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Figure 1: Left: input surface (triangle mesh) with prescribed singularities (22 positions and indices, red: index 1/4, blue: —1/4); a computed
cut graph is shown in yellow. Center left: parameter domain (a weakly self-overlapping polygon) robustly constructed by our combinatorial
method; yellow dots correspond to branch points of the cut graph. The boundary segments of this domain satisfy a number of hard constraints
concerning relative lengths and angles. The cut input surface is mapped bijectively onto this domain with a constrained boundary map. By
virtue of the specific domain boundary structure, this map is seamless. Center right: domain after optimizing this map for low distortion in a
seamlessness-preserving manner. Right: grid texture pulled onto the surface using this map.

Abstract

The problem of seamless parametrization of surfaces is of interest in the context of structured quadrilateral mesh generation and

spline-based surface approximation. It has been tackled by a

variety of approaches, commonly relying on continuous numerical

optimization to ultimately obtain suitable parameter domains. We present a general combinatorial seamless parameter domain
construction, free from the potential numerical issues inherent to continuous optimization techniques in practice. The domains
are constructed as abstract polygonal complexes which can be embedded in a discrete planar grid space, as unions of unit
squares. We ensure that the domain structure matches any prescribed parametrization singularities (cones) and satisfies seam-
lessness conditions. Surfaces of arbitrary genus are supported. Once a domain suitable for a given surface is constructed, a
seamless and locally injective parametrization over this domain can be obtained using existing planar disk mapping techniques,

making recourse to Tutte’s classical embedding theorem.
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1. Introduction

We present a solution to the problem of constructing seamless sur-
face parametrizations [MZ12] with prescribed singularities on sur-
faces of arbitrary topology without boundary. By construction, the
resulting parametrizations are locally injective. This is a common
prerequisite for the generation of valid integer grid maps, thus also
quad meshes [BZK09] and spline surfaces [MAC19].
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Specifically, we focus on the challenging problem of construct-
ing suitable parameter domains for such parametrizations. Gener-
ally, the domain of such a seamless parametrization of a surface M
is a weakly self-overlapping polygon Q in the plane, cf. Figs. 1 and
2, as discussed in detail in [WZ14]. The seamless parametrization
can be viewed as a bijective map f : M <+ Q, or (by an immer-
sion of Q in R?) as a locally injective map f : M€ — R?. Here M€
denotes the surface M cut to disk topology along a cut graph.
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While it is long known for which sets of prescribed singulari-
ties (numbers and indices/valences) locally injective seamless para-
metrizations (and in particular quad meshes) exist [JT73], actually
computing them is a major challenge. Many works approach this
problem by formulating it as a non-convex optimization problem,
as detailed in Sec. 2. As a consequence, there is no guarantee that a
solution is found, even when one is known to exist.

There are a few exceptions from this rule. For instance, for cer-
tain classes of singularity configurations, a linear program was
shown to be suitable [AL15]. Furthermore, if strictly respecting the
prescribed cone configuration is not essential, a surface partitioning
technique in combination with multiple linear programs is a viable
alternative [MPZ14].

Recently, an algorithm relying on convex optimization, based on
discrete conformal mapping, was proposed in [CSZZ19]. This al-
gorithm ensures that prescribed cones are respected in a fully gen-
eral setting. However, while the problem is convex, it is nonlin-
ear. Nonlinear optimization generally comes with potential numer-
ical issues in practice, e.g., related to determining convergence or
proper descent directions. In the specific conformal mapping con-
text, additional challenges are due to the large scale variations com-
mon to conformal maps, as well as due to unresolved theoretical
questions related to convergence.

In comparison, our method takes as input a surface together
with prescribed singularity positions and indices, and constructs a
suitable seamless parameter domain in a combinatorial manner—
geometric computations and any kind of numerical optimization
are taken into account only for non-crucial decisions (affecting ini-
tial quality but never validity). In this way we are not at risk of nu-
merical issues affecting the output’s validity. This is made possible
by approaching the overall problem differently: instead of obtain-
ing the domain as a byproduct of map optimization, we describe an
explicit combinatorial domain construction. A parametrization over
this domain can then be obtained in a second stage using existing
planar disk mapping techniques [WZ14,SJZP19].

Overall Idea

It is well-known that a genus g > 0 surface can be cut to a disk with
8g — 4 sides (cf. [Sti80, §1.3], polygonal schema). Moreover, the
cut graph can be chosen in a way that exactly 4 cut curves meet at
every branch point of the graph. We show an explicit combinatorial
construction of a cone metric on this disk, i.e., a flat metric with
a discrete set of points (cones) where curvature is concentrated.
Such a metric induces a seamless parametrization (uniquely up to
a rigid transformation). The constructed metric has the following
properties: (a) the sides of the polygonal disk are straight, (b) pairs
of sides corresponding to the same cut curve have equal lengths,
(c) corners have right angles, so when the disk’s paired sides are
glued together, the branch points have a total angle of 2m, i.e., are
flat, (d) the number and curvature of cones in the interior of the disk
matches an arbitrary prescribed configuration.

The cone metric is constructed based on a partition of the disk
into quads, realized as unit squares. Hence, as a byproduct, the
method yields a quad mesh connectivity for arbitrarily prescribed
sets of (topologically admissible) extraordinary vertex valences.

We emphasize that our focus is on the validity, the seamlessness
and local injectivity, of the parametrization. Quality optimization
(e.g., distortion minimization) is delegated to existing injectivity-
preserving map optimization methods to be applied subsequently.
Our method’s goal is to reliably provide a valid initialization.

2. Related Work

The problem of seamless surface parametrization with prescribed
singularities has been considered in a long series of works, includ-
ing [TACSDO06, KNP07, BZK09, KMZ11,MZ13, MPZ14, CBK15,
FLG15, CLW16, ESCK16, BCW17, ZCZ*18, FBT* 18, HCW19].
Often, it is formulated as a numerical optimization problem—
commonly a non-convex one. The challenges of non-convexity are
dealt with, for instance, by omitting the non-convex constraints
[KNP07,BZK09,KMZ11,MZ13,ESCK16,ZCZ* 18] or by conser-
vative convexification [Lip12,BCE*13,CBK15,BCW17,HCW19].
In the former case, results can be invalid (violating local injectivity
requirements) [BZK09, EBCK13], in the latter case valid solutions
are excluded—in the worst case leading to an infeasible problem.

