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Figure 1: Lighting significantly affects task performance and is therefore an important factor in interior design. Our method optimizes
furniture arrangement by combining illumination goals with functionality constraints, resulting in usable, comfortable layouts.

Abstract

Lighting plays a very important role in interior design. However, in the specific problem of furniture layout recommendation,
illumination has been either neglected or addressed with empirical or very simplified solutions. The effectiveness of a particular
layout in its expected task performance can be greatly affected by daylighting and artificial illumination in a non-trivial manner.
In this paper, we introduce a robust method for furniture layout optimization guided by illumination constraints. The method
takes into account all dominant light sources, such as sun light, skylighting and fixtures, while also being able to handle
movable light emitters. For this task, the method introduces multiple generic illumination constraints and physically-based light
transport estimators, operating alongside typical geometric design guidelines, in a unified manner. We demonstrate how to
produce furniture arrangements that comply with important safety, comfort and efficiency illumination criteria, such as glare
suppression, under complex light-environment interactions, which are very hard to handle using empirical or simplified models.

CCS Concepts
• Computing methodologies → Graphics systems and interfaces;

1. Introduction

Inverse geometry problems cover a wide area of research that is
actively being explored over the past few years. The term encom-
passes many aspects of geometry optimization via parametric or
direct manipulation, driven by specific constraints and goals. Typ-
ically a user specifies a set of goals that need to be satisfied by
the geometry and a system calculates and proposes valid param-
eter states that best satisfy them. Automatic and semi-automatic
furniture layout is a specific inverse geometry problem relevant to
interior design, where a given space must be populated according
to functional and aesthetic rules, with either a predetermined or au-
tomatically proposed set of furniture pieces, resulting in an optimal
arrangement or synthesized environment, respectively.

As will be discussed in Section 2, several furniture arrange-
ment approaches focus on spatial, ergonomic and utilitarian aspects
of a layout. However, as indicated by standard practical guide-
lines [TW13, KSB17], illumination is a core aspect of interior de-
sign and measuring the effectiveness of illumination in terms of
task-specific target illuminance or intensity levels is an established
procedure. Illumination, especially from dominant sources such as
sunlight, sky lighting and main fixtures, directly affects comfort
levels, task and energy efficiency. For example, a modern living
room needs to be designed so that the layout takes advantage of any
natural lighting during daytime, while efficiently utilizing artificial
lighting in low-light conditions. Likewise, office spaces should be
designed and laid out so that lighting conditions favor comfortable
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and uninterrupted work for employees, including direct and indirect
glare elimination on work surfaces and screens, which can greatly
hinder the operator’s performance due to eye strain.

Illumination-guided design has often been addressed by very
approximate or even empirical approaches in the literature (e.g.
[TW13, FB15]). However, in realistic, practical scenarios, light
transport in a complex environment with diverse materials can
cause the distribution of incident light on object surfaces to vary
significantly and is greatly affected by their relative arrangement.
Furthermore, important aspects of lighting design, such as glare
minimization, depend on the directional characteristics of incident
light, something that has often been neglected in the past and can
only be addressed by a light transport simulation that encompasses
all major light-surface interaction events.

In this paper, we contribute to the current state of the art by in-
troducing detailed and generic illumination constraints to the furni-
ture layout problem. We support multiple types of lighting goals (or
lighting intentions) and evaluate illumination by physically-based
light transport estimators. We combine our illumination-driven ap-
proach with established functional constraints from the literature in
a unified method that recommends usable furniture layouts (see an
example in Fig. 2). We demonstrate how taking into account com-
plex light interactions helps elegantly address highly-directional
lighting constraints associated with polished surfaces, gaze or focus
direction preference and glare. As a result, the generated furniture
arrangement recommendations comply with important safety, com-
fort and efficiency considerations related to illumination, which are
very often hard to address with empirical, simplified or manual ap-
proaches. In essence, we transform a tedious, iterative trial and er-
ror process into a nearly linear one, providing a starting point for
aesthetic adjustments, after addressing comfort and functional as-
pects of the design. Finally, we adapt a Markov Chain Monte Carlo
optimization process to the specific problem at hand performing
the following optimizations: We construct a hierarchical mutation
strategy that accommodates functional object groups, which natu-
rally fits the problem of furniture layout and helps speed up opti-
mization. We introduce disjoint parameter ranges and show how to
effectively incorporate their non-continuous nature in the optimiza-
tion strategy of our method and only perform the expensive lighting
constraint evaluation for object placements that do not violate geo-
metric constraints.

In our system, the user is responsible for providing the geometry
of an environment and the objects that must be arranged within its
extents. We closely follow the priorities of an interior designer by
addressing functionality and comfort constraints and leaving aes-
thetic interventions last, to be provided by the domain expert. Ac-
cording to standard practical guidelines [TW13, KSB17], measur-
ing the effectiveness of illumination in interior design in terms of
task-specific target illuminance or intensity levels is an established
procedure. Therefore, the user also provides the desired illumina-
tion levels constrained on specific surfaces, directions or volumes
attached to the given geometry or placed in free space. Coupled
with a plethora of ergonomics and utility guidelines, expressed as
geometric constraints, lighting intentions can greatly complement
the pipeline of a professional interior designer.

