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Figure 1: Pulling apart a bundle of fibrous material. Different fiber orientations produce different behaviors –horizontal (left), tilted (right)
and vertical (bottom).

Abstract
This paper introduces a simple method for simulating highly anisotropic elastoplastic material behaviors like the dissolution of
fibrous phenomena (splintering wood, shredding bales of hay) and materials composed of large numbers of irregularly-shaped
bodies (piles of twigs, pencils, or cards). We introduce a simple transformation of the anisotropic problem into an equivalent
isotropic one, and we solve this new “fictitious” isotropic problem using an existing simulator based on the material point
method. Our approach results in minimal changes to existing simulators, and it allows us to re-use popular isotropic plasticity
models like the Drucker-Prager yield criterion instead of inventing new anisotropic plasticity models for every phenomenon we
wish to simulate.

CCS Concepts
• Computing methodologies → Simulation by animation; Physical simulation;

1. Introduction

Computer animation greatly benefits from the ability to simulate
a wide range of different phenomena. The research literature is
rich with techniques for simulating elastic deformable materials,

which exhibit large deformations but do not permanently deform,
and isotropic elastoplastic materials which can flow plastically but
assume the same behavior in all directions.

However, materials with extremely anisotropic elastoplastic be-
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haviors are still difficult to simulate, for practical as well as techni-
cal reasons. Without a general method for simulating this class of
materials, artists are ill-equipped when animating the dissolution
of fibrous phenomena, like splintering wood and shredding bales
of hay. They similarly have sub-optimal tools for animating mate-
rials composed of large numbers of irregularly-shaped bodies, like
vaults full of money, or piles of twigs, pencils, or cards.

In this paper, we introduce a simple method for simulating such
materials by transforming the anisotropic problem into an equiva-
lent one that can be solved with an isotropic material solver. This
means that we can simulate complicated new material models with
existing pipelines, and we illustrate the effectiveness of our tech-
nique by integrating it into a standard isotropic solver based on the
material point method (MPM). This anisotropic mapping also al-
lows us to re-purpose popular isotropic plasticity models instead
of inventing new anisotropic plasticity models for each new phe-
nomenon we wish to simulate. The main contributions of this paper
are:

• A generalized model of anisotropy that can be integrated into
current MPM elastoplasticity solvers
• An orthotropic law that reduces the generalized model to a few

intuitive parameters.

We use these ideas to create animations of diverse phenomena like
piles of irregularly-shaped objects and splintering bundles of fibers
(like those in Figures 1 and 3). We also propose a practical post-
process technique for visualizing our anisotropic MPM simulation
(described in Section 7) and increasing its apparent visual detail.

2. Related work

The computer graphics literature on animating deformable bodies
is too plentiful to list in detail. The bulk of this section is orga-
nized around techniques for simulating various material models,
like isotropy/anisotropy and elasticity/elastoplasticity, and we end
with a discussion of miscellaneous techniques for simulating re-
lated phenomena.

Isotropic Elasticity

Most techniques in computer graphics focus on the specific case
of isotropic elastic materials. These techniques take advantage of
symmetry (no direction-dependent effects) and they ignore plastic-
ity (no permanent deformations accumulating over time). We re-
fer readers to the course notes of Sifakis & Barbič [SB12] and the
recent book by Cai et. al. [CLS16] for an overview on isotropic
elastic material simulation.

Anisotropic Elasticity

To expand the range of material behaviors, researchers have also
explored methods for simulating anisotropic elastic materials. Pa-
per and cardboard [XBP02], biological materials such as brain tis-
sue [VFA06] and teeth [Huo05], and geological [GZY10] and com-
posite materials [OBMO95, COO00] have all been simulated with
anisotropic constitutive models. In computer graphics, anisotropic

elastic materials are especially useful for approximating biologi-
cal tissues [PDA03, LST09, MS∗15], plants [LB15], and inhomo-
geneous isotropic materials [KMOD09]. More recently, Kim et.
al. [KDGI19] proposed the use of anisotropic elasticity to reha-
bilitate degenerate elements of a mesh.

