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(a) Mitchell-Netravali [MN88] (b) OQI3 [SN15] (c) Our SBS3 filter

Figure 1: Path-traced images rendered using various prefilters: (a) Mitchell-Netravali, (b) OQI3, and (c) Our SBS3. Our family of SBS3
filters strike a good balance between sharpness, aliasing and ringing, consistently yielding images that are sharper than both classic (a) and
state-of-the-art linear filters (b). Note how the fine details from the wings and face of the dragon are better emphasized by SBS3 (c). This result
has been computed for a baseline viewing distance of 40 cm on a 100 ppi display (better seen in the supplementary materials since PDF
readers perform resampling).

Abstract
In this paper we use a simplified model of the human visual system to explain why humans tend do prefer “sharpened” digital
images. From this model we then derive a family of image prefilters specifically adapted to viewing conditions and user preference,
allowing for the trade-off between ringing and aliasing while maximizing image sharpness. We discuss how our filters can be
applied in a variety of situations ranging from Monte Carlo rendering to image downscaling, and we show how they consistently
give sharper results while having an efficient implementation and ease of use (there are no free parameters that require manual
tuning). We demonstrate the effectiveness of our simple sharp prefilters through a user study that indicates a clear preference to
our approach compared to the state-of-the-art.

CCS Concepts
• Computing methodologies → Image processing;

1. Introduction

A natural image maps continuous (x,y) coordinates to colors. Mod-
ern display devices, on the other hand, are discrete machines, com-
posed of millions of tiny light sources that may be individually
controlled. How does one select the intensity and color of each
individual light source to obtain a good representation of the orig-

inal image? The standard approach is to low-pass filter the image
function to remove “high frequencies,” and then sample the result
at a uniform grid of points [Bli89]. One then assigns the color of
each sample to each corresponding light source on the display (Fig-
ure 2(b)).

This procedure is based on the sampling theorem [Sha49], which
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Figure 2: Sampling and Reconstruction pipeline. (a) An image f of a continuous domain (a spatially-continuous image) is converted to a
discrete collection of samples p (“pixels”). This process often involves a prefiltering of f before sampling values from it. (b) A display device
reconstructs a spatially-continuous image at a viewing screen S from the samples p. (c) The reconstructed image at S is projected into the
observer’s eye onto the retina Ω [FG88], generating the final reconstruction f̃ , whose exact form depends on both the display and the observer.

states that if a function is bandlimited and contains no frequencies
higher than W cycles per unit of measurement, then it is completely
determined by samples spaced 1/2W units apart. This is a remark-
able theorem, but its practical limitations have been widely known
and studied for the past decades [Uns00]. In particular: (i) the filter
that perfectly removes high frequencies without attenuating low
frequencies is sinc(x) = (sinx)/x, which has an infinite impulse re-
sponse (IIR) and is impossible to evaluate exactly in most situations;
(ii) if otherwise one uses a non-perfect low-pass filter, it leaves be-
hind residual high-frequency information that may lead to aliasing
artifacts; (iii) even if achievable, one should not use the sinc filter
since bandlimited functions often do not look good: they contain
visually distracting “ringing” artifacts [ST85]; and (iv) to obtain
a perfect reconstruction of the (bandlimited) spatially-continuous
function (i.e., a total function of a continuous domain) from the sam-
ples, one must also use the sinc function for interpolation; otherwise,
post-aliasing or reconstruction artifacts may appear [MN88].

Item (iv) in particular is a fundamental issue. It implies that, by
sampling a low-pass filtered function and assigning the color of each
sample to the light sources on the display, one is implicitly assuming
that reconstruction will be performed by sinc interpolation. This is
a problem because such an assumption is incorrect. To see why, we
first define what we mean by “reconstruction” in this context: the
optical projection of the spatially-continuous lightfield generated by
the display on the retina of the observer [MN88] (illustrated on the
right of Figure 2). It is performed by the display in conjunction with
the optical system of the human eye, and is most definitely not a sinc
interpolation, as can be demonstrated by a simple visual experiment
we detail in Appendix A. As a result, most images generated by the
standard sampling-theorem-based approaches end up excessively
blurry or “soft” when viewed on modern displays (Section 4). This
is illustrated in Figure 1(a).

To address this issue, we propose an alternative approach for
computing the correct pixel intensities that should be displayed
on the screen in order to maximize sharpness and high-frequency
details. It is based on a simplified visual model which takes into
account the low-pass filter inherent to our optical system [ZW97,
AS00]. We describe how to compute the low-pass bandwidth of such
a system (Appendix B) and from this we derive the mathematically
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optimal filters that should be used to generate sharp and detail-
rich images in a variety of applications, including Monte Carlo
rendering (Figure 1), image downscaling (Figure 13) and vector
graphics rasterization (Figure 15). We show how this framework
can be combined with existing state-of-the-art prefilters to take
into account user preference and the characteristics of different
applications, allowing for a trade-off between ringing and aliasing
while maximizing image sharpness. We call our sharp prefilters
SBS3 since they are modeled using cubic splines.

The contributions of our work include:

• An alternative prefilter for computer graphics (SBS3) that gen-
erates sharp and detailed images for display, without requiring
manual parameter tuning (Section 3). It is based on modern sam-
pling theory, can be adapted for specific viewing conditions, and
its spectral characteristics (Figure 5) are significantly different
from traditional prefilters (Figure 6);
• An in-depth analysis and discussion of the properties and limita-

tions of the proposed technique, and on how it relates to existing
filters and theory (Section 4). We also propose a quantitative met-
ric for measuring Sharpness, Aliasing and Ringing characteristics
of linear prefilters (Section 4.1.2);
• A collection of prefilters based on SBS3 (Section 4.2), allowing

for a wide range of filtering characteristics aimed at different
applications and user preference;
• A list of considerations of how to apply the proposed prefilter in

a variety of situations and applications (Sections 4.3, 4.4 and 5).
We provide source code in the supplementary materials, making
our results fully reproducible.

2. Background and Related Work

The reconstruction kernel used by a digital display is not a sinc.
Kajiya and Ullner [KU81] argue that a prefilter (or analysis filter)
should take the display’s reconstruction (or synthesis) kernel into
account in order to produce the best possible images. For the CRT
display technology of the time, they approximated the reconstruction
kernel with Gaussian “spots” and found optimized images by least
squares. The authors reported mainly on the use of the technique
for rendering text, as individual characters could be prefiltered and
stored prior to display. Nonetheless, they did emphasize that the
proposed method was “applicable—at least in theory—to the general
problem of antialiasing arbitrary images.”
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We are not aware of subsequent efforts to advance the idea of Ka-
jiya and Ullner to modern display devices. One reason for this may
be the fact that, on recent LCD displays, the shape of individual light
sources are tiny rectangles (Figure 2), meaning that such a display
is reasonably approximated by a box reconstruction kernel [NH14].
Thus, theoretically, the optimal (in the least-squares sense) prefilter
should also be a box function, as it is self-dual (Section 3.2) [Uns00].
This is a disheartening conclusion since a box filter has neither good
antialiasing nor good reconstruction properties [Bli89].

Our work follows in the footsteps of Kajiya and Ullner [KU81]
but goes one step further: we argue that reconstruction should be
viewed as the interaction between the lightfield emitted by the dis-
play device and the human optical system (Section 3). From this,
we obtain sharp prefilters for the display of detailed images, as
illustrated in Figure 1(c).