We differentiate this work from light source placement prob-
lems, where the primary goal is to establish the number, position
and/or orientation of luminaires in a fixed environment. For practi-
cal application purposes, interior designers primarily rely on high-
power sources, which cannot be altered - unless a thorough and
radical renovation of the space is requested - since they constitute
either part of the natural lighting or pre-installed building fixtures.
In low-light conditions, when the existing illumination sources fail
to satisfy our constraints, the user can opt to include the placement
of movable light sources in the layout recommendation, which are
seamlessly supported by our method.

2. Related Work

In this section, we briefly review prior layout optimization meth-
ods that encompass design guidelines and lighting intentions either
separately or jointly and stress on the contributions of this work
beyond the state of the art.

In the domain of constrained layout optimization, Harada et
al. [HWB95] proposed a system for assisted layout design, in
which constraints were interactively checked during object ma-
nipulation. Violations would trigger a local search for the conflict
resolution. Nakajima et al. [NHH∗06] presented a specialized in-
teractive method for the specific problem of populating office in-
teriors with furniture and office equipment. More recently, Yu et
al. [YYT∗11] proposed a fully automatic system for furniture ar-
rangement of indoor scenes. The user provides an initial set of
previously furnished interiors, which are used to extract spatial re-
lationship metrics for furniture pieces. The combined metrics are
minimized as a cost function via Simulated Annealing in order to
find the best arrangement. Fisher et al. [FRS∗12] proposed a tech-
nique that trains probabilistic models on an existing scene database
for both object occurrence and arrangement. These are later used
to synthesize new scenes. Fu et al. [FCW∗17] used an object rela-
tion database along with predefined object categories, in an adap-
tive method for 3D scene synthesis using activity-associated object
relation graphs. In a similar manner, Merrell et al. [MSL∗11] pro-
posed a semi-automatic method for interactive layout design. To
this effect, a wide range of mathematically-modelled interior de-
sign guidelines is supported and combined in a cost function, which

Figure 2: An example scene optimized for reading and dining task
illumination and glare minimization (TV screen). The ceiling light
fixtures are shown in yellow.
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drives a Markov Chain Monte Carlo-style exploration of the trans-
formation parameter space in order to complement the designer’s
actions. Recently, Ma et al. [MPF∗18] proposed a natural language-
driven model for 3D scene synthesis.

Several methods target procedural scene population and synthe-
sis. Germer and Schwarz [GS09] described a method to procedu-
rally generate plausible interior layouts of buildings, for use in real-
time walkthroughs. The work of Xu et al. [XSF02] attempts to fill
an empty interior, one object at a time, utilizing spatial and seman-
tic constraints, which are stored in a semantic database for each
object class. More recently, Kán and Kaufmann [KK17,KK18] pro-
posed an automatic method for quick interior environment synthe-
sis using a genetic algorithm and greedy cost minimization, respec-
tively. Their approach combines object selection from a repository
as well as material selection for the final configuration to achieve a
pleasant color scheme in the generated scene.

Very recently, with the emergence of semantically annotated
3D indoor scene datasets [LSM∗18, SYZ∗17], machine learn-
ing approaches, and particularly deep learning generative tech-
niques, have been applied to both 2D [WSCR18] and 3D [LPX∗19,
ZYM∗18] representations of interior scenes to great effect.

The literature for illumination-guided furniture optimization is
very sparse, since none of the above methods includes any lighting
constraints. Yamakawa et al. [YDY16] attempted to solve a similar
problem to ours, but with an extremely simplified formulation and
lighting evaluation approach. The authors proceed to optimize a
single scene using object constraints and target illumination levels.
Illumination is evaluated using diffuse inter-reflection based on the
radiosity method. The authors claim that the contribution of inter-
reflections among objects is not significant, despite experimental
evidence to the contrary, especially for highly reflective surfaces,
densely occupied environments or openings with overhangs. Lastly,
they do not account for natural lighting either from the sun or the
sky dome.

Illumination as a goal has been central to other forms of in-
verse design, such as inverse lighting optimization for luminaire
placement, car headlight design and opening design. Notable meth-
ods in this genre include the works of Kawai et al. [KPC93] for
designing the illumination in a static environment, Schwarz and
Wonka [SW14] on street light pose optimization, Gkaravelis and
Papaioannou [GP16] on the population of interior environments
with light sources and Mas et al. [MMP18] on headlight reflector
design.

The RADIANCE system from Ward [War94] was developed for
the specific demands of lighting design and architecture and was
one of the very early attempts to incorporate accurate, physically-
based simulation of lighting for tasks other than image synthesis.