Isotropic Elastoplasticity

Elastoplastic materials allow some amount of permanent defor-
mation. Early work in computer graphics covered limited plastic
behaviors by directly updating the reference frame used for elas-
ticity [NMK∗06]. However, these methods become numerically
unstable when the reference configuration becomes too distorted.
To avoid maintaining a hopelessly entangled reference configura-
tion, researchers introduced Eulerian methods [GBO04], mesh-free
methods [MKN∗04,CBP05,PKA∗05], and methods for continually
updating the simulation mesh [BWHT07, WT08, WRK∗10].

Subsequently, Sulsky’s Material Point Method (MPM) [SZS95]
was introduced to computer graphics with the goal of animat-
ing snow [SSC∗13]. MPM elegantly handles elastoplastic flows
by combining Lagrangian particles with Eulerian grids for main-
taining a stable simulation. Researchers in physics and material
science have since used MPM for simulating soft tissue [IGB∗],
landslides [AA10], and granular materials [MAMHM15]. Com-
puter graphics researchers have adapted the method for simulat-
ing foam [YSB∗15, RGJ∗15], sand [KGP∗16, DBD16], and inter-
actions between liquid and granular material [TGK∗17, GPH∗18],
rigid bodies [HFG∗18], or fabrics [FBGZ18]. Recent research has
improved MPM by expanding its ability to preserve affine [JSS∗15]
and higher order information [FGG∗17], and introducing spatial
adaptivity [GTJS17], and temporal adaptivity [FHHJ18].

Anisotropic Elastoplasticity

As yet, the computer graphics community has not thoroughly ex-
plored the simulation of materials that are both elastoplastic and
anisotropic. Given the utility of anisotropic elastic material mod-
els for animating fibrous material, wood, plants, muscles, and skin,
adding plasticity to the models should be useful for allowing duc-
tility, tearing, and fracture effects to these animations.

The work of Jiang et. al. [JGT17] addressed some of these ef-
fects, by modeling frictional contact as an anisotropic elastoplastic
material. Their method introduces additional Lagrangian fibers or
sheet structures to define the anisotropic frame, and it simulates
anisotropic elastoplasticity based on these frames. Their method is
perhaps ideal for their stated result of simulating frictional contact,
because these helper structures naturally map to hairs and fabrics.
Furthermore, the choice to define anisotropic frames based on the
fiber/sheet structures elegantly avoids the complications involved
with tracking an evolving anisotropic frame through a general ma-
terial. The method produces impressive results and lays the ground-
work for more general anisotropic elastoplastic behaviors.

However, the method of Jiang et. al. [JGT17] requires
anisotropic elastoplastic behaviors with an obvious coherent fi-
brous or sheet structure; it cannot be used for animating volumes
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Figure 2: A simulation of a dump truck unloading a bed full of various types of granular materials. The leftmost images shows an isotropic
(sand-like) material, while the others show materials with preferred orientations –horizontal (middle-left), tilted (middle-right) and vertical
(rightmost).

composed of anisotropic granules, and it cannot be used for sim-
ulating fracture without explicitly fracturing the fiber/sheet struc-
tures as well. Our work aims to solve the more general problem
of anisotropic elastoplastic materials without any helper structures
like Lagrangian fibers or sheets.

Daviet & Bertails-Descoubes [DBD16] made a breakthrough in
anisotropic MPM simulation by specially deriving a material law
for anisotropic granular materials. They also introduce a method
for modifying anisotropy over time, which we build upon in Section
6.4. In contrast, we want to approximate a wider set of elastoplas-
tic material behavior: instead of proposing a particular plasticity

Figure 3: This fibrous material tears apart under its own weight.
Different fiber orientations produce different behaviors.

model for a particular phenomenon, our method serves as a sim-
ple anisotropic extension to current and future isotropic simulation
codes, with little implementation overhead.