Some methods, however, deviate from this common approach. It
was shown that for certain special cases (in terms of surface genus
and prescribed singularity configuration) the problem can be solved
by convex linear programs [GY03, GGT06, AL15]. The method
in [MPZ14] considers the general case; it likewise reduces the prob-
lem to (multiple, patch-wise) linear programs, based on a surface
partitioning strategy. This strategy, unfortunately, cannot strictly
preserve the prescribed singularity configuration in certain compli-
cated cases. The recent method in [CSZZ19], which also handles
the general case, does strictly respect the prescribed singularities.
It employs a convex optimization problem—however, a nonlinear
one (discrete conformal mapping), bringing about potential numer-
ical challenges in practice. A similar idea is outlined in [CZK*19].

We note that in all these methods, the parameter domain is a
byproduct of solving a parametrization optimization problem. Our
method takes a different approach: in a first step, we explicitly fo-
cus on constructing a parameter domain (suitable for a seamless
parametrization) without simultaneously finding or optimizing a
parametrization. This distinct difference enables the robust com-
binatorial approach that we take.

3. Background & Approach

For a planar domain € and a continuous bijective map f|5 between
the boundary 0M¢ of a disk topology surface M (obtained by cut-
ting the surface M along a cut graph) and the domain boundary 0Q,
fja can be extended to a map f of the entire interior using, e.g.,
(discrete) dual-harmonic maps [WZ14,SJZP19].

The central goal of our work is the construction of a domain Q
for a given surface M, together with a boundary homeomorphism
fja between 0Q and dM¢, where M€ is a cut version of M, using
some cut graph C; then such an existing construction can be used
to obtain a map f.

Note that there is a natural identification of boundary points of
dM°: along branches of the cut graph, there is a pairwise identifica-
tion; at branch points, three or more boundary points are identified.
Via a given map fjy, this identification carries over to Q.

(© 2020 The Author(s)
Computer Graphics Forum (©) 2020 The Eurographics Association and John Wiley & Sons Ltd.



J. Zhou et al. / Combinatorial Construction of Seamless Parameter Domains 181

Domain Conditions

The key challenge lies in the fact that the domain Q to be
constructed has to simultaneously satisfy multiple constraints—
because we expect the resulting parametrization to be seamless and
to exhibit exactly the prescribed singularities.

In particular, the following necessary and sufficient conditions
on the domain boundary dQ have to be satisfied for any seamless
parametrization f over Q to exist:

(1) Inner angles around identified boundary points sum to pre-
scribed values of the form %“, ke N.

(2) Identified boundary segments are isometric.

(3) The boundary is weakly self-overlapping.

Condition (1) ensures that the prescribed singularities with pre-
scribed indices are respected; in combination with this, condition
(2) ensures seamlessness [KNP07,BZK09, BCE*13]; condition (3)
warrants that a bijective map onto the domain Q (thus a locally
injective map into the plane) exists, as shown in [WZ14].

Domain Construction

In a discrete, piecewise linear setting the boundary curve 0Q is
a polygon. Techniques for the construction of polygons with pre-
scribed corner angles [Har89, CR85] could be employed to satisfy
condition (1), but they support neither the equal-length constraints
of condition (2), nor the distinction of weakly self-overlapping
from self-intersecting polygons required by condition (3).

[CSZZ19] describes a padding approach that we exploit here to
reduce the problem to that of finding a polygon that satisfies con-
ditions (1) and (3) only. This is made possible by using a specific
class of cut graphs and a specific distribution of angles to the inner
angles around identified boundary points along the cut graph. Un-
der these circumstances, the padding approach allows modifying
the polygon (or a collection of polygons) into one which satisfies
condition (2) as well.

Our approach is based on generating parameter domains that sat-
isfy conditions (1) and (3), such that through a combination with a
discrete variant of the padding strategy we can ensure that all three
conditions are satisfied. The boundary map f| is then easily con-
structed via simple piecewise arc-length parametrization.

Domain Interpretations

Our approach is best understood by considering alternative inter-
pretations of seamless parametrizations and their domains.

A seamless parametrization of a surface M induces a cone met-
ric with discrete holonomy (k7t/2 turning numbers along any loop)
[BCW17]. This metric is flat everywhere except at cone points, cor-
responding to singularities of the seamless parametrization. This
metric uniquely defines the parametrization up to a rigid transfor-
mation and the (practically irrelevant) choice of cuts. The surface
endowed with this cone metric defines a cone manifold, cf. Fig. 2 b.
Ignoring the cuts, a seamless parametrization can be viewed as a
homeomorphism between surface M and this cone manifold.

Cutting the surface M to a topological disk M“ along a cut graph

that avoids the singularities, and cutting the cone manifold along
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Figure 2: [lllustration of different interpretations of a seamless pa-
rametrization and its domain. (a) surface M (here genus 0) with
prescribed singularity points (orange dots). (b) a cone manifold
with cones corresponding to these singularities; the configuration
was chosen here in such a way that this manifold is embeddable
in R? isometrically (as a cube); in general, this is not possible.
(c) cutting the cone manifold along a cut graph (yellow) yields a
disk topology cone manifold D with boundary; note that its depic-
tion here is non-isometric—D is not flat at the cones. (d) extending
(green) the cut to include the cones yields a disk topology domain
Q that is flat everywhere, and can be embedded isometrically in the
plane. In general, Q is a weakly self-overlapping polygon.

the image of this cut graph, one obtains a definition via a home-
omorphism to a disk topology cone manifold D with boundary,
cf. Fig. 2 c. Across this boundary, seamless transition conditions
between identified points are satisfied.

Further cutting the disk topology surface M¢ from the boundary
to the singularities, and cutting D along these cuts’ images to the
cones, one obtains the common definition via a homeomorphism to
a domain Q that is flat (as former cones are now on the boundary),
cf. Fig. 2 d. This latter view is taken in most work on seamless
surface parametrization for meshing and spline construction.

For our work the viewpoint considering the homeomorphism to
the disk topology cone manifold D (Fig. 2 c) is the most relevant
and insightful one. Essentially, for a given surface cut graph, we
explicitly construct a disk topology cone manifold (in form of a so-
called metapolygon) such that its boundary structure is compatible
with the combinatorial structure of this cut graph.

4. Overview

Before delving into the technical details, the following gives an ad-

vance summary of our method’s algorithmic steps for orientation:

1. Cut input surface M into one or more pieces of disk topology
each, following Sec. 6.2.

2. Construct metapolygon per piece, with valences matching the
prescribed singularities in the piece, as described in Sec. 5.2.