3. Method Overview

Given an initial selection of objects for a user-defined interior 3D
space, our goal is to find object arrangements that best satisfy in-
terior design guidelines, while respecting lighting intentions set
by the designer. To that end, we optimize a cost function, which
combines both illumination goals and functional (geometric) con-

straints, over a transformation parameter vector x. x is the concate-
nation of all degrees of freedom xi for translation and rotation of
entities (Fig. 5 - top right). Generic semantic constraints associat-
ing pieces of furniture can be intuitively transformed into geometric
ones, as described in Section 5 and also previously discussed in the
literature (e.g. [MSL∗11]). Please note that certain transformation
parameters may be immutable, in order to either respect physical
limitations or enforce user-defined invariants. Likewise, certain ge-
ometric parts may be completely immovable, solely acting as col-
lision targets and support surfaces for lighting constraints.

We perform arrangement optimization hierarchically, therefore
local transformations are defined both at object level and at group
level (see illustration in Fig. 3). Groups represent user-defined clus-
ters of objects. For furniture arrangement, these signify functional
groups, whose integrity and coherent motion must be respected
during optimization. As shown by Xu et al. [XMZ∗14], furniture
clusters can be inferred from their spatial arrangement in a sample
environment or an initial proposed interior design draft. Of course,
they may alternatively be explicitly declared through the modelling
software, at design time. It is noteworthy that grouping information
is not specific to a particular scene. It embodies semantic relations
among different types of objects rather than specific geometry. It is
therefore inherently transferable and applicable to different objects
of similar function.

The importance of hierarchically optimizing the spatial object
arrangement is three-fold. First, it allows for parameter space ex-
ploration in a meaningful manner, facilitating parameter swapping
and mutations, while retaining functional relationships directly and
not only through the constraints of the objective function. For ex-
ample, a dining table set can swap position with a home entertain-
ment cluster of furniture, without breaking intra-group cohesion.
Second, the hierarchical parameter space exploration significantly
boosts search performance, by both avoiding functionally inadmis-
sible solutions and reducing the dimensionality of the search space
(per level). Third, it allows the optimization method to work dif-
ferently per-level. In our case, we allocate more iterations to intra-
group mutations to favor optimizing a particular arrangement of
functional groups before moving to another, drastically different
layout.

Interior design guidelines are provided in the form of valid local
transformation parameter ranges and objective function constraint
terms, which are all grouped in a geometric error term G(x). Mul-
tiple valid parameter ranges for both the degrees of freedom and
the constraints are supported. This formulation makes it especially
easy to define constrained motion of objects with respect to mul-
tiple other fixed or movable geometric parts. More details are pro-
vided in Section 5.

Illumination goals are supplied through a number of user-defined
light samplers. Each light sampler has an associated range of ac-
ceptable illuminance or average luminance values, depending on
its type. We define three types of light samplers: planar, volumetric
and directional. Planar and volumetric samplers measure the aver-
age incoming light at sample positions over a rectangular patch and
within a specific bounded volume, respectively. Directional sam-
plers measure the peak average luminance within a specific solid
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Figure 3: The various geometric and lighting constraints that can be enforced by our interior layout optimization system. Transformations
are hierarchically optimized at group level and then at object level. Geometric constraints can be enabled across object hierarchy levels.

angle around a direction ω and are used for modeling potential gaze
directions and defining glare-related constraints.

Luminance or illuminance levels are the standard criteria for the
assessment of lighting conditions by interior designers and archi-
tects. They are used to determine comfort levels, ease of use, task-
level performance and to some extent, aesthetic look for parts of
the interior. In fact, acceptable levels for most tasks can be read-
ily found in most architectural lighting guides. Due to the fact that
each type of furniture is associated with specific functions, it is
easy to reuse previously configured samplers that are semantically
annotated based on the desired target surface or space (e.g. reading
levels, conversation levels, cooking levels etc.). The reusability of
both geometric and lighting constraints across scenes and different
pieces of furniture can help even non-trained users configure their
own environment using pre-annotated constraints from interior de-
sign professionals.

Light samplers can be defined at any hierarchical level, repre-
senting movable constraints that follow their associated pieces of
furniture or scene-level goals. Details about the illumination mea-
surement are provided in Section 4.

The cost C of a configuration x is calculated as the weighted
combination of the lighting constraints function L(x) and the ge-
ometric term G(x). The global weight w can be used to prioritize
either functional or illumination goals in the target layout:

C(x) = wL(x)+(1−w)G(x). (1)

A key observation regarding our method is that we allow for
marginal violations of geometric and lighting constraints in order
to favor a wider exploration of the parametric space and reach opti-
mal states in terms of illumination. To this end, for all constraints,
we properly parameterise the following penalty function P. P intro-
duces no penalty for constraint values c within the acceptable limits
bmin,bmax, but gradually penalizes values outside this range. Geo-

metric constraint values deviating above a certain threshold bre j re-
sult in the problematic parameter vector x being rejected, i.e. when
P(.)> 1.

P(c,bmin,bmax,bre j,α) =


k(bmin− c)α c≤ bmin

0 bmin < c < bmax
k(c−bmax)

α c≥ bmax

(2)

In the above penalty function, k = b−α

re j , where α is the stiffness
factor that tunes the rate of error and bre j is the elastic limit of
the error, beyond which the particular configuration is rejected as
unacceptable. This can be user-provided but is typically a fraction
of the acceptable interval length. α values could also differ for each
side of the bounds but in this work we only consider equal stiffness
factors.