2.1. Linear low-pass filters in graphics

Avoiding aliasing and ringing artifacts are conflicting requirements,
and the design of a good low-pass filter for graphics has tradi-
tionally involved a subjective interplay among aliasing, ringing,
and blurring [MN88]. The box, tent and Gaussian filters are sim-
ple and widely used, but unfortunately their frequency character-
istics are also far from optimal [Bli89]. Finite approximations to
the “ideal” sinc filter have been proposed based on windowing
functions [Har78] and compact polynomial kernels [MN88]. More
recent works design infinite impulse response filters which are eval-
uated efficiently using compact polynomials and recursive digital
filtering [Uns00], called generalized sampling filters. Nehab and
Hoppe [NH14] present a detailed survey on this concept, where a
noteworthy representative prefilter is the O-MOMS (Optimal, Max-
imal Order Minimum Support) family of Blu et al. [BTU01]. In
a similar way, Sacht and Nehab [SN15] derived Optimized Quasi-
Interpolator filters by searching over available degrees of freedom
in the polynomial kernel and recursive filter. Their cubic scheme
(OQI3) is the state-of-the-art in approximation quality, with good
antialiasing properties at the cost of mild ringing. In Section 4.2 we
show how our SBS3 prefilter can be combined with OQI3 to adapt
the filtering characteristics for specific applications.

2.2. Non-linear filters in graphics

Linear filters are efficient to compute and easy to analyze with
spectral tools. Non-linear filters are more complex to design and
understand, but are able to overcome some of the limitations im-
posed by the linearity constraint. Next, we list some non-linear filters
relevant to our discussion.

In the context of image downscaling, several non-linear filters
have been proposed to preserve image detail. For example, Kopf
et al. [KSP13] use kernels that adapt themselves to image content,
Öztireli and Gross [OG15] use an analytical solution for minimizing
the SSIM difference between the original and downscaled image,
and Weber at al. [WWA∗16] use a bilateral-like filter that favors pix-
els that differ more from their vicinity, preserving visually-important
details. We compare our prefilter against these works in Section 5.2.

In a different direction, Gastal and Oliveira [GO17] proposed a

method to modify the high frequency content of the image such that
no aliasing will occur after downscaling. Their method is orthogonal
to ours and other resampling strategies, and it can be used together
with our SBS3 prefilter for sharp and aliasing-free image display.

Edge-aware smoothing filters manage to remove some high-
frequency content while preserving edge detail [TM98, FFLS08,
GO11,HST13,ZSXJ14,Fat09], but are not designed as prefilters and
should not be directly used for downscaling or (when applicable)
image synthesis. Some operators [TM98, GO11] cannot remove
high-frequency patterns when the pixel-intensity differential is large,
leading to aliasing. Increasing the filter’s intensity support or using
alternatives formulations [ZSXJ14, XLXJ11] leads to overblurring
of fine and low-intensity features [KSP13]. We note that Kopf et
al. [KSP13] describe specific modifications to the edge-aware bilat-
eral kernel specifically for image downscaling, and we compare it to
our SBS3 prefilter in Section 5.2. Other techniques adapt non-linear
filters specifically for rendering [RKZ12, VRM∗18]. These Monte
Carlo denoising techniques can be used whenever the number of
samples per output pixel is not sufficient for generating the final pixel
intensities. For larger numbers of samples per pixel, however, one
usually falls back to classic linear low-pass prefilters (Section 2.1).
Our SBS3 prefilter does not compete with denoisers and should be
used in situations like the latter.

2.3. Subpixel rendering

Many works have used the subpixel structure of digital displays
to improve the spatial resolution of rendered text [Pla00, BBD∗00,
FEL∗11] and images [KH03, ESKD14]. Since subpixels are associ-
ated with different primary colors, these works use perceptual met-
rics to generate low-pass filters that reduce chromatic distortions and
color fringing [ESKD14,FEL∗11]. The underlying idea of displaced
subpixel sampling [KH03] may also be used with our prefilters.

An important distinction between subpixel-rendering works and
our work is in the choice of perceptual models. In our work, we
are interested in how the eye’s point spread function (PSF) is a
non-ideal low-pass filter [AS00]. On the other hand, for subpixel
rendering [Pla00, FEL∗11, ESKD14], one is mostly interested in the
eye’s different sensitivity thresholds between luminance and chromi-
nance [ZW97]. Thus, Platt [Pla00] employs a PSF model for the eye
that is sufficient to deal with chromatic distortions, but that has short-
comings as a realistic low-pass optical function. In particular, its
frequency response has a perfectly flat passband followed by a sharp
decay [ESKD14], which is not representative of actual measure-
ments and theory [AS00]. As a result, the optimal filters derived by
Platt [Pla00] and subsequent works [BBD∗00,FEL∗11,ESKD14] are
plain low-pass filters that do not provide the frequency-enhancement
properties of our SBS3 prefilters (Section 4). Also, closely related
to this topic is the technique of Huberman and Fattal [HF16], which
aims to reduce Mach-band-like effects. Our technique is comple-
mentary to theirs.

2.4. Image Sharpening

To counteract the overblurring discussed in the introduction, com-
mercial displays and graphics hardware commonly provide some
form of user-controlled “image sharpness” setting. Some digital
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cameras also automatically apply sharpening filters during image
capture [Maî17], and professional photographers often use unsharp
masking during postprocessing [FS10]. While these are in part
aimed at combating the blur caused by suboptimal capture condi-
tions (such as camera shake, lens defects or defocus), they are also
used to correct for imperfect display processes. In fact, photogra-
phers empirically know that the amount of sharpening required to
make an image “look good” depends on the type of display medium
(e.g. print or digital) and resolution (dots or pixels per inch) [FS10].

Despite the widespread use of sharpening filters, it is not obvious
how to define the specifics of what they should do. The high-level
goal is to improve the representation of so-called fine details, and
that usually translates to some form of high-frequency-enhancing
filter, which increases the subjective perception of edge sharpness
(commonly referred to as “acutance”) [Maî17]. The spectral charac-
teristics of such a (linear or non-linear) filter, however, are usually
selected in an ad hoc procedure based on experimentation and rules
of thumb. Photography experts for example recommend that the
halo around edges—introduced when enhancing high frequencies—
should be sized between 0.01 and 0.02 inches “to produce a satisfac-
torily sharp image without introducing visually obvious sharpening
haloes” [FS10]. Similar guidelines have been proposed by com-
puter graphics practitioners, such as the use of interpolation filters
with exactly one lobe of ringing to improve perceived edge con-
trast [MN88].

The unrestrained application of sharpening—without a careful
selection of the filtering parameters—often leads to “oversharpened”
and unattractive images [FS10]. This has been observed for exam-
ple in the image downscaling literature, where the use of standard
post-sharpening filters after resampling may introduce objection-
able artifacts [KSP13, OG15]. By using our SBS3 prefilters (which
require no manual tuning of parameters) for image downscaling
or image synthesis, the need for a user to apply an ad hoc post-
sharpening filter is significantly diminished.

3. Deriving our sharp prefilter

We consider the imaging pipeline illustrated in Figure 2. The goal
is to define the pixel intensities over the screen S that minimize the
difference between the spatially-continuous image function f and its
reconstruction f̃ on the observer’s retina Ω. We do this by treating f
and f̃ as vectors in L2 [KU81, Uns00], and computing the distance:

‖ f − f̃‖=
(∫

Ω

∣∣ f (x,y)− f̃ (x,y)
∣∣2 dxdy

)1/2

. (1)

To evaluate this integral, f̃ is defined over Ω by the reconstruction
model from Section 3.1, and f is defined over Ω by assuming
an ideal display (infinite resolution) and ideal observer (infinite
resolving power). Although the L2 norm is not ideal for measuring
perceptual error [Str97, WBSS04], its use is widespread because
it makes the problem tractable: the minimization of ‖ f − f̃‖ has
a closed-form linear solution, efficient to implement and easy
to analyze through Fourier theory (Section 4) [NH14]. The dis-
play+eye reconstruction model discussed next (which models how
we perceive an image and is used to define f̃ ) makes the distance
‖ f − f̃‖ a perceptual metric, similar to S-CIELAB [ZW97].

