise gestures with speech (e.g., perform beat-gestures
concurrently with prosodic emphasis in the acoustic features), the
gestures must be prepared in advance. For this reason, we let the
control inputs ccct at time instance t contain not only the current
speech features aaat , but also a window of surrounding speech fea-
tures aaat−τ:t+r, where the lookahead r is set so that a sufficient
amount of future information can be taken into account. Subjec-
tively, we found one second to be sufficient, but not 0.5 s. The full
motion-generation procedure is visualised in Fig. 1.

In addition to letting gestures depend on speech, one may wish to
exert further control over the style or other properties of the gestic-
ulation. We propose to add such style-control input values ssst along-
side the speech-feature inputs aaat , as seen in Fig. 1, in order to train a
style-controllable gesture-generation system. By appending control
vectors to each time frame, we allow control inputs to change over
time with the same granularity as the output motion. In Sec. 4.2
we explore a few scalar control schemes that modify meaningful
properties of the gesticulation such as gesture radius and height.

4. System setup and training

4.1. Training-data processing

For the experiments, we trained and tested our system on the Trin-
ity Gesture Dataset (available at trinityspeechgesture.scss.tcd.ie),

which is a large database of joint speech and gestures collected by
Ferstl et al. [FM18]. The data consists of 244 minutes of motion
capture and audio of one male actor speaking spontaneously on
different topics. The actor’s movements were captured with a 20-
camera Vicon system and solved to a skeleton with 69 joints. The
actor moved freely around the capture area, so gestures were gener-
ally performed while shifting stance or taking a few steps back and
forth. The spontaneous setting caused a large number of speech dis-
fluencies and fillers, but there are remarkably few silent pauses in
the data despite its spontaneous nature.

To process the motion data, we initially synchronised audio and
video and downsampled all recordings to a consistent rate of 60 fps.
We then rotated the motion-capture joint angles to be expressed rel-
ative to a T-pose and transformed them to an exponential map rep-
resentation, to obtain features without discontinuities. We then re-
moved all the root- and lower-body motion, keeping only 15 upper-
body joints, from the first spine joint up to and including the hands
and head. Finger motion was removed due to poor data quality.

The audio signal was transformed to 27-channel mel-frequency
power spectrograms. (We also experimented with MFCC features,
but did not find any notable differences in training loss or subjec-
tive quality.) To obtain inputs and outputs, we further downsampled
the data to three times as much material at 20 fps (using frames
t = 0,3,6, . . ., and t = 1,4,7, . . ., and t = 2,5,8, . . .) and sliced it into
80 frame-long (4 s) time-series excerpts with 50% (2 s) overlap.
This resulted in 20,665 samples of data, each with 80×27 speech
features as input and 80×45 joint angle features as output. One ses-
sion, NaturalTalking_007, was held out from training and cut into
two parts: the first 4000 frames (200 s) for validation and network-
tuning, and the last 8000 frames (400 s) for system evaluation, cut
into 19 non-overlapping segments of equal length.

Finally, we augmented the data – but only for the proposed sys-
tems – with a mirrored version of the joint angles together with the
unaltered speech. This is because the proposed systems are auto-
regressive and thus take past poses as part of the input when gener-
ating a new pose, the other systems in Sec. 4.4 utilise speech input
exclusively. For these systems we found that our data augmentation
resulted in only perfectly symmetric gestures being generated.

4.2. Style-control data

In order to demonstrate style control, we decided to focus on
style-correlated aspects of the gesticulation that can be computed
from pose sequences alone, without manual annotation. Specifi-
cally, since hand motion is central to speech-driven gestures, we
studied control over various aspects of the motion of the wrist joints
(whose positions we computed, in hip-centric coordinates, using
forward kinematics). This joint position data was then used to cal-
culate the hand height (right hand only), the hand speed (sum of left
and right hands) and the gesticulation radius (the sum of the hand
distances to the up-axis through the root node). Each of these three
quantities were then averaged using a four-second sliding window
and the resulting, smoothed time-series used as an additional input
ssst to train style-controllable model as in Sec. 4.4. In addition, we
also computed the correlation between right and left hand move-
ments (mirrored along the x-axis) across 4 s sliding windows, to
enable learning of control over the symmetry of generated gestures.
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We note that our style-control approach is highly general: If it is
possible to associate each frame in the data with a feature or style
vector (which may vary for each time t or be constant per speaker,
recording, etc.), this can be used to train a system with style input
to the synthesis; the four lower-level style attributes discussed here
are only intended as examples.