Due to the relaxed penalization of geometric constraints, the rec-
ommended layout may require small manual adjustments by the
designer to resolve small inconsistencies and also enforce personal
aesthetic preferences. Our experiments show that this added relax-
ation introduces an insignificant amount of error.

It is important to note that the cost of evaluating the geometric
part G(x) of the cost function is orders of magnitude lower than
the respective cost of evaluating incoming lighting and the result-
ing illumination error L(x). Therefore, we evaluate G(x) first and
proceed to computing L(x) only if the current layout x does not
completely violate any of the geometric constraints. This allows
the optimization framework to quickly discard invalid regions of
the state space.

4. Illumination Constraints

Sunlight and sky dome illumination are the predominant sources
of illumination in architectural design. To account for natural light
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due to the sky dome contribution and the sun disk illumination, we
used the analytic model and results of [PSS99]. We simulate the
sun and sky over a specified time period and bake the average lu-
minance in an environment map. Artificial light sources are phys-
ically modeled as area black body emitters and the user provides
their geometry and luminous flux in lumens (lm). For dense urban
environments or structures that include overhangs, the target space
may not be directly lit, but rather achieve strong illuminance lev-
els through indirect light transport. This is why the compliance of
the current configuration x with the lighting intentions is measured
by evaluating incoming light at the light samplers via path trac-
ing. We generate paths towards artificial light sources, the sun and
the sky dome using multiple importance sampling and portal sam-
pling [UnFK13] on major openings (e.g. windows or skylights).

We support three types of illumination samplers that represent
measurements associated with specific desired luminance or illu-
minance levels:

The planar (patch) sampler Spatch(p,n,w,h) measures the aver-
age illuminance in lux (lx) over a number of samples in a quadrilat-
eral patch with normal n, corner at p and a width and height w, h.
Illuminance is computed over the oriented hemisphere at each point
sample. Planar samplers are typically encountered in the bibliogra-
phy to represent comfort illumination levels on work surfaces and
other task areas. Planar samplers can be attached to movable ob-
jects or be freely positioned at fixed locations to measure overall
illuminance at a specific height.

The simple example in the first row of Figure 4 demonstrates the
use of a planar sampler to optimally place the table and bookcase
at the most comfortable position in the room for the tasks of din-
ing and reading, respectively, taking advantage of both natural and
artificial light.

The directional sampler Sdir(p,ω,θ) captures incoming light in-
side a pyramidal frustum of aperture θ, centered around direction ω

with the apex at p. Its primary use is to establish acceptable direct
or indirect glare levels (see Fig. 4, second row).

In order to capture the very localized nature of glare we do not
average the incoming luminance over the entire frustum but rather
split the latter into strata and record the maximum of the aver-
age luminance in each one (in nits). Simply measuring the max-
imum luminance would bias the measurement towards specular
noise spikes.

A directional sampler is attached to reflective surfaces, such as
TV sets or computer monitor screens, pointing towards their sur-
face or to seats pointing outwards along the front direction in order
to measure light as observed by people looking in particular direc-
tions. Directional samplers can be also constrained to point to focal
points around the scene, such as windows. The use of this sampler
is nicely exemplified in Figures 7 and 8.

The volume sampler Svol(p,u,v,w) measures the average lumi-
nance (in nits) at uniformly distributed point samples within an ori-
ented bounding box centered at p, aligned with the orthogonal vec-
tors (u,v,w) and sides equal in length to the magnitude of the cor-
responding vectors. Average incoming luminance is estimated over
the sphere centered at each volume sample. Volume samplers can
be used to establish measurements and reference luminance levels

Figure 4: Simple test cases demonstrating the role of each one of
the light sampler types.

in large empty volumes in front of or above attention points or ar-
eas, such as presentation or theatrical stages, exhibition booths etc.

In the simple example of Figure 4 (third row), we employ a vol-
ume light sampler in front of a projection screen to establish a min-
imum illumination level for the area where the speaker is going
to be standing. A complementary directional sampler facing the
screen itself enforces low reflected light. The optimizer establishes
a projector setup position and orientation so that both contradicting
goals are best satisfied.

For patch samplers we measure illuminance at locations uni-
formly distributed over their area. Directional samplers are mod-
eled with an orthogonal frustum subdivided into 8x8 or 16x16 strata
with a field of view of 60−90 degrees, depending on the use case.
Similarly, for volume samplers we measure average luminance at
200 uniformly distributed positions within their extents. Measure-
ments at each single sample are evaluated using path tracing. We
typically generate 1000 paths per sample.

We formulate the deviation of the measured illumination L(x)
from the lighting intentions using the penalty function of Eq. 2 on
the illumination measurements L(Sk,x) of each sampler Sk and the
current configuration x:

L(x) = 1
NS

NS

∑
k=1

wkP(L(Sk,x),Lmin(Sk),Lmax(Sk),Lre j(Sk),1).