Miscellaneous Techniques

Narain et. al. [NGL10] introduced a unilateral incompressibility
model for approximating flowing granular materials, which led to
the more specific granular plasticity models discussed above. Al-
duán et. al. [ATO09] showed how to increase the effective visual
resolution of granular media by adding additional high resolution
particles, similar to the visualization technique we propose.

Bell et. al. [BYM05] animated granular materials using dis-
crete elements, while Hsu and Keyser [HK10] substituted piles of
interacting objects with static “sleeping” bodies, in order to sig-
nificantly speed up simulation time. Follow-up work by Han et.
al. [HHMK13] performed perceptual studies to determine which
types of behaviors are physically plausible when simulating large
piles of objects. We argue that, while these methods obviously pro-
duce realistic results, approaches based on continuum mechanics
are ultimately more efficient than simulating every grain individu-
ally. Some middle ground between these two approaches may be
found. For example Yue et. al. [YSC∗18] couple discrete parti-
cle simulation and MPM to obtain simulations of granular material
with both detailed dynamic behavior and computational efficiency.

Finally, anisotropy is also important for mesh generation. Similar
to our approach for simulating anisotropic materials by mapping
to a fictitious isotropic space, geometric warping methods create
meshes by combining traditionally isotropic meshing techniques
with non-Euclidean metrics [PPTSH14, ZGW∗13, KMZ10].

3. Continuum Mechanics Background

3.1. Elasticity

We model a deformation as a function Φ : {X , t} 7→ x that maps the
position in material space X and the current time t to the deformed
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position x in the global reference frame. The deformation gradient
matrix FFF represents the deformation of an infinitesimal vector dX :
dx = ∂Φ

∂X dX = FFFdX , the strain EEE = 1
2 (FFF

T FFF− III) measures the de-
formation as the relative displacement within the deformed body,
and the stress σσσ measures the internal forces experienced by the
body.

The stress is generally a non-linear function of the strain, σσσ(EEE).
To enable large deformations regardless of the stress model, co-
rotational methods map the problem to a local with a rotation ma-
trix RRR, compute the stress σ̃σσ in the local frame, and then rotate it
back: σσσ = RRRT

σ̃σσRRR.

Stress is often linearized with σ̃σσ ≈ C̃ : EEE, a tensor contraction
between an elasticity tensor C̃ and the strain EEE. After factoring out
symmetries due to conservation laws, the elasticity tensor C̃ has 21
independent degrees of freedom. Isotropic materials, which have
direction-independent stresses – the stress response would stay the
same when the material is rotated–, use these additional symme-
tries to reduce the 21 degrees of freedom down to only 2: Young’s
modulus and Poisson’s ratio. Due to these few degrees of freedom,
isotropic elasticity models are easier to implement and tune, and
there are far more isotropic elasticity models in the animation liter-
ature than anisotropic ones.

Anisotropic models of elasticity depend not only on the strain,
but also on the alignment with the local reference frame, which can
vary depending on its position in the material. Anisotropic stress
models change the material’s elastic response depending on how
the deformation aligns with the local reference frame. Anisotropic
elasticity models tend to have more parameters and are more cum-
bersome to implement than isotropic ones.

3.2. Plasticity

State-of-the-art plasticity models in computer graphics consider a
plastic yield surface, which we encode as the level set of a function
α(σσσ). If the stress lies within this surface (if α(σσσ) ≤ 0), then the
material undergoes elastic behavior. Otherwise, (if α(σσσ) > 0) the
stress is projected onto the yield surface. This operation effectively
discards stresses beyond the yield surface, giving rise to irreversible
deformation.

Plasticity is often implemented using a multiplicative model of
the deformation gradient:

FFF = FFFeFFF pl (1)

where the deformation gradient FFF has an elastic part FFFe and a plas-
tic part FFF pl . In practice, FFF pl is computed with a projection onto the
yield surface, α [SH06].