4.3. Network tuning and training

Starting from the hyperparameters of MoGlow for locomotion
[HAB19], we first tuned model complexity (i.e., the number of
flow-steps K and units H in the affine coupling LSTM layers), fol-
lowed by the data-dropout probability and finally the learning rate.
Model-complexity parameters were tuned with grid search, where
K = 16 and H = 800 were chosen based on training-data likelihood
and speed of computation. (We were not able to tune the model us-
ing subjective impressions, since the differences between similar
systems were too small to be noticeable). We used the Adam opti-
mizer [KB15] with Noam learning rate decay and tuned the max-
imum and minimum learning rate by incrementally scaling up the
original MoGlow values by 1.5 until no improvement was found.
The final values used were lrmax = 10 · lrmin = 1.5 ·10−3. All pro-
posed models (during hyperparameter tuning and in the final eval-
uation) were trained for 160,000 optimisation steps.

Unlike the network in [HAB19], our proposed systems took both
past and future conditioning information into account. Specifically,
our models took τ = 5 historic frames (0.25 s) of concatenated joint
poses and speech features, and 20 future frames (1 s) of speech
as input when generating the next frame. The short context his-
tory is possible since older information can be propagated forward
through the RNN. As described in Sec. 3.2, the 20-frame acoustic
lookahead was necessary to for the model to prepare gestures so
that they could be executed in synchrony with the speech.

As stated in Sec. 3.2, the use of data dropout prevents informa-
tion from past poses from overriding other input signals. To tune the
dropout rate for the poses in the autoregressive context xxxt−τ:t−1, we
exploited the fact that the accuracy of our style control can be eval-
uated objectively, since the realised control-parameter trajectories
of any given gesture can be computed from sampled motion. Using
the height of the right hand as our control parameter, we trained five
separate networks with data-dropout rates from 0.0 to 0.8 increas-
ing in steps of 0.2. By then providing the trained systems with a
constant control input and evaluating the resulting (four-second av-
erage) right-hand height in sampled gestures, we picked the lowest
dropout rate – 0.4 – where the sampled gestures obeyed the con-
trol over many random samples. This dropout rate was applied for
all subsequent MoGlow-based systems, since we observed that not
having any data dropout diminished the impact of speech control.

4.4. Proposed systems and baselines

Following parameter tuning, we trained a total of five different
MoGlow-based systems: one system, denoted MG, conditioned
only on speech, along with four systems that also allowed style
control. Based on Sec. 4.2, these latter systems enabled control over
the four-second average of either the right-hand hand height (sys-
tem MG-H), the hand speed (MG-V, for velocity), the gesture ra-

dius (MG-R), or the degree of gesture symmetry (MG-S). All these
systems used the same hyperparameters identified in Sec. 4.3.

To assess the quality of our approach, we compared our proposed
systems against a number of toplines and baselines. As a topline,
we used held out ground-truth gestures from the motion captured
database (condition GT). We also evaluated the same ground-truth
gestures but with mismatched speech audio taken from elsewhere
in the database (condition MM). This condition should also ex-
hibit fully natural motion, but should rate relatively lower on ap-
propriateness of the gesticulation for the speech audio. We also
trained and compared three baseline motion-generation systems
taking the same speech-feature representation as input: A simple
unidirectional LSTM network (LSTM) [HS97] with 1 layer and
350 nodes; an implementation of the conditional variation autoen-
coder (CVAE) for head motion presented in [GLM17] (1 layer
and 350 nodes in each BLSTM, 2 latent dimensions); and the
audio-to-representation-to-pose system (ARP) recently proposed
in [KHH∗19]. The latter maps speech audio to a (here) 40D motion
representation space learned using denoising autoencoders, and
then decodes the predicted representations to poses. Unlike MG,
output from the three synthetic baselines required post-processing
for smoothness. Details on the different systems trained in this pa-
per can be found in Table 1.