3. Subdivide each metapolygon to obtain meshes of quadrilaterals,
following Sec. 5.4.

4. Perform discrete padding along the boundary of the mesh(es);
padding widths computed as per Sec. 6.3.

5. Combine padded (therefore compatible) meshes to form one
mesh Q, see Sec. 6.3.

6. Cut Q to the cones, obtaining domain €2, and cut input surface M
to M€ in a topologically identical manner, following Sec. 7.

7. Prescribe boundary mapping between M and Q, exploiting the
compatible cut, Sec. 8.

8. Extend boundary map to interior (equipped with unit square met-
ric) using [WZ14], yielding a seamless parametrization.



182 J. Zhou et al. / Combinatorial Construction of Seamless Parameter Domains

The two central and technically most interesting operations in
this are metapolygon construction (in step 2) and discrete padding
(in step 4). Our main focus in the following is devoted to these.
Their purpose in the context of our seamless parameter domain
construction method is as follows:

e Metapolygon Construction: A metapolygon is a (combinato-
rial) polygon mesh of disk topology with a special boundary
structure. We describe an algorithm that, given a list of singu-
larity indices, creates a metapolygon whose subdivision yields a
quad mesh with extraordinary vertices exactly corresponding to
these singularity indices. Associating each abstract quad of this
mesh with a unit square yields a disk topology cone manifold
with prescribed cones.

e Discrete Padding: Adapting ideas from [CSZZ19], we show
that it is possible to pad one or more (subdivided) metapolygons
by additional layers of quads along their boundary and combine
them so as to obtain a seamless metapolygon. This means that
using several cuts it can be turned into a flat domain polygon
that satisfies conditions (1), (2), and (3).

5. Metapolygon Construction

We start by defining a special kind of (combinatorial) polygon
mesh. Via subdivision, it can be turned into a quad mesh, cf. Fig. 3,
which we will make use of later. We emphasize that all construc-
tions in this and the following section are combinatorial; mesh ver-
tices do not have coordinates. Merely for purposes of illustration
we embed these meshes in the plane in several of the figures.

Definition 5.1 (Metapolygon) A mesh P of polygonal faces p;,
with all inner vertices of valence 4 and all boundary vertices of
valence 1 or 2 we call a metapolygon. Valence here refers to the
number of incident faces.

A corner vertex is a boundary vertex of valence 1, a flat vertex is
a boundary vertex of valence 2, and a concave vertex is a boundary
vertex of valence 3. A metapolygon does not have concave vertices,
but these may occur at intermediate stages of its construction.

Definition 5.2 (Meta-k-gon) A metapolygon with k corners (and
any number of flat vertices) is called a meta-k-gon.

Definition 5.3 (Excess) A k-gon (polygon with k vertices) P is said
to have valence k and excess e(P) = k — 4. A k-gon without excess
(i.e. a 4-gon) is referred to as regular.

This notion extends to metapolygons via e(P) = Y;e(p;), the
sum over the excesses of all polygons p; of P. Note that for the
excess of a meta-k-gon P it likewise holds e(P) = k — 4 [PBIW14,
§3.1]. We also use the definition e(k) = k — 4. The empty polygon
and the empty metapolygon are considered regular in the following.

5.1. Metapolygon Extension

In the following we define the key operation of our combinatorial
construction. It takes a metapolygon containing a certain set of ir-
regular faces and turns it into a metapolygon that contains exactly
one additional irregular face, with a given valence i. More formally,
let Z(P) denote the unordered list of valences of the irregular faces
of metapolygon P. Then the result shall be a metapolygon Q with

/

Figure 3: Left: illustration of a metapolygon. Right: quad mesh
obtained by subdividing the left metapolygon. Irregular vertices
are marked red (valence 3) or blue (valence 5). In a (subdivided)
metapolygon, each boundary vertex is either a corner vertex or a
flat vertex. Here corner vertices are marked by yellow dots.

Z(Q) = Z(P)U{i}. The construction follows the idea of gluing an
i-gon to the boundary of P and filling any emerging concave cor-
ners with regular 4-gons so as to obtain a metapolygon again.

The following definition makes this precise. In this, let C(P’)
denote the clockwise cyclic sequence of non-flat boundary vertices
of polygon mesh P’; for two such vertices v, w, let d(v,w) denote
the number of boundary edges between them in clockwise manner.
The operation is illustrated in Fig. 4.

Definition 5.4 (Metapolygon Extension) The metapolygon exten-
sion E(P,i) of a metapolygon P by an i-gon is defined as follows:

e Input: meta-k-gon P (possibly empty), k > 0, and integer i >
max(1,4—k), i #£4.
e Output: meta-(k + i —4)-gon Q, such that Z(Q) = Z(P) U{i}.

1. Glue an i-gon along one of its edges to an arbitrary boundary
edge of meta-k-gon P. This yields polygon mesh P’. If P is
empty, P’ will be just the i-gon.

2. If there is a sub-sequence vy, v1,v2,v3 of C(P’) such that v; and
v, are concave and v and v3 are corner:

e glue a regular grid of 4-gons of size d(vi,vz)X
min(d(vo,v1),d(v2,v3)) with three of its sides onto P’,
aligning two of its corners with v; and v,, respectively, yield-
ing anew P’.

3. While there is a sub-sequence vg, v{, v, of C(P’) such that v; is
concave and both, vy and v,, are corner:

e glue aregular grid of 4-gons of size d(vg,v1) X d (v, v,) with
two of its sides onto P’, aligning one of its corners with vy,
yielding a new P’ (ultimately Q).

Theorem 5.5 Metapolygon extension E(P,i) of a meta-k-gon P is
well-defined and its result is a meta-(k+i—4)-gon Q = E(P,i) with
Z(Q) = Z(P) U{i}.

Proof

o After step 1, P’ has only corner, flat, and concave (i.e., no va-
lence 4+) boundary vertices; its inner vertices do not differ from
P. At most two of the boundary vertices are concave (those adja-
cent to the glue edge). Let 0 < m < 2 be this number of concave
boundary vertices; then |C(P')| = ki — 4+ 2m > 2m (due to
i>4—k).