Many plastic yield criteria have been proposed in computer
graphics: Stomakhin et. al. [SSC∗13] introduced a yield surface
based on the magnitude of the singular values of FFF to model snow.
Bargteil et. al. [BWHT07] propose a creeping yield surface that
can also exhibit work hardening, for animating goopy materials.
Klar et. al. [KGP∗16] achieve sand behavior by using the Drucker-
Prager cone as their yield surface. Clearly, the yield surface plays
an essential role in the material’s behavior.

All of these plasticity models rely on an isotropic yield surface

Figure 4: Our method considers three reference frames. The global
frame and local frame consider anisitropic material laws, while
fictitious frame warps space in such a way that the material laws
become isotropic.

that ignores the orientation of FFF or σσσ relative to the local frame.
Consequently, these methods can be optimized to only use the three
singular values as input parameters, instead of using the full ten-
sor. These three-dimensional yield surfaces have simple geometries
that are simple to parameterize and understand, like rectangular
solids [SSC∗13] and cones [KGP∗16].

Anisotropic plasticity models require a yield surface that de-
pends both on stress and the local reference frame. If we want
to make all of the tried-and-true isotropic plasticity models
anisotropic, we must modify them to take into account the align-
ment between the deformation and the local frame. Unfortunately,
this added dependence on orientation may nullify the elegance and
simplicity of many isotropic plasticity models. The yield surfaces
are necessarily higher dimensional, and they encode more compli-
cated geometries than the simple isotropic models.

4. Anisotropic mapping

Our work directly addresses these problems with designing and
simulating anisotropic elastoplastic materials by introducing the
concept of a fictitious isotropic space [OBMO95, COO00]. The
fictitious space is specifically designed to remove any directional
bias caused by anisotropy, making the stress in that space isotropic.
By mapping our anisotropic problems into this new space, we are
able to model complex anisotropic behaviors by re-using purely
isotropic algorithms.

So far we have discussed quantities in the global reference frame
(σσσ) and in the local frame (σ̃σσ and ẼEE), and we must now introduce
quantities in the fictitious isotropic frame (σσσ and EEE). We use two
linear operatorsAσ andAE to map the stress and strain from the lo-
cal frame to this isotropic frame. We represent these maps as fourth-
order tensors:

σσσ =Aσ : σ̃σσ and EEE =AE : ẼEE. (2)

Please see Figure 4 for an illustration of these three reference
frames. We see how to create these maps in Section 6.

We can now simulate anisotropic materials by computing EEE and
σσσ(EEE) using an existing isotropic solver, then mapping them back
out of the isotropic frame with (AE)−1 and (Aσ)−1 (see Figure 4).
Putting this all together, we convert from the global frame to the
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local frame via rotations (σ̃σσ = RRRσσσRRRT ), and we convert from the
local frame to the fictitious frame via our mapping (σσσ = Aσ : σ̃σσ

and EEE =AE : ẼEE). Composition gives us a direct mapping from the
global frame to the fictitious isotropic frame (σσσ =Aσ : RRRσσσRRRT and
EEE = AE : ẼEE). We can bring it back to the global frame again by
inverting this process (σσσ = RRRT (Aσ)−1 : σσσRRR and ẼEE = (AE)−1 : EEE).

We note that the idea of using an anisotropic mapping tensor
for simulation originated in the engineering field with the work
of Oller et. al. [OBMO95], which used the technique to simu-
late fiber-reinforced composite materials. However, their approach
(along with their follow-up work [COO00]) is limited to small de-
formations with limited plasticity, while modern computer anima-
tion requires stable behavior with large deformations. Similarly,
their limited plasticity prevents flows, like pouring and fracturing.
To make the method more robust, our adaptation introduces a lo-
cal material frame to ensure stability for large deformations, and it
integrates with MPM to enable large plastic flows.

5. Integration into MPM

This section illustrates how we integrate this anisotropic mapping
idea into an MPM simulator. We first describe how an MPM solver
simulates elastoplastic materials in Section 5.1, and then we de-
scribe how to modify the method to animate anisotropic materials
in Section 5.2.