As a bottom line, we created a small set of obviously unnatural
gesticulation videos (condition BL), by synthesising output from
the systems at an early stage of training. These videos (available,
with all other videos seen by raters, in the supplement) served as
lower anchors for the rating scale, and also provided a quality mea-
sure for filtering out spammers and highly inattentive raters.

4.5. Full-body synthesis

For simultaneous synthesis of full-body gesture and stance, we in-
cluded the lower-body and hip joints and expressed the motion in a
floor-level coordinate system that followed the character’s position
and direction. Following [HSK16,HAB19], we extracted three fea-
tures for the root translation and rotation, namely the frame-wise
delta x and z-translations together with the delta y-rotation of the
floor-projected, smoothed hip pose. The smoothing is essential for
control, and was set to 0.25 s for translation and 0.5 s for rota-
tion. In this setting we retargeted the data to a slightly different
skeleton with fewer spine and neck joints and also re-tuned the net-
work parameters, yielding the following values: K = 16, H = 512,
lrmax = 2 · 10−3, lrmin = 5 · 10−4. To speed up training times we
also discarded intermediate frames from downsampling and trained
the network for 80,000 steps.

Two full-body systems were trained: one (FB-U, for uncon-
trolled) in which all motion (joint angles and root transla-
tion/rotation) was synthesised from speech, and one (FB-C, for
controlled) synthesising only body poses while treating the three
root-motion features as additional control inputs. While the for-
mer system replicates stepping movements and pose shifts from
the original data in an uncontrolled manner, the latter gives explicit
control over character location and direction. This may be impor-
tant in many scenarios, such as facing different interlocutors, por-
traying restlessness, or simply making the character stand still.
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Figure 2: Still image from video used in the subjective evaluation.

5. Evaluation

In this section we describe the experiments used to evaluate our
proposed approach to motion generation. We stress that objective
evaluation of gesture synthesis is generally difficult – many plau-
sible motion candidates exist for a fixed speech input, so a direct
comparison against held-out natural motion recordings is not guar-
antied to be meaningful. Instead, we base our evaluation on an ex-
tensive subjective evaluation against the toplines and baselines de-
scribed in Sec. 4.4. We have performed three perceptual evaluation
studies, looking at human-likeness and appropriateness of motion,
effects of style control and full-body synthesis (simultaneous ges-
turing and walking). To enable meaningful cross-comparisons, the
human-likeness, appropriateness and style-control conditions were
evaluated in the same user study, while the full-body synthesis was
evaluated in a separate study.

All perceptual studies were carried out using online experiments
on the Figure Eight crowdworker platform, with the highest-quality
contributor setting (allowing only the most highest-accuracy con-
tributors) and country origin set to English-speaking countries (US,
Canada, UK, Ireland, Australia and New Zealand). In all experi-
ments, raters were instructed to watch and listen to 18-second video
clips of a gesticulating figure as in Fig. 2, and rate them on five-
point scales according to given scoring criteria. Since finger motion
was not included in the study due to insufficient capture accuracy
in the training data, the figure was provided with lightly cupped
hands, static after the wrist, in the generated videos.

5.1. Evaluation of human-likeness and appropriateness

In this experiment the goal was to compare two aspects of the sys-
tems: 1) to what degree the generated motion looked like the mo-
tion of a real human, and 2) to what degree the gestures matched
the speech. Six conditions were included: the proposed MG sys-
tems, the three baseline systems LSTM, CVAE and ARP, and fi-
nally GT (ground truth recordings).16 BL (bottom-line) examples
were also included, to filter out unreliable raters. Raters were in-
structed to wear headphones and sit in a quiet environment. Prior
to the start of the rating, subjects were trained by viewing example
motion videos from the different conditions evaluated, as well as
some of the bottom line examples.