0−1 1

0

1

0−1 1

10−6

10−4

10−2

100

Airy disk Quadratic B-spline

Figure 3: Cross section of a bidimensional Airy disk pattern and
its quadratic B-spline fit (PSNR over 40 dB). Shown in linear (top
left) and log scale (top right). Also, their respective outer products
preserve the similarity (lower left and lower right).

3.1. The reconstruction model

For a typical LCD display, it is reasonable to represent it as a box
reconstruction [NH14]. Thus, the [i, j]-th pixel coefficient p[i, j] on
the framebuffer controls the intensity of one small box-like light
source. Collectively, these coefficients define a spatially-continuous,
piecewise-constant, 2-D lightfield g(u,v) displayed on the screen.
We define continuous screen units (u,v)∈S with integer coordinates
associated with the centers of the display’s pixels:

g(u,v) = ∑ p[i, j] rect(u− i,v− j). (2)

The summation is taken over valid integer screen coordinates and
rect(u,v) equals 1 for (u,v) ∈ [−1/2,1/2)2, and zero otherwise.

The lightfield g(u,v) is projected into the eye and reaches the
retina to form f̃ . More precisely, assuming that the observer is focus-
ing on the screen, f̃ is given by the convolution f̃ = gΩ ∗ s [Goo05],
where gΩ is the image given by pinhole projection and s is the point
spread function of the visual system.

An eye free from aberrations and light scattering, with a circular
pupil and focusing on the screen, can be considered a diffraction-
limited system [AS00], whose theoretical PSF is an Airy disk (Fig-
ure 3). This theoretical model has been experimentally validated
with laboratory tests, and holds true for pupil diameters up to 3 mm
in size [WC85]. The expected human pupil size when looking at
a typical LCD screen, with brightness ranging from 150 to 300
nits [AMHH08], is between 2.6 and 2.8 mm [MS44, POAR12].
As such, the Airy disk is a good model for the observer’s PSF in
our visualization pipeline. For computational efficiency, we replace
the infinite impulse response Airy disk equation with a quadratic
B-spline approximation (Figure 3), which has compact support and
makes all the required computations precise and efficient in 1D and
2D [NH14].

For a constant focal distance and unchanging lighting conditions
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(i.e., for a given accomodation and pupil size), the PSF has a constant
size and shape on the retina Ω; however, the size of the projected
lightfield gΩ depends on the distance between the observer and the
screen. In particular, increasing such distance makes gΩ smaller
which, in turn, makes the PSF larger relatively to it. In the end, the
relative size between gΩ and the PSF s is all that matters to com-
pute f̃ = gΩ ∗ s. To simplify this task, we represent all quantities
in screen (pixel) units (u,v) ∈ S, where the size of the PSF will in-
crease proportionally to the viewing distance. Appendix B describes
how we measure the size—in screen units—of an individual’s PSF,
depending on viewing distance and display pixel density.

Finally, considering the full reconstruction pipeline composed of
the display’s box reconstruction followed by convolution with the
eye’s PSF, we have, in screen space,

f̃ (u,v) = ∑ p[i, j]ϕ(u− i,v− j). (3)

The function ϕ = rect∗s is our reconstruction kernel. It is a piece-
wise cubic polynomial, whose exact shape depends on the view-
ing distance D. Figure 4 shows the equivalent 1-D kernels ϕ(u)
for several values of D, all of which have closed-form polyno-
mial expressions. The 2-D kernels are given by the outer product
ϕ(u,v) = ϕ(u)ϕ(v), which makes all filtering operations separable.
This is accurate because ϕ is given by a convolution of separable
functions rect and s (the Airy disk’s main lobe is virtually separa-
ble due to its striking similarity to a Gaussian—which is why it is
adequately represented by a B-spline).

For a viewing distance D = 40 cm and an LCD display with
100 pixels per inch (ppi), the reconstruction kernel is given by the
following piecewise cubic polynomial:

ϕ(u) =


c1|u|2 +1 0≤ |u|< d1;
c2|u|3 + c3|u|2 + c4|u|+ c5 d1 ≤ |u|< d2;
c6|u|3 + c7|u|2 + c8|u|+ c9 d2 ≤ |u|< d3;
c10|u|3 + c11|u|2 + c12|u|+ c13 d3 ≤ |u|< d4;
0 otherwise;

(4)

where

c1 =−2.06052, c2 = 2.63514, c3 =−3.6554,

c4 = 0.322987, c5 = 0.978197, c6 = 1.7501,

c7 =−2.62514, c8 =−0.0813455, c9 = 1.03109,

c10 =−0.875048, c11 = 3.6554, c12 =−5.08999,

c13 = 2.36253, d1 = 0.202514, d2 = 0.392458,

d3 = 0.797486, d4 = 1.392460.

This function was obtained through the convolution of the rect func-
tion with the PSF model described in Appendix B–Eq. (16). It was
used for generating all results shown in the paper and supplementary
materials (unless otherwise stated), and it is the one we recommend
for general use when the exact viewing conditions are unknown. We
chose D = 40 cm at P = 0.25mm pixel size (100 ppi) because this
D/P ratio is a good representative for the average viewing condition
(considering that this is the ratio where the perceived pixels lose
their box shape (Figure 4), and that display manufacturers intend
to produce devices with pixels that are imperceptible to the user at
the average viewing distance). Section 4.4 discusses some practical
considerations for working with arbitrary viewing conditions.

−1.5 −1 −0.5 0 0.5 1 1.5 u

D = 0 cm
D = 20 cm
D = 40 cm
D = 60 cm
D = 80 cm

Figure 4: The simulated reconstruction kernels ϕ for viewing dis-
tances ranging from 0 to 80 cm, computed for a 100 ppi display. All
of these are piecewise cubic polynomials which have closed-form
expressions. The values of u ∈ S are in continuous screen units, as
described in the text.

3.2. The prefilter

Given ϕ and Eq. (3), we find the coefficients p[i, j] (the pixel intensi-
ties to be displayed on the screen) that minimize the reconstruction
error ‖ f − f̃‖. This has a closed-form solution [Uns00, NH14]:

p[i, j] =
∫
S

f (u,v)ψ(u− i,v− j)dudv. (5)

The function ψ is the so-called dual of ϕ. In Eq. (5), it is convolved
with the image f to generate the pixel intensities p[i, j] to be dis-
played on the screen. Thus, ψ is our SBS3 prefilter.

Since ϕ(u,v) = ϕ(u)ϕ(v) is separable, ψ(u,v) =ψ(u)ψ(v) is also
separable and

ψ(u) = ∑q[k]ϕ(u− k). (6)

The discrete sequence q is an infinite impulse response digital filter
best characterized through its Z-transform [PM06]:

Q(z) = 1
/(

∑aϕ[k]z−k
)
, (7)

where aϕ[k] is the sampled autocorrelation of ϕ:

aϕ[k] =
∫
S

ϕ(u)ϕ(u− k)du. (8)

Since our reconstruction kernel ϕ is a compactly-supported poly-
nomial spline, its autocorrelation sequence aϕ is finite and easily
computed by analytical integration.

3.3. Sharp filtering with SBS3

For efficient prefiltering with ψ, Eq. (5) and Eq. (6) imply:

p[i, j] =∑
k

∑
m

q[k]q[m]
∫
S

f (u,v)ϕ(u− i−k,v− j−m)dudv. (9)

Conceptually, the SBS3 prefilter works as follows:

1. Convolve the input f (u,v) with the filter ϕ, to obtain fϕ(u,v);
2. Sample fϕ at the valid pixel positions [i, j], to obtain fϕ[i, j];
3. Compute the optimal image p[i, j] = ∑k ∑m q[k]q[m]fϕ[k,m].