5.1. MPM for isotropic materials

Figure 6 shows an overview of the MPM pipeline; we encourage
readers to peruse the overview by Jiang et. al. [JST∗16] for more
details. We are using our own implementation of MPM, that mostly
follows the pipeline described in [KGP∗16].

MPM stores simulation information like masses mp, positions
xxxp, and velocities vvvp on Lagragian particles (indexed by the sub-
script p), but it uses an Eulerian grid (with nodes indexed by sub-
script i) to compute forces fff i. During each time step of an MPM
simulation, the simulator executes the numbered steps in Algorithm
1: First it interpolates particle data onto the grid (1). Then it com-
putes forces –based on the stresses computed at step 7 of the previ-
ous loop (2), numerically integrates them to get velocities (3), and
modifies grid velocities to account for collisions (4). Afterward, it
interpolates velocity data back to the particles (5), computes stress
(6), and induces plastic behavior by projecting the stresses and
strains onto the yield surface and subsequently updates the de-
formation gradient (7). Finally, it updates the particle positions by
numerically integrating velocity (8). Further details can be found
in [JST∗16].

Naïvely using this basic MPM algorithm for animating
anisotropic behavior requires users to derive custom stress laws in
step (6) and anisotropic yield surfaces in step (7). We explain how
to avoid this problem by re-using the existing isotropic code in the
next section.

5.2. MPM with anisotropic maps

We use the ideas from Section 4 to simulate anisotropic behav-
ior with this MPM algorithm. Instead of re-writing code for steps

(6) and (7) to create anisotropic behaviors, we preserve these
steps exactly and insert anisotropic maps before and after them.
The isotropic code for steps (6) and (7) is re-used, and mapping
functions are responsible for the anisotropic behavior. Please see
Figure 5 for a modified MPM algorithm which incorporates our
anisotropic maps.

This new algorithm deviates from isotropic MPM (Figure 6) af-
ter step (5). Instead of proceeding directly to the strain/stress com-
putation, we map to the fictitious isotropic space in step (a). Then
we re-use the isotropic code for step (6) to compute σσσ(EEE) based on
the mapped strain EEE. We then re-use the isotropic plasticity code in
step (7) based on the mapped stresses σσσ and strains EEE. Afterward,
we map the isotropic results back to anisotropic space (Ẽ and σ̃)
in step (b). The deformation gradient can then be updated from Ẽ.
Step (c) then updates the maps based on an updated linearization of
the strain (Equation 5) and possible modifications to the anisotropy
over time (Section 6.4). The entire algorithm is spelled out in Algo-
rithm 1, with the lines specific to our method highlighted in yellow.
Note that we make no modifications to the existing MPM algorithm
(numbered lines), so our method can be thought of as a plug-in to
any MPM solver. To make the modularity of our algorithm more
apparent, we will release our source code upon publication of this
work.

This approach gives us a couple of benefits over more straight-
forward approaches to animating anisotropic materials. First, it au-
tomatically derives new anisotropic elasticity and plasticity laws
from existing isotropic laws. Second, it allows us to re-use exist-

Algorithm 1: Anisotropic MPM
Our modifications are highlighted in yellow

Initialize grid and particles;
Pre-compute particle volumes Vp;

Initialize maps AE
p and Aσ

p;

foreach time step do
(1) Interpolate mp and vvvp from the particles onto grid

nodes;
(2) Compute forces fff i on grid nodes;
(3) Numerically integrate fff i (Forward Euler);
(4) Compute collisions with obstacles on the grid;
(5) Interpolate velocities vvvi back to the particles, and

compute FFF p and EEE p;

(a)
Apply anisotropic map to co-rotated strain
EEE p :=AE

p : ẼEE p;

(6) Compute stress σσσp(EEE p) for each particle;
(7) Project EEE p and σσσp onto the plastic yield surface;

(b)

Invert maps
ẼEE p := (AE

p )
−1 : EEE p;

σσσp := RRRT (Aσ
p)
−1 : σσσpRRR;

(c) Update maps AE
p and Aσ

p;

(8) Numerically integrate vvvp (Forward Euler);
end
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Figure 5: The MPM algorithm modified to incorporate anisotropy. The only changes to the isotropic MPM pipeline (Figure 6) are steps (a),
(b), and (c).

ing simulation code; the anisotropic mapping idea is easily inserted
into existing isotropic simulators, expanding their material range
without much additional work.