(© 2020 The Author(s)
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Figure 4: Metapolygon Extension: illustration of cases. Polygons created in steps 1, 2, or 3 (Def. 5.4) are colored orange, blue, and green,
respectively. Boundary vertex colors: corner: yellow, flat: green; concave: pink. Black dots are former boundary vertices that became regular
inner vertices during extension. Dashed lines indicate the quad structure of attached regular grids. (a) input meta-k-gon P. (b) gluing an
i-gon to a corner-corner boundary edge of P, no concave vertices are created; the construction terminates after step 1. (c) gluing a 2-gon to
a flat-flat edge, two successive concave vertices emerge; because d(vy,vy) = d(v2,v3) in step 2, one regular grid (blue) is attached in step
2. (d) gluing an i-gon to a flat-corner edge, one concave vertex emerges; one regular grid (green) is attached in step 3; (e) similar to (c),
but with d(vo,v1) # d(va,v3) in step 2; a second regular grid (green) is attached in step 3; (f) gluing an i-gon (i # 2) to a flat-flat edge, rwo
non-successive concave vertices emerge; two regular grids (green) are attached in step 3.

e If step 2 applies, it reduces the number of corner and the number
of concave vertices by 1 or by 2 (if d(vo,v1) = d(v2,v3)). All
inner vertices introduced at step 2 are regular.

e Suppose 2 concave vertices are present in C(P’) before step 3.
These vertices are not adjacent in C(P'): if after step 1 there are
two concave vertices that are adjacent in C, there are (due to
|C(P")| > 4) at least three corner vertices, such that step 2 ap-
plies (leading to less than 2 concave vertices). Therefore, step 3
can be applied, whether there are 1 or 2 concave vertices. Each
iteration of step 3 reduces the number of corner and the number
of concave vertices by 1; after the first iteration (if any) there
is at most one concave vertex left—in which case another itera-
tion is applicable. Hence upon termination, no concave bound-
ary vertex is left. All newly introduced inner vertices are regular.

The result is a metapolygon. Because the only added non-4-gon
is an i-gon, it specifically is a meta-(k +i — 4)-gon with Z(Q) =
ZpPyu{iy. O

5.2. Metapolygons with Prescribed Valences

Repeated application of metapolygon extension, starting from an
empty metapolygon, yields metapolygons containing a k-gon for
any k in a prescribed list of valences. This metapolygon can be
converted to a quad mesh with the desired irregular vertices by one
step of subdivision.

Proposition 5.1 Given a sequence S = (lg,/1,...,l,—1) of n inte-
gers [; > 1, such that for all j < n it holds ¥./_,e(l;) > —4, i.e.
every prefix sum is greater than —4. Then repeated application of
metapolygon extension allows to incrementally build a metapoly-

gon Q) with Z(Q,)) = S, via Oy = E(Q(i—1),li-1), Qo) = 2-

®© 2020 The Author(s)
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Proof For sequences of length O this obviously holds. Assume
it holds for sequences of length j; then Q) is a meta-k-gon with
k=44 Y e(l;) > 0. Also: X1 e(li) = k—4+e(l;) = k—4+
lj—4> —4. Hence, [; > 4 —k, thus Q1) = E(Qy),/;) can be

constructed.  []
Note that, given an unordered list L of valences, it can be ordered
to form an admissible sequence S = (ly,/1,...) (i.e., such that for

all j <nitholds Z{:O e(lj) > —4)iff ¥, c; e(l;) > —4. For instance,
start S with all /; with e(l;) > 0, followed by all with e(Z;) < 0.

5.3. Number of 4-gons

The size of the metapolygon obtained by repeated extension de-
pends strongly on the choice of the glue edge in step (1) of the
extension process. This choice affects the number of 4-gons that
are used to fill up the concavities.

Let [ be the number of boundary edges of the metapolygon side
onto which the next i-gon is glued. For i > 4, the number of 4-
gons added in the process of metapolygon extension is [ — 1, cf.
Fig. 4 b,d.f, regardless of where along this side the i-gon is glued.

For i = 3 and i = 2 this number, however, depends on the choice
of glue edge. Let x be the number of boundary edges between the
glued i-gon and the nearest corner ¢, 0 <x < [(I—1)/2]. If i =3,
the number of required 4-gons is x+ (x+ 1)(/ —x— 1), so choosing
a glue edge incident to a corner (i.e., x = 0) minimizes this number
tol— 1 (cf. Fig. 5). If i = 2, let I’ > 1 be the number of edges on the
other metapolygon side adjacent to corner c. The number of 4-gons
is x+ (I —2x—1)(I’ +1), so maximizing x by choosing a glue edge
centered between its two nearest corners minimizes the number of
4-gons to just (I —1)/2 or 1/2+1’, for I odd or even (cf. Fig. 6).
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Figure 5: Gluing a 3-gon to different boundary edges leads to more
or less fill-up with 4-gons. Left: one grid of x 4-gons and one grid
of (x+1)(1 —x—1) 4-gons are glued to mesh P'. Middle: only one
grid of (I — 1) 4-gons. Right: no 4-gons are needed.

5.4. Metapolygon to Cone Manifold

Subdividing each k-gon of a metapolygon into k 4-gons yields a
quad mesh, as illustrated in Fig. 3. For each i-gon, i # 4, of the
metapolygon, this quad mesh contains a corresponding vertex of
valence 7; all other interior vertices are regular (valence 4). Endow-
ing this quad mesh with a metric such that each quad is a unit square
yields a disk topology cone manifold with boundary. Each valence i

vertex, i # 4, forms a cone of curvature (4 —i)7.

6. Combinatorial Domain Construction

On a genus g surface M, the total curvature of prescribed cones for a
seamless parametrization must be 47(1 — g) (an implication of the
Gauss-Bonnet theorem). For the list L of corresponding valences
(cone curvature k% corresponds to valence (4 — k), cf. Sec. 5.4),
this implies an excess e(L) = 8g — 8. Therefore, for g > 0, valences
of admissible cones can generally be ordered to satisfy the require-
ments of Prop. 5.1, i.e., we can construct a metapolygon for these.
Note that the resulting metapolygon will be a meta-(8g — 4)-gon.
Subdividing this metapolygon and interpreting each quad as a unit
square, we obtain a disk topology cone manifold D.

Assume we cut the surface M to a disk topology surface M€ using
a cutgraph that has 4g — 2 branches; then M, like D, has 8g — 4
boundary sides (each corresponding to one side of a branch). It is
then easy to establish a boundary bijection onto the boundary 9D,
side by side.