Steps 1-2 constitute filtering with a piecewise polynomial kernel ϕ.
Since ϕ is compactly supported and separable, the convolution inte-
gral (in Eq. (9)) can be computed very efficiently. The summations
in Step 3 are also efficient and may be executed as two separable
applications of causal/anticausal recursive filters [Uns00, PM06],
which are O(n) operations in the number of pixels n.
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Figure 5: Our recontruction kernel ϕ and its associated prefilter ψ

for D = 40 cm (normalized to unit area for comparison). The dashed
line represents their Fourier pointwise product, i.e., their spatial
convolution. The frequency axis ω is given in cycles per screen pixel
and the light-gray rectangle represents the Nyquist region.
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Figure 6: A variety of existing Shannon-type filters (red curves)
and their interaction with the kernel ϕ modeling the display + eye
reconstruction (dashed lines). In all cases, the dashed line is far
from a box-like response in frequency, which means the observer
will perceive the image as overblurred.

4. Analysis and Discussion

Figure 5 shows the shape of our reconstruction kernel ϕ from Eq. (4)
and of its dual ψ, together with their Fourier transforms. Ob-
serve how ϕ is a low-pass filter, modeling the blur from the eye’s
PSF [ZW97,AS00]. Also note how our prefilter ψ acts in the reverse
direction, enhancing frequencies that would otherwise be blurred
by ϕ. The combined effect of ψ and ϕ has a frequency response
which adequately preserves details across the Nyquist portion of
the spectrum, as shown by the dashed black line on the right plot

Observer-Perceived Frequency Response
(amplitude spectrum)

0-1/2 1/2-1 1

1

ω

ϕ∗ Our SBS3 (ψ)
ϕ∗ Box
ϕ∗ Tent
ϕ∗Mitchell-Netravali
ϕ∗ OQI3
ϕ∗ Sinc

Figure 7: Observer-perceived frequency responses. Our SBS3 pre-
filter ψ (black line) preserves more detail across the Nyquist range.
This results in sharper images when compared to the ones generated
by existing filters.

of Figure 5. As such, an observer looking at a version of image f
processed with ψ will perceive a good representation of f .

It is instructive to perform the same analysis on existing Shannon-
type filters. Figure 6 shows the spatial and frequency response for
the box, tent, Mitchell-Netravali [MN88], Optimized cubic Quasi-
Interpolator (OQI3) [SN15], and sinc.† As before, the dashed black
lines represent the observer-perceived combined effect of the re-
spective filter (which acts as a prefilter) in conjunction with the
reconstruction kernel ϕ (which models the display + the eye’s PSF).
From the Fourier domain plots on the right column of Figure 6, it
is clear that the resulting frequency responses have excessive atten-
uation in the Nyquist region. As a result, the images processed by
these filters will be perceived as overblurred.

Contrasting Figures 5 and 6, one can see that our prefilter ψ is
unique in the sense that it appropriately enhances frequencies in or-
der to minimize the blurring introduced by the human optical system.
Figure 7 overlays all the simulated observer-perceived frequency
responses for easier comparison. Note how our sharp prefilter ψ bet-
ter preserves the frequencies in the Nyquist region. The frequency
responses of the other filters are similar to each other, and cause
significant attenuation in the Nyquist region.

4.1. Aliasing Analysis

The cost of sharpness is a greater tendency for aliasing. Aliasing
exclusively occurs as a consequence of sampling (with post-aliasing
only ocurring during reconstruction [MN88]). To measure the pos-
sible effects of this phenomenon, we employ the same theoretical
analysis proposed by Nehab and Hoppe [NH14].

The purple curve in each plot of Figure 8 illustrates the fre-
quency response of the full sampling-and-reconstruction pipeline on
a broad-spectrum function f (i.e., this is a worst-case scenario—a
function containing all possible frequencies). The pipeline is com-
posed of (1) convolving f with a specified filter, which performs a
pointwise multiplication of the spectrums; (2) sampling the result
at integer positions, which convolves the spectrum with a Dirac
comb (performing a periodic summation); and (3) performing final

† Note that OQI3 and Mitchell-Netravali were designed to be reconstruction
filters. Even so, because OQI3 (and also Mitchell-Netravali, to a lesser
degree) approximates the sinc filter—which does ideal prefiltering and
reconstruction—they both do a great job on prefiltering tasks.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

440



L.C.G. Rocha, M.M. Oliveira & E.S.L. Gastal / Prefilters for Sharp Image Display

Box

0-0.5 0.5-1 1

1

ω

Tent

0-0.5 0.5-1 1

1

ω

Mitchell-Netravali

0-0.5 0.5-1 1

1

ω

OQI3

0-0.5 0.5-1 1

1

ω

Sinc

0-0.5 0.5-1 1

1

ω

SBS3

0-0.5 0.5-1 1

1

ω

Box→SBS3

0-0.5 0.5-1 1

1

ω

Tent→SBS3

0-0.5 0.5-1 1

1

ω

OQI3→SBS3

0-0.5 0.5-1 1

1

ω

Sampling pipeline
Sampling-free pipeline
Aliasing (potential)

Figure 8: Aliasing Analysis. The purple curves in each plot repre-
sent the frequency response of the full sampling-and-reconstruction
pipeline on a broad-spectrum function f . The blue curves represent
the effect of the same pipeline but without sampling. By definition,
the blue frequency response is uncorrupted by aliasing and rep-
resents the pure effect of the prefilter and reconstruction kernel.
The shaded area between the curves measures the potential for the
ocurrence of aliasing at each frequency.

reconstruction by convolution with the kernel ϕ (also a pointwise
multiplication of the spectrums), to simulate the observer-perceived
final frequency response. Similarly, the blue curve in each plot il-
lustrates the effect of the same pipeline but without sampling, i.e.,
without step (2). By definition, the blue frequency response is uncor-
rupted by aliasing and represents the pure effect of the prefilter and
reconstruction kernel. Thus, the shaded area between the blue and
purple curves measures the potential for the ocurrence of aliasing
at each frequency (the shaded areas located outside the Nyquist
interval measure the potential for post-aliasing, which is dependent
on the reconstruction kernel).

The ideal zero-aliasing frequency response is one where the pur-
ple curve matches the blue curve. The ideal blue curve is likewise
one which matches the flat and broad spectrum of the input f , i.e.,
a constant unity-intensity line across all frequencies (−∞ to +∞).
The closer the blue curve is to 1, the sharper is the final recon-
struction (since more frequencies are preserved from the input).
Conversely, the closer the blue curve is to 0, the blurrier the recon-
struction. As seen in Figure 8, our prefilter SBS3 has by far the
best-performing sharpness (blue) curve, but it is also more prone to
aliasing than, for instance, Mitchell-Netravali or OQI3. The most
severe aliasing, however, comes from the box filter (top left).

It is possible to avoid aliasing while also avoiding the loss of

sharpness, but that comes at the cost of a bigger problem: ringing. It
occurs because of the instantaneous cutoff in the frequency response
of the prefilter (necessary to eliminate aliasing while keeping things
sharp). The only way to diminish ringing is to soften the transition
at the cutoff, which inevitably leads back to either aliasing or blur-
ring. Thus, ringing, blurring, and aliasing are highly-interdependent
phenomena [MN88]: reducing the effect of one impacts the others.