(3)
NS is the number of individual samplers, Lmax(Sk), Lmin(Sk) spec-
ify the acceptable illumination range and Lre j(Sk) the tolerance.
We use α = 1 for light samplers to allow for a linear penalty
function. For lighting intentions, Lre j(Sk) is only indicative of the
penalization rate outside (Lmax(Sk),Lmin(Sk)); we do not discard
configurations due to illumination deviations, since in realistic sce-
narios, the desired illumination may not be attainable.
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An equal weight wk is assigned to each sampler, which can also
be controlled by the user to bias the importance of lighting inten-
tions. All weights are of course normalized prior to optimization.

5. Design Goals

Design intentions are supported in our framework using two sepa-
rate mechanisms: a) A set of valid ranges for each degree of free-
dom in the object hierarchy that is sampled for new states x and
b) a set of rules that functionally constrain the relationship of ob-
jects and their clusters, similar in nature to the common practice
followed by previous goal-driven furniture arrangement methods.

5.1. Object Placement Limits

Placement constraints are the most straightforward to define and
enforce in a scene. An object or group, i.e. a geometric entity,
moves on the 2D support plane defined by its initial placement,
pivoting around its axis of gravity, when allowed.

Placement constraints are strict. Consequently, they are not part
of the cost function. Instead, plausible configurations are sampled
from the union of valid parameter space partitions Xm representing
a set of potentially disjoint continuous intervals that map to tuples
of compatible object parameters (see Fig. 5). For example, allowed
3D translation ranges are defined per entity as the union of mul-
tiple local bounding boxes. This formulation makes it especially
easy to define constrained motion of objects with respect to mul-
tiple other fixed or movable geometric parts. For instance, a book-
case can be placed against two different and possibly disjoint wall
sections. These constraints are directly described in our system for
each hierarchical object level via scripting.

5.2. Relational and Functional Constraints

To evaluate the geometric term G(x) of the objective function in
Eq. 1, we define relationships between objects in the same spirit as
[MSL∗11]. We uniformly express our constraints using the penalty
function of Eq. 2 and present individual details and improvements
to prior work in the resulting cost functions that follow. All con-
straints are either manually specified or automatically extracted
during scene modeling and stored in a declarative format. We also
allow constraints to be established across object hierarchy levels.

Alignment. For every object, we define one or more front-facing
directions that represent either access directions to the furniture
piece or a practical side for alignment with other objects. For a
given combination of objects, every available front direction is con-
sidered during optimization and the best candidate is used. These
discrete directions are entered as disjoint parameter sub-spaces Xm
for this variable in the configuration vector x. We use a user-defined
angular tolerance θm,n for the alignment between two front vectors
um and un and use Eq. 2 to define the alignment cost function GA
for a pair of front directions (um, un):

GA(x,um,un) = P(um ·un,0,cosθm,n,cos
θm,n

8
,2). (4)

The penalty in GA(.) is quadratic and the configuration rejection
limit becomes a fraction of θm,n to reflect the strictness of the align-
ment rule.

Distance. Pairwise distance constraints are defined via a minimum
and maximum allowed distance `min and `max between the centers
cs, ct of two objects s and t. For distances within these limits, the
constraint is considered fully satisfied. A quadratic penalty is ap-
plied otherwise:

GD(x,s, t) = P
(
||cs− ct ||, `min, `max, `re j,2

)
. (5)

We empirically set the rejection bound `re j to 5% of the initial valid
range.

Overlap. Instead of rejecting configurations with any overlap be-
tween objects, we accept a small partial pairwise overlap, though
penalized, in order to retain the continuity of the cost function. We
measure the overlap between two objects s and t by the intersection
of their discretely sampled volumes Vs and Vt and associate them
with the penalty:

GP(x,s, t) = P
(
Vs∩Vt ,0,0,Vre f ,2

)
, (6)

where Vre f is a fixed penetration tolerance, typically set to 5% of
the smallest of two volumes. The object’s volumetric samples are
generated using the method by [KPT99] on the GPU at load time.
The method’s intrinsic inability to properly voxelize internal cavi-
ties, actually works to our advantage here, since removing internal
voxels should not reduce the penetration value, which is solely af-
fected by the shell of the objects. Vs ∩Vt is simply calculated by
counting the overlapping voxels after any transformations are ap-
plied.

Focus and Conversation. As indicated by previous research, one
can establish rules for communication and mutual visibility be-
tween two occupied objects as well as preferential focus on spe-
cific parts of the environment or task. We show here that these con-
straints can be mapped to a combination of distance and alignment
ones, dispensing with the requirement of a separate model.

Focus between objects s, t can be described as an alignment con-
straint between the front vector of s and the direction towards a
target object t:

GF (x,s, t) = GA

(
x,us,

ct − cs

||ct − cs||

)
. (7)

For pre-determined object groups, we declare which piece is the
center of attention and define distance and focus constraints indi-
rectly. Picking the central piece of a furniture cluster as the focal
point, is not always the right choice, since many arrangements are
asymmetrical by design.