Each stimulus was assessed by 40 independent crowdworkers,
who were asked to rate the videos on a scale from 1 to 5 with

respect to human-likeness (“to what extent does the motion of
the character look like the motion of a real human being”) and
appropriateness (“to what extent does the motion match the au-
dio”), 5 being best. Other studies have found that many crowd-
workers do not give gesture-rating tasks the attention they require
[YKJ∗19,JKEB19,KJvW∗20]. As quality assurance, we employed
strict rejection criteria: (a) any rater that had given any of the
bottom-line (BL) examples a human-likeness rating above 3 or (b)
had given a GT stimulus a rating of 1 on either human-likeness or
appropriateness were excluded from the study. Also, (c) any ratings
where the total time taken was less than 22 s (length of video + 4
s) or greater than 1200 s were discarded. Together, this removed
63% of the judgements. Out of these, 80% matched criterion (a),
29% matched (b) and 19% matched (c) (some judgements matched
multiple rejection criteria). With (a) being the dominant rejection
criterion, we can take a closer look at the distribution of responses
for the BL examples: 1 (37%), 2 (13%), 3 (12%), 4 (21%), 5 (15%).
This distribution has two peaks: the most common response was
clearly 1, indicating that BL stimuli are indeed perceived as un-
natural, but the high number of 4 and 5 ratings indicate that some
subjects most likely are not making a sincere effort or are not un-
derstanding the task correctly, and should be discarded.

Mean ratings from the study are shown in Fig. 3 and Table 1. The
human-likeness for GT and MG were 4.08±0.12 and 3.58±0.14,
respectively, and for appropriateness 4.18±0.12 and 3.53±0.13. A
one-way ANOVA revealed main effects of human-likeness and ap-
propriateness, and a post-hoc Tukey multiple comparison test iden-
tified a significant difference between GT and all other conditions.
MG was rated significantly above CVAE (p < 0.001) and LSTM
(p < 0.005) on human-likeness and above CVAE (p < 0.001),
LSTM (p < 0.005) and ARP (p < 0.02) on appropriateness.

5.2. Evaluation of style control

We now turn to evaluate the style control, both subjectively and ob-
jectively. The subjective evaluation was carried out in the same ex-
periment described in the previous section, using the same number
of raters and rater-exclusion criteria. Five different systems from
Sec. 4.4 were assessed, namely the proposed MG system without
style control, MG-H (hand height control), MG-V (velocity con-
trol), MG-R (gesture radius control) and MG-S (gesture symmetry
control). For each of the four style-control systems, three groups of
five animations were generated, where each group had a constant
low, mid or high value of the control-input, defined by the 15th,
50th and 85th percentile of the control signal values in the training
data. This yielded a total of 60 controlled video stimuli.

Mean values for the human-likeness rating for the different sys-
tems can be seen in the third plot in Fig. 3 and in Table 1. We see
that style control at different levels had a minor effect on the per-
ceived naturalness of the systems. The only significant difference
between MG and the style controlled variants was for MG-S in the
85% setting (p < 0.05).

Fig. 4 illustrates the effect of style control on the motion gen-
erated by our systems, with one style-controlled system in each
column (M-H, MG-V, MG-R and MG-S). The first two columns
visualise the effect of low (first column) and high (second column)
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Figure 3: Mean ratings from the perceptual experiments with 95% confidence intervals. Asterisks indicate significant effects (∗: p < 0.05,
∗∗: p < 0.01, ∗∗∗: p < 0.001); for the three leftmost graphs comparisons are made against MG and for the rightmost graph against GT.