However, identified sides of D (i.e. pairs of sides corresponding
to the same cut graph branch) may have different lengths, due to
different numbers of incident unit square quads. In other words,
the quadrangulated cone manifold D induced by the metapolygon
does not, in general, glue to a closed conforming quad mesh of the
same topology as M. A parametrization over this domain would
therefore not induce a consistent metric on M across the cut graph,
in contrast to a seamless one; only for the broader class of similarity
parametrizations this domain would be suitable [CZ17].

Note that in the process of metapolygon construction, we have no
explicit control over the final side lengths. A very similar obstacle
was described in [CSZZ19], where conformal map domains have
analogous scale incompatibilities. In that work a padding technique
is described to modify a parametrization using stretch and shift
maps, equalizing the lengths of identified domain side.

Roughly speaking, our method can be viewed as following the
same overall concept as that method, with two key differences:

1
| \ | \ | \

O0<x<(I-1)/2 x=(I-1)/2 x=0,1>1 x=0,l=1

Figure 6: Gluing a 2-gon to different boundary edges leads to more
or less fill-up with 4-gons. Left: one grid of x 4-gons and one grid
of (I —2x— 1)(I" 4+ 1) 4-gons are glued to mesh P'. Center left:
only one grid of (I —1)/2 4-gons. Center right: only one grid of
(I—1)(1' +1) 4-gons. Right: no 4-gons are needed.

1) the numerically challenging conformal mapping problem is re-
placed by our combinatorial metapolygon domain construction,
2) the padding idea is applied to combinatorially modify the do-
main in a discrete manner instead of continuously modifying a map.

6.1. Discrete Padding

Given a meta-k-gon with a side s; consisting of / edges, one can
glue a regular grid of / X m 4-gons along these edges (m-fold
padding of side s;). This yields a meta-k-gon with the number of
edges of sides s;_1 and s, increased by m. In this way the num-
ber of edges per side can be adjusted (though not independently)
with the goal of achieving a state of pairwise equality. Fig. 7 shows
an example of this operation applied to two sides.

As shown in [CSZZ19], due to the interdependencies, a state of
pairwise length equality cannot be achieved in general. By working
with two (three or four in special genus 2 cases) separate metapoly-
gons, which are first padded and then glued to form one metapoly-
gon, however, the desired state is achieved.

Alternatively, as we describe in Sec. 6.4, one can equivalently
work with a single metapolygon by employing a slide operation
in addition to the padding operation. This slide operation cuts one
metapolygon into two pieces and recombines them differently.

6.2. Partitioning

To determine how many metapolygons are needed for which
configuration, and how to distribute the prescribed singularities
over these metapolygons, we directly follow the rules laid out
in [CSZZ19, §4.2, §4.3]. Intuitively this can be pictured as par-
titioning the input surface into (commonly two) pieces M;, and
constructing a metapolygon P; for each piece following Sec. 5.2,
considering those singularities that are contained in the piece. Af-
terwards, each metapolygon P; is subdivided to yield a quad mesh
Q;, as detailed in Sec. 5.4.

6.3. Padding Equation System

The numbers w of layers of quads that need to be glued to each
side of the meshes Q; to match the lengths of identified sides can
be computed by solving a linear system Aw = b. Note that this
is one global system, not an independent one per component. The
system structure (and identification pattern) for each configuration
of genus and singularities is given in [CSZZ19, Eq. (6), B.2, B.3].

(© 2020 The Author(s)
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Figure 7: Left: metapolygon P subdivided to yield quad mesh
Q. Right: top side of Q padded by two layers of quads (green),
top right side subsequently by one layer (orange). Notice that this
padding affected the number of edges on four sides of the mesh.

In contrast to that work, for our discrete combinatorial setting,
we require an integer solution, w € 7™l As A and b are rational
(in fact integer), the result w is rational. Let d be the least common
multiple of the denominators in w, such that dw is integer.

Observe that, by linearity, Adw = db. Refining each quad in the
meshes Q; into a d x d grid of quads yields a set of meshes Q} for
which db is the right-hand side of the padding equation system,
while A depends only on the identification pattern, not the number
of quads, thus remains unchanged. Hence, dw are equalizing inte-
ger padding numbers for these meshes Q!. In our experiments we
have only encountered denominator 1, i.e., the results were gener-
ally in the integers right away. An interesting question is whether
this is generally the case, due to the specific system structure. In
any case, multiplication by the least common multiple of the de-
nominators would yield an integer solution.

After the meshes Q; have been padded, they can be glued, ac-
cording to the identification of their sides, to form one conforming
quad mesh Q of disk topology. Gluing all identified sides would
yield a closed conforming quad mesh, but here we only glue a sub-
set so as to yield a disk topology mesh Q.

6.4. Sliding

For the general case (genus 3+), where two pieces are used, we can
alternatively construct one metapolygon (for the entire set of pre-
scribed singularities), and split it afterwards. This approach is use-
ful because it avoids the need to explicitly partition the surface into
two pieces in a proper manner, which requires a relatively complex
algorithm to ensure suitable subsets of the prescribed singularities
lie in each piece [CSZZ19, §5.1]. Splitting the metapolygon (along
a sequence of edges) is a much simpler combinatorial operation.

A metapolygon can be split into two metapolygons along any
(combinatorially) straight sequence of interior edges that runs from
boundary to boundary and does not self-intersect (purple in Fig. 8).
Suitable edge sequences can be enumerated easily. Among these,
we need to choose one which splits the metapolygon in such a way
that the two resulting metapolygons have numbers cy,c, of cor-
ners such that ¢; mod 4 # 0. In this way the singularities are dis-
tributed between the two metapolygons according to the same rule
employed by the extra cut used in [CSZZ19, Def. 4.2] to partition
the surface into two suitable pieces.
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Figure 8: Padding and sliding. (a) metapolygon P subdivided to
quad mesh Q. Pairs of identified sides corresponding to the same
cut branch are marked in matching color. (b) after suitably padding
all sides of Q by regular grids of quads (light green) and sliding
along an extra cut (purple, cf. Sec. 6.4) corresponding sides have
equal lengths in terms of their number of edges. (c) and (d) show
the meshes from (a) and (b) mapped to a disk, with uniform edge
lengths along the boundary, so as to better illustrate the matching
edge numbers (as labeled) per pair of sides after padding.

Such a straight edge sequence always exists, unless all cones
have valences that are multiples of 4 (in which case no split is nec-
essary, cf. [CSZZ19, Prop. 4.3]). For instance, the maximal straight
sequence of edges that contains the edge that the last i-gon, i mod
4 £ 0, was glued onto during metapolygon construction, is one ex-
ample of a valid choice, cf. Fig. 4.