Communication requires that end-points are roughly facing each
other with a tolerance `conv. In essence, a communication constraint
translates to a mutual focus rule combined with a distance limiter:

GC(x,s, t) =
1
3
(GF (x,s, t)+GF (x, t,s)+GD(x,s, t)) . (8)

The geometric term of the objective function G(x) is the weighted
and normalized sum of all the individual penalty terms GA(.),
GD(.), GP(.), GF (.) and GC(.) over the respective sets of con-
straints.
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Figure 5: Overview of the two-level layout optimization process.

6. Optimization

The furniture layout optimization problem is characterized by a
large parameter space. Additionally, Eq. 1 is a fairly expensive,
highly discontinuous objective function, which should be evalu-
ated as sparsely as possible. Such cases are known to benefit from
stochastic processes as they allow the escape from local minima
and balance between exploration and exploitation. We base our op-
timization process on the Metropolis algorithm, but adopt a mu-
tation strategy tailored to the particular nature of our segmented
parameter domain. We also use a nested optimization scheme, re-
flecting the inherent hierarchical object organization and coherently
mutate states of dependent objects. Finally, lighting is evaluated
only for states that satisfy the geometric constraints. Geometric er-
ror functions are evaluated in the CPU due to their low overhead,
in contrast to light samplers, which are evaluated using path tracing
entirely on the GPU for optimal performance. The entire optimiza-
tion procedure is summarized in Figure 5 - left.

Within each level, optimization proceeds using one of the fol-
lowing events chosen with equal probability: translation, rotation,
position swap and parameter interval jump (see examples in Fig. 5 -
right). The process is initialized with group- and object-level trans-
formation parameters being drawn uniformly from their respective
intervals. The state transition from the current parameter vector x
is performed according to the following steps:

• Choose an event type.
• If the event is a swap operation, it also affects another entity

in the same hierarchy branch, which is also marked as having
performed a swap operation, simultaneously. The swap is per-
formed only if the switched positions still fall within a valid
interval for both entities. Swapping is performed only for po-
sitions, since mutually exchanging the orientation of two entities
is not a meaningful operation for furniture layout.

• In case of a translation or rotation, first, uniformly select an en-
tity and simultaneously mutate the corresponding transforma-
tion parameters xi, ...x j, e.g. its x,y,z translation offsets. For

continuous parameter domains, generate a new sample X (k)
i

for each parameter xi according to the Normal distribution
N (X (k)

i |X
(k−1)
i ,σi), rejecting parameters outside the interval.

The standard deviation σi effectively dictates the exploration rate
in each parameter interval. Discretized parameter domains, e.g.
discrete possible orientations, are sampled uniformly.
• If the parameter space consists of multiple intervals and a jump

operation has been selected, move to a new, uniformly selected
interval and initialize the translation and rotation parameters
with uniformly selected values within that interval.

σi is empirically set to a percentage of the interval’s size (25%
in our implementation). This percentage is fixed for all parameter
intervals, therefore the normal distribution spread adapts to the in-
terval size.

The above mutation strategy ensures that state transition prob-
abilities are symmetrical, since all mutation events are performed
in an exclusive manner, interval jumps use a global uniform dis-
tribution, rotations and translations use the (symmetrical) Normal
distribution, and a swap operation is reversible by nature.

The algorithm repeats for a fixed number of iterations or until a
minimum error threshold is achieved. In our experiments, we typi-
cally use from 103 to 106 iterations depending on the scene’s geo-
metric complexity. At each iteration, the cost function is evaluated
and the result is accepted or rejected according to the Metropo-
lis step. If an arrangement is found that perfectly satisfies all con-
straints, that is, has a cost function of 0, the optimization is imme-
diately terminated and the current arrangement is returned.
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Figure 6: Effectiveness of hierarchical optimization. Grouping sig-
nificantly improves convergence, when compared with a single-
level arrangement.

7. Method Evaluation

For our experiments we first tested the validity and effectiveness of
each one of the lighting samplers in relative isolation, using simple,
targeted experiments, as shown in Figure 4. Next, we evaluated the
method with increasingly complex scenarios, where multiple de-
grees of freedom and constraints at both group and object level
were present. Throughout the evaluation, we requested feedback
from a professional interior designer, whose comments are pro-
vided in the relevant experiments, in order to assess the importance,
compliance and usefulness of our method. As shown by previous
research in lighting design [WSL∗19], keeping the professional in
the loop is very important for validation.

7.1. Simple Experiments

In the first row of Figure 4, two patch samplers are defined, one on
the dining table and one on the bookshelf, targeting ample light for
reading (400-600lx). From the interior design perspective, we only
require that the table be aligned with the walls and the bookshelf to
rest on one of the four walls. Sunlight hits the floor at a characteris-
tic bright patch, which clearly needs to be avoided. Using the planar
lighting constraints, both the table and the bookshelf are optimally
positioned away from the bright spot. The table set went under the
artificial light source (chairs have no own degrees of freedom here)
and the bookshelf moved close to the window taking advantage of
the natural lighting, thus fulfilling the desired lighting conditions.