6. Creation of the maps

Using this method, the anisotropic behavior is entirely defined by
the two maps Aσ and AE . In this section, we discuss the creation
of these maps. General anisotropy enables us to create a very large
range of behaviors (see for example Figure 7). But the large num-
ber of degrees of freedom makes it also rather unintuitive and un-
practical to tune. However, most material behaviors present sym-
metries that reduce the number of degrees of freedom (DOF). In
Section 6.2, we propose a simple orthotropic law and show how to
create the corresponding map. We thus reduce the number of DOF
to only a few, potentially more intuitive, control knobs for navigat-
ing this complicated design space.

6.1. General anisotropy

The mapping tensors are constrained to be symmetric to preserve
the symmetry of the stress and strain matrices:

Ai jkl =Akli j, Ai jkl =A jikl , Ai jkl =Ai jlk. (3)

This means that in the general case they have 36 degrees of free-
dom. .

Aσ defines how the isometric yield surface is distorted in the
anisotropic space. The further Aσ is from the identity tensor I,
the more anisotropic the plasticity is going to be. AE controls the
anisotropy of the elasticity. It can be chosen by tuning it away from
I just likeAσ, but it can be also computed from an already-existing
anisotropic elasticity law if needed: By linearizing the elastic law
for respectively the isotropic and anisotropic laws, we obtain:

σσσ≈ C : EEE and σ̃σσ≈ C̃ : ẼEE, (4)

where C and C̃ are respectively the tangent elasticities of each law.

Plugging the definitions from (2) into this equation allows us to
calculate the strain mapping:

AE = C−1
:Aσ : C̃. (5)

If an elastic law is described by EEE = σσσ(EEE) then the tangent elas-
ticity would be the tensor C = ∂σσσ

∂EEE (EEE).

The isometric elastic law can be chosen arbitrarily, however
choosing it such that AE is close to identity may improve the con-
ditioning of the system.

We show in Figure 7 an example of general anisotropic behavior
obtained by playing with the DOF. Nevertheless to make it easier
to manipulate the behavior, we propose a formula to obtain an or-
thotropic law with only a few tuning parameters. This simplified
model is what we use in the rest of the article as well as for the
other examples.

6.2. Orthotropic anisotropy

An orthotropic material is a material whose mechanic properties
have locally three orthogonal planes of symmetry. The material
parameters can thus be defined along three orthogonal axes (the
normals of the symmetry planes). Orthotropic law are very com-
mon in nature. In particular, in the case of granular material, we
can make the hypothesis that the grains can be approximated by
ellipsoids and that the distribution of their orientation has locally
three orthogonal planes of symmetry. These symmetries reduce the
number of parameters from 36 to 9. Taking these parameter sim-
plifications even further, we found that, for Aσ, only three degrees
of freedom, aligned with the axes of the local material frame, were
sufficient to achieve several different anisotropic behaviors in our
results: we set the stretching along each axis i in the local frame
equal to a scale factor ai, with each ai can be seen as control-
ling the plastic fragility along each axis. We capture this behavior
by requiring that Aσ : SSS = DDDSSSDDD for all symmetric matrix SSS, with
DDD = Diag(ax,ay,az).