Each of the two resulting metapolygons has one side correspond-
ing to the split. As these two special sides will receive zero-padding
in the process of Sec. 6.3 (in direct analogy to the above mentioned
extra cut), they will be merged again when the two metapolygons
are glued after padding. However, because different amounts of
padding may have been applied on the adjacent sides, there will,
in general, be some shift involved, cf. Fig. 8 d. Instead of a split,
later followed by a merge, one can view this as a sliding operation.
Effectively, we allow part of the metapolygon to slide (discretely)
along a predetermined sequence of edges; this yields the additional
degree of freedom required to make the padding problem feasible.

6.5. Genus 0

In the above we assumed g > 0. In the genus 0 case for the list L of
valences corresponding to the prescribed cones we have e(L) = —8,
i.e., our metapolygon construction is not directly applicable. One
can, however, split the set of cones into four subsets, each contain-
ing cones with a total excess of —2. Note that under the common
assumption that no cones with valences < 1 are prescribed, such
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a partition is always possible. For each of the four pieces then a
meta-2-gon can be constructed. In two pairs, these can be glued to
form two meta-0-gons, i.e., metapolygons with only flat vertices on
the boundary. If the numbers of edges along the sides to be glued
do not match, the metapolygons (or their implied quad meshes)
can be subdivided: assume the sides have m and n edges, respec-
tively. Subdividing both meshes, replacing each quad with an n x n
or m X m grid, respectively, yields two quad meshes which can be
glued conformingly. In the same manner, the two meta-0-gon quad
meshes can then be subdivided and glued to form a spherical mesh.

Cutting along one edge of this mesh yields a disk topology cone
manifold (with two concave boundary points) as in Fig. 2 c.

7. Compatible Cutting

In Sec. 6 we assumed the surface M is cut to a disk-topology sur-
face M€ using a cut graph that has 4g — 2 branches. In [CSZZ19]
a so-called hole-chain cut graph is defined which has this number
of branches, and whose side identification pattern implies a fea-
sible padding problem (Sec. 6.3). After cutting the input mesh M
along this graph to a topological disk M€, both M€ and the padded
metapolygon induced cone manifold D, have 8¢ — 4 sides. It re-
mains to cut D (in the form of quad mesh Q) to a flat domain Q
(cf. Fig. 2 ¢,d), and to compatibly extend the cut on M°.

To this end, we choose a one-to-one correspondence between
singularities prescribed on M¢ and cones in D such that a singu-
larity of index % corresponds to an extraordinary vertex of valence
4 — k. In Sec. 9 we consider the problem of choosing geometrically
reasonable correspondences; technically an arbitrary choice suf-
fices. As both M€ and D have 8g — 4 corners, these can be brought
into one-to-one correspondence, respecting cyclic order, as well.

In the quad mesh Q, we compute a discrete (edge-based) span-
ning tree of all singularities and one arbitrary flat boundary ver-
tex, within the set of non-boundary edges. The set of non-boundary
edges is connected by construction, hence such a tree exists.

To obtain a compatible spanning tree on M, for each regular
branch vertex of the spanning tree of Q we pick a distinct corre-
sponding non-singular point on M€, as well as a boundary point
on the side of M€ that corresponds (as per the corner correspon-
dence) to the side of Q that contains the spanning tree root. Then
for each segment of the spanning tree of Q, we construct a path
on M€ between the two points corresponding to the segment’s end
points. These paths are chosen not to intersect each other. As M
with these paths removed remains a disk topology region through-
out this process, such a path can always be found. When choosing
a path, we need to ensure it reaches its endpoints in the proper sec-
tors (as in [SAPHO4, §4]). This is because we do not only need the
spanning trees on Q and on M€ to be compatible as a graph, but as
an embedded graph (i.e., their rotation system is relevant).

Cutting both, Q and M€, along the respective spanning trees,
yields disk topology surfaces with all extraordinary vertices or sin-
gularities lying on the boundary—with corresponding entities in
the same cyclic order around the boundary.

Using the unit square metric, the cut quad mesh Q can be laid
out isometrically in the plane, yielding the seamless parameter do-
main Q.

Low Genus Special Cases The hole-chain cutgraph is suitable for
surfaces of genus 3 and higher. For genus O a trivial one-segment
cut graph is sufficient, as discussed in Sec. 6.5. For the genus 1 and
2 case, suitable variations of the hole-chain cut graph are presented
in [CSZZ19]. These cut the surface into 2 to 4 pieces, required to
ensure feasibility of the padding problem.

8. Bijective Parametrization

We now consider how a bijective continuous map between the cut
input surface M¢ and the domain Q can be constructed such that it
provides a locally injective seamless parametrization of M.

Boundary Map First, a bijective map between the boundaries
OM°€ and 0Q is established. We already have a one-to-one corre-
spondence of the corner vertices along the boundary. This corner
map can be extended to a complete boundary map by mapping the
sides (sequences of boundary edges) between corresponding pairs
of neighboring corners according to (normalized) arc length.

One easily verifies that this boundary map is seamless: 1) do-
main sides of equal length are mapped to identified sides of M€,
using compatible, constant speed (arc length) parametrization; 2)
due to the unit square metric, each side of D forms a straight seg-
ment and the relative angle between any two sides’ segments is a
multiple of % Furthermore, no additional singularities besides the
intended ones are induced: 1) due to the sides of D being straight,
no curvature is induced along each branch of the cut graph; 2) due
to adjacent sides of D forming right angles at the corners, and the
employed cut graph (Sec. 7) having branch points of degree 4 only,
also at the branch points no cone is induced.

Interior Map Finally, we can extend the boundary map to the inte-
rior in a locally injective manner by direct application of the method
described in [WZ14], with an efficient numerically robust variant of
Tutte’s embedding [SJZP19].

9. Geometric Guidance

In the previous sections we have, for clarity, described the al-
gorithms for metapolygon construction, seamless domain con-
struction, and compatible cutting in a purely combinatorial form.
Choices of glued sides, glued edges, cut graphs, and singularity cuts
are involved in these steps. We now describe how the geometry of
the input surface and its prescribed singularities can be exploited
as a guide to make these choices not arbitrarily but such that the
distortion of the resulting initial parametrization is decreased.