4.1.1. Aliasing vs Ringing vs Blurring

Since, a priori, these three artifacts will be present in some degree,
it is worth discussing which one is the bigger evil. In particular, blur-
ring is often taken to be the worst of all three, as the human visual
system is “more sensitive to high spatial frequency errors” [KU81],
making fuzzy edges highly objectionable. Our user study corrob-
orates this observation (Section 5.2.2). Furthermore, aliasing and
ringing can sometimes be employed in our favor: when downscaling
an image, for example, instead of low-pass filtering step-like edges,
which could incur in unwanted blurring, simply subsampling it (thus
introducing aliasing) gives the best results, completely preserving
the step edge in the downsampled version [GO17]. Similarly, one
lobe of ringing has been observed to increase the perceived contrast
of edges, improving the overall sharpness of the image [MN88].
Note that our prefilter ψ has lobes which boost high frequencies,
thus compensating for the blurriness caused by the eye’s PSF.

It is thus reasonable to seek a prefilter which avoids blurring
(maximizes sharpness) as much as possible, and at the same time
achieves a good balance between aliasing and ringing. Since that is
a subjective and application-dependent balance, it is useful to have
means of moving between the two extremes. We thus describe (Sec-
tion 4.2) a simple way for changing the characteristics of our SBS3
prefilter ψ by combining it with other existing prefilters, while still
preserving its unique sharpness. We use this procedure to define a
collection of prefilters based on SBS3, composed of (i) ψOQI3→SBS3
for when one wants to move away from aliasing (but towards more
ringing); (ii) ψBox→SBS3 for moving away from ringing (but towards
more aliasing); and (iii) our original ψ, which strikes a good bal-
ance between aliasing and ringing for the general case. All of these
alternatives are efficient and preserve the linear-time computational
complexity of the technique. We additionaly define ψTent→SBS3,
which is equivalent to ψ in sharpness and ringing, but facilitates
the integration of our approach with e.g. black-box Monte Carlo
rendering software, as discussed in Section 5.3.

4.1.2. Measuring Sharpness, Aliasing and Ringing

The sharpness, aliasing and ringing characteristics of our collection
of SBS3 filters are summarized in Table 1. These quantitative metrics
were obtained as follows: sharpness (S) measures how close the
reconstruction spectrum (blue curves in Figure 8) approximates an
input broadband spectrum (a constant spectrum with amplitude 1)
in the frequency interval [−2,2); aliasing (A) is measured as the
area of the blue shaded regions shown in Figure 8; and ringing (R)
is measured by the area of the second and higher negative lobes
in the impulse response (thus measured in the spatial domain) of
the prefilters. We ignore the first negative lobe when computing
(R) since, as pointed out by Mitchell and Netravali [MN88], the
first negative lobe helps to improve sharpness. Table 1 shows that
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Sampling prefilter (S)harpness (A)liasing (R)inging Observation

Box S=1.136 A=1.000 R=0.000
Tent S=1.000 A=0.267 R=0.000

Gaussian 2x2 (σ = 1/3) S=1.099 A=0.422 R=0.000
Gaussian 3x3 (σ = 3/6) S=0.922 A=0.152 R=0.000
Gaussian 4x4 (σ = 2/3) S=0.777 A=0.070 R=0.000

Mitchell-Netravali S=1.010 A=0.172 R=0.000
OQI3 S=1.146 A=0.180 R=0.090
Sinc S=1.162 A=0.168 R=1.000

SBS3 S=1.514 A=0.451 R=0.074 Good Compromise
OQI3→SBS3 S=1.514 A=0.339 R=0.398 Reduce (A)
Box→SBS3 S=1.526 A=1.606 R=0.052 Reduce (R)
Tent→SBS3 S=1.514 A=0.609 R=0.071

Table 1: Sharpness, aliasing, and ringing characteristics of various
prefilters. Higher values of sharpness are preferred, while lower
values of aliasing and ringing are better. Values normalized by the
scores of Tent (sharpness), Box (aliasing), and Sinc (ringing). Our
SBS3 prefilter offers a good compromise among sharpness, aliasing,
and ringing (also see Figure 9).

Box
TentMitchell-Netravali

OQI3
Sinc

Box→SBS3OQI3→SBS3 Tent→SBS3SBS3

Less Ringing or More AliasingLess Aliasing or More Ringing

Sh
ar

pn
es

s

Figure 9: Relationship among various prefilters considering their
sharpness, aliasing, and ringing characteristics. The names of our
collection of SBS3 prefilters are in bold.

our SBS3 prefilter ψ offers a good compromise among sharpness,
aliasing, and ringing. Its variants ψBox→SBS3 and ψOQI3→SBS3 can
be used if one wants to favor reduction in ringing, and aliasing,
respectively, while preserving sharpness.

The S-A-R indices are used to visualize the relationship among
the filters by positioning them in a 2-D space (Figure 9), where the
vertical axis is given by S and the horizontal axis is given by A minus
R (representing the trade-off between aliasing and ringing). Note
that such a visualization has to be taken with a grain of salt since the
3-D S-A-R space is not embedable in 2-D without some loss of in-
formation. Nonetheless, Figure 9 portrays the fact that our collection
of SBS3 prefilters are considerably sharper than existing options,
while allowing for a wide range of choices in the aliasing-ringing
range based on user preference and application characteristics.

4.2. Oblique Projections

To compute Eq. (5) one must know f almost everywhere in its
domain. Unfortunately, in many situations f is not known, and we
only have access to its measurements with some prefilter η:

pη[m,n] =
∫

f (u,v)η(u−m,v−n)dudv. (10)

This happens, for example, when one is given the pixels pη gener-
ated by a black-box Monte Carlo renderer, with the accompanying
information that they were computed using, e.g., a tent filter η. In

any case, when f is unknown it is not possible to minimize ‖ f − f̃‖.
An alternative is to seek a reconstruction f̃ which results in the same
measurements (pη) if prefiltered and sampled again with η. This
is called an oblique projection due to the geometry of the underly-
ing inner products [UA94], and it also has a closed-form solution,
which involves convolving the coefficients pη with the (discrete)
convolutional inverse of the cross-correlation of ϕ and η:

aϕ,η[k] =
∫

ϕ(u)η(u− k)du. (11)

In our cases of interest η has compact support, and the computational
complexity of oblique projection is linear on the number of samples.

4.2.1. A collection of sharp prefilters based on SBS3

If we call Vϕ and Vη the function spaces spanned by shifts of ϕ

and η, we empirically observe that the oblique projection f̃ ∈Vϕ is
also close to Vη. Thus, it retains important characteristics from both
spaces. We use this fact to define a collection of prefilters which
combine the sharpness of our SBS3 with the good properties of
other prefilters from the literature.

Choosing Vη as the OQI3 space of Sacht and Nehab [SN15], one
obtains the oblique-projection prefilter ψOQI3→SBS3 which is as
sharp as SBS3 but with improved aliasing characteristics. This is
seen in the plot of Figure 8 and in Table 1 (numbers highlighted in
blue). Reducing aliasing while being sharp means that ψOQI3→SBS3
rings more. As such, it should be applied in situations where aliasing
is less preferable than ringing, such as when downscaling images
with repeating patterns (Figure 10).

Choosing Vη as the space spanned by box kernels allows one to
move in the reverse direction. The ψBox→SBS3 prefilter considerably
reduces ringing and should be used in situations where the func-
tion f has sharp, step-like discontinuities (where ringing is most
problematic). A representative application is the rasterization of
vector graphics, illustrated in Figure 15. An additional advantage
of ψBox→SBS3 is that it is evaluated simply by box prefiltering (fol-
lowed by efficient digital filtering), thus being trivial to implement
and to integrate into existing pipelines.

Finally, choosing Vη as the space spanned by tent kernels results
in a prefilter ψTent→SBS3 which is very similar to SBS3 (ψ) in
sharpness and ringing, but suffers more from aliasing. It is therefore
an option for obtaining a balance similar to SBS3 when f is only
known from its measurements in a tent basis. A good example of its
use is to post-process a common variety of Monte Carlo renderings
generated with the tent, as illustrated in Figure 16.