Proba- Context Hidden Pose Training Training Time Log- Mean rating
System bilistic? frames state params. loss epochs (GPUs) like. Human-likeness Appropriateness
LSTM 7 - LSTM 1M MSE 50 1 h (4) N/A 3.36±0.13 3.31±0.13
CVAE Partially - BLSTM 4M MSE+KLD 50 12 h (4) N/A 3.33±0.12 3.25±0.13
ARP 7 61 GRU 0.5M MSE 300 10 h (1) N/A 3.51±0.14 3.35±0.13
MG 3 26 LSTM 172M Log-likel. 387 37 h (1) 266 3.69±0.13 3.66±0.14
MG-H 3 26 LSTM 173M Log-likel. 387 38 h (1) 267 3.63±0.23 N/A
MG-V 3 26 LSTM 173M Log-likel. 387 38 h (1) 264 3.62±0.23 N/A
MG-R 3 26 LSTM 173M Log-likel. 387 38 h (1) 270 3.72±0.26 N/A
MG-S 3 26 LSTM 173M Log-likel. 387 38 h (1) 307 3.61±0.25 N/A
FB-U 3 26 LSTM 86M Log-likel. 702 16 h (1) 320 3.42±0.16 N/A
FB-C 3 26 LSTM 88M Log-likel. 702 16 h (1) 303 3.76±0.14 N/A

Table 1: Overview of the automatic gesture-generation systems (baselines, proposed and full-body) evaluated in this paper. Perceptual
ratings of the style-controlled systems refer to the mid (i.e., 50%-level) control-input setting.

control by superimposing motion frames from short excerpts of the
generated output. The constant control-values for MG-H and MG-
R are shown in red. The images suggest that the control input in
all cases has affected the generated motion in the desired direction,
with the effect being most visually obvious for MG-H and MG-R.
The final column in Fig. 4 visualises – over time, and statistically
– how the sampled output motion from the four models adheres to
the given control signal for three control-signal input levels: low
(in orange), mid (in cyan) and high (in green). The left plot shows
time series ranging over 3700 frames of sampled motion and indi-
cates instantaneous values, four-second smoothed values (extracted
the same way as the control signal) and the control (line). The right
boxplot shows the distribution of the residual between the input sig-
nal and the corresponding realised control and uses the same y-axis
scale as time series to facilitate comparison.

Looking at the plots in the figure, we see that the curves gener-
ally are ordered orange, cyan, green (bottom to top), as expected.
As an indication of control precision, the boxes showing the in-
terquartile ranges of the realised control are mostly narrower than
the separation between the constant control levels. The control of
gesture radius is particularly distinct in this regard, with narrow
boxes compared to the offset between the control levels. Both hand
height and symmetry control demonstrate an intriguing behaviour
where the observed variance around the style control input value is
significantly greater for the low control input than at the other two
levels. We hypothesise this might be due to discrepancies between
the control input and the contexts in which that control input value
occurs in the training data. For instance, long stretches of low hand
height are rare in the data, as low hand heights often are associated
with wide swinging motions. Sustained periods of negative corre-
lation between the left and right hand are similarly uncommon in
the training material. As a consequence, feeding in a low control

input produces motion with inherently greater variability, inflating
the boxes in the box plots.

5.3. Evaluation of full-body gestures

The subjective evaluation of the full-body synthesis contained three
conditions, GT and the two MoGlow systems from Sec. 4.5: FB-U
(full-body motion from speech only) and FB-C (full-body motion
also with controlled location and direction). 19 animations (cf. Fig.
5) from each condition were used in the evaluation, together with
16 BL (bottom line) animations used for quality control purposes
like before. Subjects were asked to rate the animations on a scale
from 1 to 5 for human-likeness (“to what extent does the motion of
the talking character look like the motion of a real human being?”).

20 ratings were obtained for each stimulus. Raters who scored
any of the BL animations a above 3 were excluded from the study,
removing 44% of the judgements. Results can be seen in the right-
most pane of Fig. 3. Full-body GT received a mean rating of 4.005,
FB-C 3.764 and FB-U 3.421. One-way ANOVA and a post-hoc
Tukey multiple comparison test found a significant difference be-
tween GT and FB-U (p < 0.001), but not between GT and FB-C.