9.1. Cut Graph

We construct the cut graph that cuts M to M€ as in [CSZZ19, §5.1],
in the case of genus g > 3, out of g discrete shortest loops and
2g — 1 shortest paths. As we found the provided implementation of
the short handle loop method from [DFW13] to have some robust-
ness limitations, we robustly compute the non-contractible non-
intersecting loops using the tree-cotree-based algorithm of [EW05]
instead. This algorithm is modified to avoid vertices marked singu-
lar; edges between two singular vertices are split to enable loops

(© 2020 The Author(s)
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Figure 9: Left: surface M with prescribed singularity points
(marked by colored dots). Right: the (subdivided) metapolygon
constructed accordingly, with extraordinary vertices marked by
correspondingly colored dots. Note the close similarity of the sin-
gularity and extraordinary vertex layouts.

passing between them. For efficiency, we apply this algorithm to a
sub-sampled set of vertices as base points, and greedily select the
shortest non-intersecting loops from the resulting set. The 2g — 1
shortest paths connecting these loops are computed using Dijkstra’s
algorithm, again modified to circumvent singular vertices.

9.2. Metapolygon Construction

After partitioning the cut surface M into pieces Mj, cf. Sec. 6.2,
for each piece a metapolygon is constructed as follows. Note that in
case sliding is used, cf. Sec. 6.4, we are dealing with just one piece
in the general case of genus > 3.

We compute a map with minimal isometric distortion of the cut
surface M{ onto the unit disk. Fig. 9 left shows an example. The
resulting positions of the prescribed singular vertices’ images in
this disk domain are of particular interest. Specifically, we aim to
construct the metapolygon in such a way that it’s irregular i-gon
centers approximate the singularity layout. This initial singularity
layout is taken into account in a twofold manner.

First, the ordered sequence S of valences taken as input by the
metapolygon construction algorithm from Sec. 5.2 is chosen based
on this layout. Taking the center of the unit disk as reference point,
we order the singularities (their corresponding valences) from clos-
est to furthest. This is motivated by the fact that the metapolygon
is constructed by extension from the center outwards. We call the
resulting ordered sequence S". Depending on the distribution of sin-
gularities, this order may violate the prefix-sum condition of 5.1. In
this case, it can be reordered greedily by moving valences greater
than 4 towards the front wherever necessary to satisfy the condition.
As the total sum of indices, as well as the sum of indices for each
part of the surface partition, respects the Poincaré-Hopf theorem by
construction, the greedy approach is guaranteed to succeed.

Second, in each iteration of the metapolygon construction, i.e.,
in each instance E(Q;, ;) of metapolygon extension, the side of the
metapolygon Q; used for gluing the next /;-gon is chosen based on
the singularity layout in the unit disk. To this end, after each exten-
sion, we compute a geometric planar layout of the metapolygon as
well. This is done in a free-boundary manner, using a least-squares
conformal objective [LPRMO2] for simplicity. The barycenters of
i-gons that are already part of the metapolygon under construction,
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Figure 10: Topologically compatible cut trees on the example from
Fig. 9, on M° (grey) and cone manifold D (blue). For visualization
purposes, we embedded D, like M€ on the left, in a unit disk. The
Jjaggedness of paths is due to paths being sequences of edges, here
in a low-resolution mesh.

are pinned to the position of the corresponding singularities in the
unit disk in that process. Fig. 9 right shows an example. Note that
this layout does not need to have any strict properties, such as injec-
tivity, for the overall algorithm to be correct, because it only serves
as a guide for the choice of the next gluing side.

We glue the next i-gon to the side closest to the corresponding
singularity in this unit disk embedding. In this way, the i-gon lay-
out in the metapolygon mimics the singularity layout of the corre-
sponding surface (piece). Algorithm 1 summarizes this procedure.

Algorithm 1 Guided Metapolygon Construction

Input: valence sequence S = (lo,l1,...,0,—1)
unit disk singularity positions C = (cg,c1,...,¢n—1)
Output: metapolygon Q)

1: Q(l) (—E(@,lo)
2: fori:=1ton—1do
3:  embed Q(,»), pinning barycenters to cg,...,cj—|
4:  find the boundary edge ¢; € Q;) closest to ¢;
5 Qiy1) < E(Qi), 1), using e; as glue edge
6: end for

9.3. Sliding

All straight edge sequences can easily be enumerated as they are
uniquely defined by (any one of their) boundary vertices. Testing
them for validity for the purpose of sliding is easy as well; checking
for intersections and counting corners suffices.

Among all valid options, we choose one which implies the
least number of additional quads added to the metapolygon in the
padding process, to minimize the size of mesh Q for efficiency. The
number of additional quads for each valid option is easily obtained
by solving the linear system of padding equations.

9.4. Cone Cuts

To construct the cut paths that connect the singularities and cone
vertices to the boundary (Sec. 7) in a geometrically reasonable
manner, we use geodesic paths. The following strategy proved ben-
eficial in terms of achieving small total cut lengths on M€ as well
ason Q.
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On the input mesh M we connect the singularities by discrete,
boundary-avoiding shortest paths in radial order, as determined by
the unit disk embedding, starting from the center of the disk. In
more detail, assuming the i center-most singularities have already
been connected, the (i + 1)st is connected by the shortest possible
paths (not intersecting the other paths) to any of these. Finally, the
singularity closest to the boundary of the unit disk is connected to
the closest boundary point by a shortest path.

On the quad mesh Q these paths are replicated as discrete
geodesic paths using Dijkstra’s algorithm, constrained to the proper
sectors. To prevent paths from blocking subsequent paths, we in-
troduce Steiner vertices in Q through edge splits where necessary,
cf. [SAPHO04]. To simplify implementation, Q can be triangulated
(splitting each quad into two right triangles). This is not an issue as
ultimately only its boundary is of relevance, cf. Sec. 8.

We observed that additional improvement (in terms of the total
lengths of resulting cuts) can be achieved by constructing not one
global spanning tree, but a separate one per sub-metapolygon of the
partition (cf. Sec. 6.2), with separate root points on the boundary.
In the case of sliding being employed, two separate trees are con-
structed for the two sides of the slide edge sequence. The improve-
ment can be attributed to the fact that the padding dictates how the
sub-metapolygons are combined to form the global metapolygon
(or how much sliding occurs), potentially making Q and M¢ dif-
fer significantly geometrically along the interfaces. Cut paths that
cross these interfaces can be short in Q but potentially very long in
MF€ or vice versa. Such paths are avoided when using multiple cut
trees. Fig. 10 illustrates the resulting cut trees on an example.