4.3. Clamping and negative light

Filters with negative lobes provide higher contrast at the edges due
to their “controlled ringing” characteristics [ST85]; this nevertheless
comes at the cost of possibly having negative and overshot pixel val-
ues. The straightforward solution is to simply clamp invalid values
to the [0,1] range. For overshot values this procedure works satis-
factorily since humans are less sensitive to errors in high luminance
regions [KU81]. Furthermore, with the increasing availability of
high-dynamic range displays, the intensity of overshot values may
actually be representable and doesn’t need to be clamped.
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(a) Original (b) SBS3 (c) OQI3 (d) OQI3
−→SBS3

Figure 10: Comparison between prefiltering and downscaling (by a
factor of 4) the same image using SBS3, OQI3 and the oblique pro-
jection from OQI3 to SBS3. While SBS3 (b) is sharp (see grass in the
third row), it suffers from aliasing (second row). With OQI3 (c) the
converse occurs: it removes aliasing but the image looks too blurry.
Oblique projection from OQI3 to SBS3 (d) has simultaneously low
aliasing and good sharpness properties. Check the supplementary
material for the images in their intended (native) resolution.

In a theoretical sense, clamping values after sampling and prior
to display means that the reconstructed image (the one arriving on
the retina of the viewer) will not be the one that minimizes the re-
construction error. How close this clamped image will be to the best
reconstruction is briefly discussed by Kajiya and Ullner [KU81].
For orthogonal basis functions (like the sinc), the Pythagorean theo-
rem implies that it is safe to clamp negative values to zero, as this
results in an image as close as possible to the best reconstruction we
can have. For bi-orthogonal bases like our ϕ-ψ pair, the best non-
negative reconstruction is not necessarily the one achieved through
clamping.

To solve this positivity constraint, Kajiya and Ullner propose an
iterative, non-linear optimization to minimize the distance ‖ f̃ − f‖
while constraining the coefficients p[i, j] to be non-negative. Ne-
hab and Hoppe [NH14] go a step further and account also for the
overshot values. They propose a minimization program over the
coefficients of the digital filter q (Eq. (6)) which guarantees that the
reconstructed image minimizes the reconstruction residual while
being within the valid range. Both solutions have in common the
need for intricate non-linear optimizations, which takes away the
advantages of using linear filters. Although one should be aware of
this fact, we believe that, in practice, clamping does not pose much
of a problem. Natural images and 3D renderings, with adequate
exposure settings, shouldn’t have many pixels in the extremes of the
representable dynamic range. For vector graphics, on the other hand,
black to white transitions are common. In this case we recommend
the use of our ψBox→SBS3 prefilter, which significantly reduces ring-

ing and consequently the occurence of negative or overshot pixels.
We include several examples in our supplementary materials.

4.4. Arbitrary Viewing Conditions

The size of the observer’s PSF (in screen units) increases proportion-
ally to the ratio between the viewing distance and display pixel size
(D/P in Eq. (15)). A larger PSF has a narrower frequency passband,
attenuating frequencies more and more as, for example, one moves
away from the screen. As more information gets blurred, our pre-
filter ψ (red curve in Figure 5) must work harder to boost detail in
order to prevent the loss of image sharpness. This process becomes
progressively unstable as the frequency response of the inverse filter
Q(z), in Eq. (7), tends to infinity. Long before that happens, the
limited dynamic range of the display device (Section 4.3) prevents
us from showing the necessary high-intensity values on the screen
that in theory would minimize the reconstruction error.

One must therefore stop the over-boosting of frequencies that
inevitably get annihilated by the PSF for large viewing distances.
This is achieved by finding a regularized solution to the inverse prob-
lem in Q(z), one which defines a quasi-dual prefilter [Uns96]. The
frequency response of this regularized solution matches the exact
solution as one approaches the origin, but tapers off for increas-
ing frequencies in order to avoid overshoot. Figure 11 shows one
example of regularized solutions computed for increasing viewing
distances.

In general, however, the exact viewing conditions may be either
unknown or highly variable, and it may be impractical to repeatedly
recompute an image for a variety of situations. In this case we rec-
ommend the use of D = 40 cm and P = 0.25 mm as the baseline for
computing a prefilter which gives good results for average viewing
conditions on digital displays. All results shown in the paper and
supplementary materials were computed for this baseline, unless
otherwise stated.

5. Applications

We showcase a variety of applications where our SBS3 prefilters
yield results consistently sharper than the state-of-the-art. We com-
pare against the classic box, tent, and Mitchell-Netravali [MN88]
filters; in addition to the Optimized cubic Quasi-Interpolator
(OQI3) [SN15], included as a good representative of modern gen-
eralized sampling filters [Uns00]. For image downscaling, we in-
clude in the comparisons the least-squares image resizing method
of Munõz et al. [MnBU01], and the non-linear filters of Öztireli and
Gross [OG15], Weber et al. [WWA∗16], and Kopf et al. [KSP13].
We do not include results from the downscaling technique of Gastal
and Oliveira [GO17] since it is orthogonal to and can be combined
with any resampling strategy, including our SBS3 prefilter.

Our images are meant to be viewed at their native resolution. We
magnify some regions to emphasize the enhancement of sharpness
and the balances between aliasing and ringing, but please keep in
mind that zoomed-in results may incorrectly appear “oversharpened”
(for example, an edge perceived as overshot when zoomed in may
look naturally sharp when viewed in native resolution due to the
attenuation of the viewer’s PSF). As such, we encourage the readers
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(a) Original photograph (b) Prefiltered for D = 80 cm (c) Prefiltered for D = 200 cm (d) Prefiltered for D = 400 cm

Figure 11: Prefiltering an image to a variety of viewing distances using SBS3 (Section 4.4). These results have been computed for a 100 ppi
display and the observation distances D listed under each image. Zooming out of the digital version of this document may be used to simulate
larger viewing distances, but this causes extra filtering by the PDF viewer. Thus, for best results images should be displayed at 1:1 pixel zoom
and seen from the actual distance indicated in the corresponding caption (raw image files may be found in the supplementary material).

to inspect the original-size results included in the supplementary
materials.

5.1. Monte Carlo Rendering

In Monte Carlo rendering, “image reconstruction” commonly refers
to the final computation of pixel intensities from samples collected
by the renderer [PJH16]. The reader should note that such a task ac-
tually corresponds to the sampling stage in Figure 2(a). The spatially-
continuous image f is the scene being rendered.

Research renderers like PBRTv3 and Mitsuba implement only a
few different prefilters: Mitchell-Netravali, Catmull-Rom, Lanczos,
box, tent, and Gaussian. In the industry, a similar situation occurs:
the documentations for Renderman [Ren19] and Arnold [Arn19]
recommend the use of a Gaussian prefilter with a width of 2 pix-
els (σ = 1/3), which is almost as blurry as a tent (S=1.099 vs
S=1.000) and with much more aliasing (A=0.422 vs A=0.267) (refer
to Table 1). Furthermore, standard references [PJH16, HvDM∗13]
discuss only the classic prefiltering solutions, with only indications
of modern alternatives. This is understandable, given that simple
approaches such as Gaussian prefiltering give good-enough results
when one is not aware of better options.

Our sharp prefilters may be efficiently employed for rendering.
This is done by computing the integrals in Eq. (9) with stochastic
sampling [DW85]. As suggested by Nehab and Hoppe [NH14],
we share the subpixel samples between overlapping shifts of ϕ

to reduce variance. The resulting sequence of coefficients is then
convolved (along the rows and columns) with the recursive digital
filter q, Eq. (7), in linear time, to produce the final image. The
exact same steps can be applied for rasterizing vector graphics, as
one also computes pixel values from stochastic sampling, the only

difference being the function being integrated. This pipeline is easily
incorporated into any rendering system, as ϕ (Eq. (9)) is a simple
piecewise-polynomial filter, and the recursive-filtering step may be
done outside the renderer by post-processing the output image.