In the second row of Figure 4 we solve the glare problem. The
position and orientation of an office desk and its computer screen
are optimized given two constraints: a) adequate illumination on the
work surface (desktop) in the range 300-500lx and b) glare avoid-
ance in the form of a directional sampler facing the computer screen
(< 100nits). No alignment constraints were specified for this partic-
ular example. In the resulting configuration, the desk is positioned
so that it avoids direct and indirect glare from both the natural and
artificial light source.

The third example introduces the volume sampler, comple-
mented by the other types of samplers. A conference table with
a ceiling-mounted projector and projection screen needs to be posi-
tioned in such a way that it satisfies three lighting conditions: a) low
reflected light towards the audience, b) adequate illumination in the
space in front of the projection screen for the presenter to be clearly
visible and c) comfortable illumination level on the table top. Low

Figure 7: Office space furniture optimization for adequate task
lighting and glare minimization in different primary office hours.
Morning: strong sunlight - 27sec, 104 iterations. Afternoon: indi-
rect and skylight illumination - 33sec, 104 iterations. Late evening:
artificial lighting - 15sec, 3753 iterations.

reflected light is handled by a directional sampler pointing at the
screen. The method positions the screen very close to a wall where
only skylight illumination hits the surface and only at oblique an-
gles. The directional sampler also avoids direct glare from placing
the screen in front of the windows. The minimum desired illumina-
tion level for the presenter is attained by indirect sunlight and direct
sky lighting traversing the volume sampler bounds.

The significant impact of hierarchical grouping to the optimiza-
tion convergence versus a flat object organization is demonstrated
in Figure 6. Incorporating all semantically relevant pieces of furni-
ture in groups and allowing permutations at both hierarchical lev-
els, is more intuitive and orders of magnitude faster to converge
compared to solely relying on constraints for the same effect.

7.2. Extended Experiments

Computational cost aside, layout optimization, where lighting is
sampled over drastically different lighting conditions, spanning the
entire day, can only result in a conservative, sub-optimal configu-
ration, which does not respect the typical use of the space. Instead,
we concluded that for most practical scenarios, it is more benefi-
cial to focus on a specific time interval corresponding to the space
utility (e.g. office hours, event hours).

Figure 7 demonstrates the importance of lighting conditions in
an office space layout, where six workstations need to be arranged
following both interior and lighting design principles. We opti-
mized the office furniture for three different time intervals, corre-
sponding to three potential primary activity zones for the space.
The three cases represent distinct experiments (as it is impracti-
cal to change furniture layout during the day). The orientation and
position on the desktop of each monitor are both adjustable. The
arrangement must provide adequate circulation distances between
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Figure 8: Comparison of a common symmetrical arrangement of
workstations in an office space against an illumination-driven lay-
out optimized by our method for glare suppression. The layout af-
ter minor aesthetic corrections by an interior designer is included,
along with peak glare ranges.

workstations and each monitor should focus on the operator’s chair
(focus constraints). Desks must be also aligned with the walls. Ac-
cess to the door is guaranteed using an invisible blocker. Six planar
samplers on the desk surfaces set the minimum task illuminance
for reading (300-500lx). Additionally, one directional sampler is
placed at eye level facing each computer screen, to minimize direct
and indirect glare.

The above opposing goals cannot practically be satisfied simul-
taneously for all scenarios shown, especially in the morning and
afternoon intervals, where desktop-level illuminance varies signif-
icantly due to artificial lighting being switched off. The morning
lighting scenario includes direct sunlight causing very bright illu-
minance levels near the windows and high glare. In the afternoon
scenario, the room is only illuminated by sky lighting and indi-
rect sunlight bouncing off nearby buildings and external structures.
Here, the moderate illuminance allows the desks to move closer to
the windows in order to take advantage of the natural light, while
still avoiding glare. In the nighttime scenario, only the six overhead

Figure 9: Layout optimization with both fixed and movable light
sources. Top: the ceiling fixtures alone do not satisfy the read-
ing illuminance levels, which are complemented by stand lights to
achieve a more uniform and brighter illumination on table tops -
avg. 35sec, 7000 iterations.

panel lights (3200lm each) illuminate the scene. In this example, a
more uniform distribution of the furniture is achieved, due to the
balanced indoor lighting. Despite the uneven illumination present
in the above scenarios, our method manages to adequately com-
ply with the constraints, proposing configurations that, although di-
vergent from typical aesthetics-driven options, are very effective at
complying to the desired illumination comfort levels. The interior
designer examined the recommended layouts and despite their un-
conventional setup, after aesthetically adjusting the solutions, pos-
itively commented on their effectiveness.

A more regular and tightly-spaced layout is pursued in the com-
puter laboratory example of Figure 8, where workstations are clus-
tered in islands of two desks each. We evaluate the layout recom-
mended by our method against a typical symmetrical arrangement
encountered in such a space, confirmed by the interior designer as a
generally acceptable one. We optimize the layout with similar con-
straints to Figure 7 and compare the resulting glare level, measured
as average direct and reflected luminance in the directional sam-
plers. The method drives the desks away from areas accessible by
direct sunlight and properly orients the desks and screens to avoid
glare (the limit was set to 100nits), while still taking advantage of
the indirect illumination close to the window to satisfy the desktop
illuminance levels.