10. Results

We applied our method to models from the dataset of [MPZ14],
together with the cone prescription provided in that dataset. Table 1
reports the statistics for the 20 topologically most complex models
from this dataset. In Fig. 11, we visualize the seamless domains Q
constructed by our method together with the corresponding models.

The extension of the boundary over the entire domain, as de-
scribed in Sec. 8, can be done using a previous method [WZ14].
The implementation we tested is robust but not particularly effi-
cient; while for the smaller cases it takes seconds, for the largest
models (when M€ and © combined have millions of vertices) more
than an hour may be necessary.

The domains constructed by our method, together with the initial
seamless parametrizations over these domains, can serve as valid
initialization for optimization, e.g., for low parametric distortion.
Fig. 1 shows an example of this. We note, however, that our ex-
periments revealed that existing parametrization optimization tech-
niques, such as [RPPSH17], have significant limitations when start-
ing from initial parametrizations of high distortion in combination
with low mesh quality (in the sense of badly shaped elements). For
some of the initial parametrizations obtained as described in Sec. 8,
the optimization converges very slowly, requiring hundreds or thou-
sands of iterations. In some cases, the feasible step size becomes so
small that limited numerical precision leads to a premature halt.
One can conclude that the exploration of map optimization tech-

Input Model M Quad Mesh Q Time
cones genus faces | #Finit #F pad

helmet 9 3 1K 220 1452 0.13s
genus3 22 3 13K 348 576 0.25s
holes3 24 3 11K 452 1120 0.3s
master_cyl. 32 3 100K 608 3284 1.9s
block 46 3 4K 2568 2288 0.7s
rolling_stage 52 7 100K 652 36620 6.5s
fertility 60 4 27K 2332 3952 1.2s
carter 64 7 100K 1048 7172 Ss
botijo 70 5 82K 4K 116K 9s
chair 98 7 100K 8K 56K 8s
casting 119 9 36K SK 118K 10s
elephant 125 3 50K 15K 63K 12s
pegaso 131 6 30K 19K 138K 19s
heptoroid 140 22 100K 2K 119K 15s
neptune 212 3 105K 84K 44K 82s
oil_pump 212 4 100K 224K 266K 252s
dancing_chil. 212 8 100K 59K 365K 85s
seahorse2 216 8 100K 306K 2203K 375s
bozbezbozzel 305 5 100K | 1276K 2213K 1574s
thai_statue 366 3 80K | 3890K 2390K 7403s

Table 1: Result statistics. For each model, the number of prescribed
cones, the genus, and the number of triangles is listed. The number
of quads of the constructed metapolygon(s) before padding, and the
number of additional quads due to padding is shown. The complete
run time of our geometrically guided combinatorial construction of
the seamless parameter domain Q is given in the last column.

niques that are more robust to issues of discretization and numerics
is an important field for future work.

As can be observed in Table 1, the size of the resulting domains
can be quite large in terms of the number of quads. Fortunately,
an explicit representation of these individual quads is not essen-
tial: any coarse tessellation (e.g., using one large rectangular face
instead of a grid of many quads for each side’s padding) is suffi-
cient, as the mapping method [WZ14] only relies on the boundary
information.

Note that the initial seamless parametrization obtained using our
method are integer grid maps [BLP*13]: the translational compo-
nent of the transitions across cuts is discrete, by our construction
based on unit squares. The scale of this discreteness, however, can-
not be controlled explicitly in our method. Nonetheless, the ini-
tial maps created by our method are valid input for quantization
methods [CBK15, LCBK19] yielding integer grid maps with user-
controllable scale.

11. Limitations & Future work

While due to the combinatorial nature of our domain construction
there are no robustness issues in this part of the method, the current
strategy clearly leaves room for improvements in terms of perfor-
mance as well as initial result quality, as discussed in the following.

In the process of padding, the complexity of the metapolygon
quad mesh sometimes hardly changes, but sometimes it increases
by one or two orders of magnitude. A better understanding of the
influence of the metapolygon structure on the implied amount of
padding could help in preventing such cases.

© 2020 The Author(s)
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Figure 11: Some example models with prescribed cones (red: valence 3 or lower, blue: valence 5 or higher). Below each model the seamless
parameter domain constructed by our method is shown. Colored dots mark the boundary points corresponding to cone points. Note that axis-
aligned straight boundary segments correspond to the branches of the cut graph that cuts M to M€; the rest of the boundary corresponds to
the extended cut that connects the cones to the cut graph. The large number of diagonal segments is due to quad-triangle splitting (Sec. 9.4.)

Figure 12: For models with high genus (here 22) and a large num-
ber of prescribes cones (here 140), the constructed domain can be-
come very complex—in size (due to a large number of elements
forming the final padded metapolygon) as well as in shape (de-
pending on the choice of cuts and their interplay).

Another way to significantly reduce the size or complexity of
the metapolygon domain could be the gluing of multiple i-gons to
a metapolygon side, instead of generally filling everything up with
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4-gons after each step. A challenge lies in properly treating all the
possible cases that can occur depending on which combinations of
singularity indices are involved. This could prevent extreme cases
like the last example in Table 1, where the final domain has around
6 million quads.

The construction of cuts in such a way that they are topologically
compatible and geometrically well-behaved on the surface and, at
the same time, on the domain, is another area that deserves further
attention. Like similar compatible embedded graph constructions
in previous work, e.g. [SAPHO04], ours follows a greedy strategy. It
is easy to find cases where such greedy strategies yield highly sub-
optimal results, i.e. overly long, badly shaped paths (cf. Fig. 12).
This can significantly affect performance as the number of required
Steiner vertices, and therefore the mesh complexity, can grow and
the distortion of the initial map can be high.

As can be observed in Table 1, our current experimental imple-
mentation is slow for some complex models, given the relative sim-
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plicity of the algorithmic components, leaving room for optimiza-
tions. Additionally, an interesting avenue for future work is the in-
vestigation of multiresolution techniques in the general context of
seamless parametrization. When a model has tens or hundreds of
thousands of faces (like many of our test models) but only tens or
hundreds of prescribed singularities, the high mesh resolution is not
of high importance for the initial map computation.

Finally, as mentioned above, more robust, more flexible, less
tessellation-dependent parametrization optimization techniques
(supporting constraints, e.g., for seamlessness) would be of high
value, in the present context and beyond.
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