Figure 12 compares the performance of the box, Mitchell-
Netravali, OQI3, and SBS3 filters in rendering three different path-
traced scenes. The same set of stochastic samples were precomputed
and used by all approaches to generate the images. Notice how our
SBS3 technique preserves fine details and emphasizes edges with
subtle outlines, pre-compensating for the blurring caused by the
observer’s PSF.

Our technique is orthogonal to Monte Carlo denoising meth-
ods, which focus on generating good images from an insufficient
number of samples. When a large number of samples is available
but the image still looks blurry, denoising cannot improve the im-
age quality—something that our SBS3 prefilter is designed to do.
Furthermore, our technique could be used to generate sharp ground-
truth images for training recent machine learning denoising tech-
niques [BVM∗17]. In the other direction, given a suitable model for
the denoising kernel of a particular denoising method, it is perfectly
reasonable to employ the oblique projection operator (Section 4.2)
to compute the equivalent sharp images in the SBS3 space.

5.2. Image Downscaling

Image downscaling can be implemented and interpreted in countless
different ways [UAE95, LEU98, MnBU01, NH14, OG15, WWA∗16].
A finite collection of pixels gives an inherently limited view of what
the original spatially-continuous information actually was. As such,
for downscaling (or upscaling), one must assume some model for
the relation between the pixels p and the original function f .
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(a) Our SBS3 rendering (b) Our SBS3 (zoom) (c) OQI3 (d) Box (e) Mitchell-Netravali

Figure 12: Performance of different prefilters for path-traced rendering. Fine details like the bars of the window (top row) and scratches/carving
on the surfaces (fifth and sixth rows) are blurred by OQI3 (c), Box (d) and Mitchell-Netravali (e); but are preserved by SBS3 (b). Moreover,
SBS3’s controlled ringing on the edges makes shadows (third row) and contours (second, fourth row) better outlined. Notice how OQI3’s
ringing is more perceptible around the shadow region.

We analyze the performance of our SBS3 prefilter for image
downscaling by choosing the simplest possible model for the input
image: that its pixels were obtained by sampling the original (and
unknown) function f at unit intervals, p[n] = f (n),n ∈ Z. Since
f may not have been bandlimited before this sampling, we avoid
making any assumptions of how it behaved between samples. As
such, we define a reconstruction f ∗ as a sequence of Dirac deltas

located at the sample positions and scaled by the associated sample
values: f ∗(x) = ∑n∈Z p[n]δ(x−n). For a downscaling factor τ > 1,
it is now possible to find the orthogonal projection of the rescaled
f ∗(τx) onto the SBS3 space. Plugging this f ∗ into Eq. (5) yields

pdownscaled[m] = ∑
n∈Z

p[n]ψ(n/τ−m), (12)
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which represents the correlation (convolution) between the discrete
pixels of the input image and the τ-scaled continuous SBS3 pre-
filter ψ. Since ψ has infinite support, it is computationally preferable
to substitute Eq. (6) into Eq. (12) to reach

pdownscaled[m] = ∑
k∈Z

q[k]c[m+ k], (13)

where

c[i] = ∑
n∈Z

p[n]ϕ(n/τ− i). (14)

If τ is an integer, then c is given by (i) the discrete correlation
between the input image’s pixels p and a sampling of the compactly-
supported polynomial kernel ϕ; followed by (ii) decimation by a
factor of τ. If τ is not an integer, computing Eq. (14) is slightly
more intricate: one has to evaluate ϕ at arbitrary locations n/τ− i,
for n, i ∈ Z. After c has been computed, the final downscaled pixel
values are obtained by efficient recursive filtering with q (Eq. (13)).

5.2.1. Visual Quality Evaluation

We used the aforementioned downscaling procedure to evaluate all
linear prefilters: SBS3, OQI3, Mitchell-Netravali, and box. For the
downscaling techniques of Öztireli and Gross [OG15], Weber et
al. [WWA∗16], Munõz et al. [MnBU01], and Kopf et al. [KSP13],
we used the source code kindly provided by the original authors.

Figure 13(a) shows a portrait picture with some fine to medium-
scale details. Our SBS3 prefilter in (b) manages to downscale this
image by a factor of 5 in each dimension while preserving details
of the hat, scarf and necklace. Notice also the sharpness of the
eyes and the outline of the face in our result (b), a region which is
significantly blurrier in the output of the other filters (c-g). The result
of the Öztireli-Gross downscaling method in (c) preserves some of
the high-frequency variations of the hat’s texture, but converts it to
aliasing-like noise. All of these techniques can be computed in real
time, except the filter of Kopf et al. [KSP13] which takes several
seconds for computation.

While the notion that “sharper equals better” may be subject to in-
dividual preference, previous works on perceptual image downscal-
ing [KSP13,OG15] verify through user studies that their techniques—
described as “sharper” [KSP13]—are preferred over others. Our user
study, described next, also points in this direction.

5.2.2. User Study

We conducted a user study to evaluate how users perceive our
filter in comparison to other techniques. The test consisted in
showing the users a sequence of combinations of an input im-
age, in its original size, along with two downscaled versions of it,
generated by different prefiltering techniques, to which the user
is asked to choose the one she/he thinks “better represents the
full-sized image”. We used the same 13 image dataset used by
Kopf et al. [KSP13]. For each user we displayed in random order
all pairs from {Box,Mitchell-Netravali,OQI3,Oztireli}×{Ours},
which gives a total of 4 ·13 = 52 pairs of downscaled images evalu-
ated per user. We chose two “classical” filters: box, for its simplicity
and widespread use, and Mitchell-Netravali for its “overblurring”
behavior, as we wanted to validate whether in any situation users
prefer blurrier images. OQI3 [SN15] and Öztireli and Gross [OG15]

(a) SBS3 (b) Öztireli-Gross (c) Munõz et al.

(d) OQI3 (e) Weber et al. (f) Kopf et al.

Figure 13: Downscaling the image of Figure 11 by a factor of 5
(103x154). Note how details of the hat and scarf, as well as the
face and eyes, are better outlined due to SBS3’s sharpness. (These
images are better seen in the supplementary materials to avoid the
unwanted resampling done by the PDF reader).

were chosen as state-of-the-art techniques for which we had access
to source code. We did not compare against Weber et al. [WWA∗16]
as their technique is not suited for small images. The technique
of Kopf et al. [KSP13] did not perform better than Öztireli and
Gross’ technique in their user tests, thus we also removed it from
the study in order to reduce the total number of pairs shown to the
user. To check consistency of the choices, all users were shown
each pair twice along the test, switching the left-right order of the
downscaled images The answers of a participant for an image pair
are considered inconsistent if he/she indicated preference for both
images (one each time the pair was presented). A total of 35 sub-
jects saw 2 ·52 = 104 pairs of images on the same monitor (1080p,
144 ppi). As recomended by [KSP13] we discarded all responses
from subjects with more than 80% inconsistency and, moreover, we
discarded individual inconsistent choices.

The preference counts are summarized in Figure 14. Subjects had
an average inconsistency rate of 33%, with the most inconsistent
one scoring 61%, and the most consistent scoring 3%. Among the
consistent choices, there is a clear preference for our technique over
the others.