The experiments in Figures 2 and 9 show a two-room apartment,
under different lighting conditions, where we demonstrate a) the si-
multaneous use of functional and illumination constraints in a tight
space, b) the use of sub-space partition jumps needed for furniture
pieces to switch room and c) the seamless integration of movable,
complementary light sources into the framework. All three types
of samplers are present, serving different functional and aesthetic
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Figure 10: Optimization of a table layout guided by illuminance
levels for dining (150-350lx) in different time of day ranges. Illu-
minance is measured on each table top (highlighted in green). The
middle row shows the effective illuminance in the scene, for refer-
ence. Execution time varies from 2 mins to 5 mins and iterations
are between 104 and 105.

goals. Hierarchical optimization has an obvious advantage here,
since it allows for functional groups to perform a jump simultane-
ously and not blindly search for a configuration that encompasses
focus and distance constraints. In Figure 9, our method was able
to recommend a significantly different layout variation, when addi-
tional light sources were introduced, rather than merely perform a
local adjustment, achieving illuminance levels closer to the target
ones.

The final experiment in Figure 10 presents an event planning
application scenario, where the layout is, in practice, manually
changed, according to a client’s needs, including different number
of tables and different time of day for each event. The space is a
large social event room with 6 irregularly-shaped composite panel
lights for ambient illumination and 5 bright spotlights in the (cen-
tral) dance floor section. One side of the room has a large glazed
section allowing strong natural lighting in at noon. In terms of geo-
metric constraints, the tables need proper spacing for clearance and
access to doorways. Clearance is handled by extending the bounds
of the table sets and doorways and main walk paths are avoided us-
ing invisible blocking geometry. A table and its chairs are treated
as a single entity, since for the particular scenario they represent
a semantically indivisible object. Each table also has an associated
patch sampler with task illuminance set for dining and conversation
(150-350lx).

The proposed nighttime scenario in Figure 10-left shows a plau-
sible and realistic setup for the available tables, mainly guided by
the lighting goals. The available space around the dance floor is
effectively utilized, while tables clear the dance area, without the
need to explicitly place any blocking geometry there, due to the
high resulting illuminance from the spotlights. The daytime sce-
nario also demonstrates how our framework can still achieve nearly
optimal results, despite the significant reduction in usable floor
space, due to the presence of large, overbright areas.

The execution time, reported for each example in the respective
figure, is obviously affected by the scene complexity, mainly due to
the light evaluation. In addition, heavily geometrically-constrained
scenarios lead to a high rejection rate, wasting many optimization
cycles prior to evaluating the illumination for a valid state. How-
ever, this does not necessarily translate to proportional increase in
run time, since constraint checks are significantly faster than light-
ing measurements.

8. Discussion and Future Work

In this work we introduced illumination constraints coupled with
physically-based light transport to the furniture layout problem, ca-
pable of handling from simple task-related illuminance levels to
glare and volumetric ambience. We showed how such illumination
constraints can be elegantly coupled with established functional
goals and demonstrated the importance of hierarchical optimiza-
tion in speeding up convergence and easily tackling scenarios with
disjoint placement intervals. Our test cases indicate that lighting
goals can drastically affect the layout of interior spaces in ways that
cannot be defined through geometric constraints alone, nor are they
easy to achieve with manual experimentation. At the very least, the
proposed layouts can be used by an interior designer as a starting
point to further refine the furniture arrangement aesthetically.

One expected limitation of the method is that, whereas scenarios
with attainable illumination goals converge quite fast, unrealistic or
contradicting lighting intentions may have a significant impact on
both the convergence speed and the quality of the solutions. In such
cases, the optimizer reaches the maximum number of iterations, os-
cillating between practically sub-optimal solutions. Another miss-
ing feature of the current version is that we do not address any
statistical illumination constraints over the planar and volume sam-
plers, such as uniformity or minimum/peak acceptable levels.

From the feedback we received from the interior designer, a gen-
eral observation was that an automatic method that respects both
functional and lighting constraints would nicely complement a pro-
fessional’s pipeline, which, in her case, involves 3D modeling and
lighting setup in Autodesk 3DS Max and Chaos Group V-Ray. In
scenarios like the apartment in Figures 9 and 2, the designer charac-
terized the configurations as plausible and commended the method
for the varied and non-obvious results that respected all constraints.
In the ballroom experiment, the designer singled-out the impor-
tance of automation in such a large, complex environment. All re-
sults were compliant with the target constraints and designer inter-
vention was minimal, at most.
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Future directions and improvements include the investigation of
machine learning for light field encoding and preference-based lay-
out proposition, e.g. [LLL∗19], since such approaches have pro-
duced promising results for scene synthesis tasks. To accommodate
a wider range of user requirements and different design workflows,
a broader use case study would greatly benefit our work. Finally,
we are looking forward to extending our method for urban plan-
ning tasks, where different sets of design guidelines apply.
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