5.4. Discussion

The results confirm that we have successfully achieved our goal
of enabling probabilistic speech-driven gesture generation that per-
mits optional style control and compares favourably against pre-
vious methods in the literature. However, while evaluations found
MG gesticulation to be quite human-like and a reasonable match
for the speech, it is our subjective impression (reinforced by the
user study) that the generated gestures are not as vivid or diverse

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

493



S. Alexanderson, G. E. Henter, T. Kucherenko & J. Beskow / Style-Controllable Speech-Driven Gesture Synthesis Using Normalising Flows

(a) Low right hand, left hand un-
constrained.

(b) High right hand, left hand un-
constrained.

(c) Time series and residual statistics of right-hand height control.

(d) Low average speed. (e) High average speed. (f) Time series and residual statistics of speed control.

(g) Low average radius. (h) High average radius. (i) Time series and residual statistics of gesture radius control.

(j) Low symmetry. (k) High symmetry. (l) Time series and residual statistics of gesture symmetry control.

Figure 4: Effect and accuracy of style control. Each row is a system (MG-H, MG-V, MG-R and MG-S). Colours encode control-input values:
orange for low (15th percentile), cyan for mid (50th), and green for high (85th). The first two columns show average images, each over 20
s excerpts with constant low or high control-input. (The bottom row instead uses a few onion-skinned snapshots for a better impression of
symmetry.) The graphs on the right show the control input (flat line) and the corresponding instantaneous and smoothed control values of
the output. For details, see Sec. 5.2.
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Figure 5: Snapshots of full-body gestures and body motion.

as the original motion-capture recordings. We believe this to in-
dicate overfitting. During network tuning, we found that provid-
ing the right model complexity (especially K and H) was impor-
tant for balancing stable gesture generation and perceived gesture
quality. While underfitted models showed a great range of differ-
ent behaviours (many of them unnatural) and sometimes got stuck
in unnatural poses, overfitted models exhibited a reduced range of
gestures, but those displayed were stable and followed the rhythm
of the speech. We thus opted for a more stable gesture synthesis,
with less vivid arm movements in our first experiment. The modi-
fied training scheme for the FB models was instituted as an attempt
to strike a different balance between human-likeness and liveliness.

The speaker’s high gesture rate and low amount of pauses may
have affected the study in several ways. On the one hand, it may
have been beneficial for learning, as it gave the systems a large
number of gestures to train on. On the other hand, it may have
complicated the evaluation, where a speaker with more pauses and
slower speaking rate might have been easier to assess.

6. Conclusions and future work

We have presented a deep-learning-based system for automatic
synthesis of co-speech gestures from speech input. The system is
probabilistic, meaning it describes the entire distribution of likely
gesture motions, and not only the mean pose. User studies find our
system rated above several baselines from prior literature both in
terms of human-likeness and on the appropriateness of the ges-
tures for the given speech. We furthermore demonstrate that the ap-
proach can be extended to exert various kinds of directorial control
over the style of the gesticulation without needlessly compromis-
ing human-likeness. Finally, we show that the method is capable of
convincingly synthesising (controlled and uncontrolled) joint full-
body posture, gesticulation and stance. This lifts the perspective
from a focus on isolated body parts (e.g., hands or head) to holisti-
cally treating the entire human figure.

Future research goals include: 1) broadening the gesture reper-
toire, including towards gestures driven not only by acoustics but
also by semantic content like in [KJvW∗20]; 2) extending the
model to cross-speaker synthesis, including developing speaker-
independent features and assessing their transferability; and 3) de-
veloping and validating the style control for expressions at higher
degrees of abstraction, such as emotion and character personality.
(For goal 2, preliminary video examples of our trained models ap-
plied to audio from new speakers can be found in the supplement.)
We additionally aim to unify the style models into a single model
with optional inputs for controlling multiple styles simultaneously.
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