We found that when presented with Mitchell-Netravali vs. SBS3,
subjects are highly consistent in preferring our algorithm. This
shows that our sharp images are preferred over overblurred ones. In
all pair-wise comparisons involving our filter and Mitchel-Netravali,
Öztireli and Gross, OQI3, or Box, our results were consistently pre-
ferred. In all cases, the number of inconsistent answers superseded
the other technique multiple times. Finally, we found no apparent
correlation between the image content (text, fine details, edges) and
our technique scoring higher or lower, or the choices being more or
less inconsistent.
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Figure 14: Counts of how many times images downscaled using our
technique were preferred over others in the user study. As can be
seen, our SBS3 prefilter (green bars) is consistently preferred over
both classic and state-of-the-art filters (blue bars).

(a) Vector graphics raster-
ized with our ψBox→SBS3

(b) Box prefiltering & sampling

(c) Box→SBS3 (zoom of (a))

Figure 15: Vector graphics illustration rasterized through stochastic
sampling using a box prefilter (b), followed by oblique projection to
SBS3 (a,c). Please refer to the supplementary materials to inspect
the images in their native size (PDF readers perform interpolation).

5.3. Oblique Projection Applications

Our collection of prefilters allows for the trade-off between alias-
ing and ringing. Figure 10 illustrates an image-downscaling task
performed with our ψOQI3→SBS3 prefilter, which defines an oblique
projection from the OQI3 space [SN15] to SBS3. As seen in (d),
this defines a prefilter which combines the sharpness of our SBS3
space with the good anti-aliasing properties of OQI3.

Figure 15 shows our ψBox→SBS3 prefilter applied to the task of
vector graphics rasterization. It defines an oblique projection from
the space spanned by box kernels to SBS3 and, as such, combines
the no-ringing property of the box space with the sharpness of the
SBS3 space. Notice how the resulting image in (a,c) is much sharper
than the one obtained by simple box filtering (shown in (b)), but has
jagged edges caused by the box prefilter that are sharpened by the
digital filter.

Figure 16(a,b) displays an image rendered with the Tungsten
software, which we obtained online (https://benedikt-bitterli.me/
resources/). It was generated with a tent prefilter. We post-process
this image to perform the oblique projection Tent→SBS3, resulting
in a significantly sharper and detail-rich rendering, shown in (c)

(a) Original rendering with tent (b) Zoom of (a) (c) Tent→SBS3

Figure 16: Image rendered from stochastic samples with a tent filter
(a,b) and obliquely projected to our SBS3 space (c). Note how edges
are much sharper with the use of SBS3, and also how fine texture
details—originally blurred in (a,b)—are enhanced in (c).

(uncropped results available in the supplementary materials). If
the scene had been rendered directly with our SBS3 prefilter (Sec-
tion 5.1), the resulting image would be as-sharp-as (c) but with
better anti-aliasing properties, as attested by the metrics in Table 1.
However, by performing the oblique projection Tent→SBS3 as a
post-processing, one can easily integrate our prefilter with any black-
box rendering software. The supplementary materials include video
examples showing the application of Tent→SBS3 to short clips ren-
dered by the Blender Foundation, in addition to many more example
images.

6. Conclusions

We presented an extended view of the image sampling and recon-
struction process, where we take into account the observer for de-
signing sharp prefilters for image display. We discussed how to
generate optimal images based on this new pipeline, in addition to
applications which we think are greatly improved by employing
our technique. Our method is general and allows for the definition
of a collection of filters based on our SBS3. The proposed filters
offer a wide range of options for balancing the trade-off between
aliasing and ringing, while keeping the resulting images sharp. We
demonstrated this fact through an in-depth analysis and discussion
of the properties of the proposed SBS3 family and how it relates to
existing filters and theory.

As future work, we are currently investigating the use of non-
linear filters to address the fundamental trade-off between aliasing,
ringing and blurring. In particular, the challenge of how to pre-
filter and sample a signal without overblurring, without incurring
aliasing, and with no apparent ringing (which is perceptually ob-
jectionable), is still an important open problem. The integration of
SBS3 with Monte Carlo denoising techniques and the use of the
oblique projection operator to mix and match filters (Section 5.3)
are also interesting directions of future exploration.

c© 2020 The Author(s)
Computer Graphics Forum c© 2020 The Eurographics Association and John Wiley & Sons Ltd.

447



L.C.G. Rocha, M.M. Oliveira & E.S.L. Gastal / Prefilters for Sharp Image Display

Our work provides an alternative look into the problem of image
sampling and reconstruction, which is pervasive in graphics and
image processing. As such, we believe it has the potential to stim-
ulate new research, and improvements on applications and display
systems.
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Appendix A: Display-Eye reconstruction is not a sinc

We present a simple experiment which demonstrates that the com-
bined reconstruction performed by a display device and the human
visual system is not a sinc interpolation. Consider a cosine wave in
screen space with a frequency of 19/40 cycles per pixel, as illus-
trated here:

Since the frequency of this wave is below the Nyquist limit of 0.5
cycles per pixel, this continuous wave can be reconstructed exactly
from its samples taken at integer positions, using sinc interpolation,
as illustrated below:

By mapping the values of these samples to the intensity values of
the pixel columns of a 2-D image, one obtains the following result:

If this image is displayed at exact 1:1 zoom (please see the supple-
mentary materials since PDF readers do interpolation), then theory
says that one should observe a perfectly continuous cosine wave if
reconstruction is done with a sinc. Instead, when looking at this im-
age we see a conspicuous “beating” pattern [Bli89], more precisely
known as post-aliasing or reconstruction artifacts [MN88].

This demonstrates that the joint reconstruction done by the display
device and the human visual system is not sinc interpolation.

Appendix B: Measuring the Human PSF in screen units

As discussed in Section 3.1, under constant conditions the eye’s
PSF has a fixed shape and size on the retina Ω. What does change
however is its relative size compared to the image projected on
Ω: the farther away the display, the smaller the final, projected
image will be. More precisely, the image projected on the retina gets
smaller as the viewing distance D increases and also as the pixel
size P decreases (as this causes the image itself to be smaller on the
display). Thus, the relative size between the projected image and the

PSF can be computed in terms of these two quantities. To simplify
implementation, we work in screen (pixel) units (u,v) ∈ S, where
the image’s size is constant but the PSF’s size will vary with D and P.
Furthermore, this variation is readily seen to be linear [Goo05]. As
such, we perform a simple experiment to measure the approximate
size of the PSF for some known value of D and P, from which its
size in any other situation is immediately defined.

An alternating sequence of black and white pixels (0.5 cycles
per pixel, a frequency we refer to as ω̂) is displayed on a monitor
with P = 0.25mm (100 dpi display). We empirically observe that
this sequence starts to be perceived as a continuous gray line when
viewed by an average person at a distance of about D = 120cm.
Under these conditions, the eye’s PSF removes the high-frequency
information of the black-and-white sequence, and consequently its
frequency response is (close to) zero at frequency ω̂. This fact and
the PSF’s shape is all that is necessary to compute the PSF’s size.

In order to simplify the Fourier analysis in this derivation, we
replace the quadratic B-spline approximation of the PSF in Figure 3
with an equivalent Gaussian model (remember that B-splines of
increasing order converge to a Gaussian). Thus, taking the PSF as a
Gaussian function, its Fourier transform (also a Gaussian) should
have a standard deviation of ω̂/3 units in order to reach close to
zero frequency response at ω̂. In the spatial domain such a PSF
has a standard deviation of 3/π pixels. Thus, given a linear pinhole
projection model, the standard deviation for an arbitrary viewing
distance D (in cm) and pixel size P (in mm) is given by

σ =
3
π

(D/120)
(P/0.25)

=
3
π

D
P

0.25
120

(in pixels). (15)

The equivalent quadratic B-spline that models the PSF for this
deviation is (for α = 0.535/σ obtained by numerical optimization):

s(u) =
1
3


−4|αu|2 +3 if 0≤ |αu|< 1/2;

2|αu|2−6|αu|+9/2 if 1/2≤ |αu|< 3/2;
0 otherwise.

(16)
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