Specifically, we define the stress mapping tensor to be:

Aσ
i jkl =


a2

i , if i = j = k = l

aia j/2,
if i = k and j = l
or i = l and j = k

0 otherwise

(6)

In our implementation we use linear orthotropic elastic materials
[LB15]. For these materials, the elasticity tensor in the local frame
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Figure 6: A schematic representation of the MPM algorithm in Section 5.1. Steps (1)-(4) on the top portion of the figure take place in the
Eulerian frame (grid), while steps on the bottom half use the Lagrangian frame (particles).

Figure 7: A collapsing column of vertical particles of non-
orthotropic material.

(expressed in Voigt tensor notation) is defined by its inverse:

C̃−1 =



1
E1

− ν21
E2

− ν31
E3

0 0 0
− ν12

E1

1
E2

− ν32
E3

0 0 0
− ν13

E1
− ν23

E2

1
E3

0 0 0
0 0 0 1

µ23
0 0

0 0 0 0 1
µ31

0
0 0 0 0 0 1

µ12


(7)

where Ei is the Young’s modulus for a uniaxial tension in the direc-
tion of axis i, µi j is the shear modulus in direction j on the plane
whose normal is in direction i, and νi j is the Poisson ratio corre-
sponding to a contraction in direction j for an extension in direc-
tion i. Given C̃ from this anisotropic law and C from the isotropic
elastic law, we can compute AE from Equation 5.

We can also easily define a transverse isotropic law (in the x-axis
direction) by setting ay = az, Ey = Ez and µxy = µzx.

Note that the anisotropic maps AE and Aσ may vary over time.
For piles of granular materials, the anisotropy should reflect the av-
erage orientation of the grains in the continuum, which may change
if mixing or alignment occurs. In this case, the maps should be re-
computed each step to reflect the changing anisotropy, as we de-
scribe in Section 6.4. Also, plasticity may result in a change in the
elastic law (hardening or softening), in which case AE would also
need to be updated.

6.3. Local reference frames in MPM

The global-to-local mapping requires a rotation matrix RRR for each
particle. RRR is also needed for the visualization of the granular
material as it represents the local orientation (or main orientation)
of the grains. RRR can be computed in many different ways like
polar [ACOL00] or singular value [Sol15] decomposition of the

deformation gradient FFF . We choose an approach based on shape
matching [MHTG05]. Our approach begins with an orientation RRR0
given by the initial conditions, which we update over time using
a shape matching algorithm on the MPM grid. Specifically, we
create a weighted point distribution St

p consisting of particle p and
its nearby grid nodes weighted by the MPM kernel wip. We then
approximate the positions for the next time step by advecting each
point in St

p to create another set Sn+1
p . We compute the optimal

rotation RRR about particle p which takes Sn
p to Sn+1

p using shape
matching [MHTG05]. This approach relies on the interpolation of
the advected position of the grid nodes rather than their velocity,
making it consistent with the grid to particles transfer approach
used in our implementation based on [KGP∗16]. Although other
strategies for estimating RRR are possible, we found this approach
reliable for simulation and useful for visualization post-processes
(Section 7).

6.4. Changing Anisotropy over Time

As noted in Section 6.2, anisotropy in the material can change over
time. If we approximate a granular material with an anisotropic
elastoplastic constitutive model, then the anisotropy depends on
the alignment of the grains. Aligned grains will exhibit strong
anisotropy along the common direction, while a uniform mixture
of grain orientations will exhibit roughly isotropic behavior.

Daviet & Bertails-Descoubes [DBD16] introduced a method for
tracking grain orientations by evolving the distribution’s second
moment matrix ΠΠΠ2 [FT84]. They describe a partial differential
equation for updating this matrix:

∂ΠΠΠ2
∂t

=WWW pΠΠΠ2−ΠΠΠ2WWW p + l(DDDpΠΠΠ2 +ΠΠΠ2DDDp−2DDDp : ΠΠΠ4), (8)

where l is a coefficient describing the elongation of the grains, ΠΠΠ4
is the fourth moment tensor approximated by ΠΠΠ2

⊗
ΠΠΠ2, and DDDp

and WWW p are the symmetric and asymmetric parts of the velocity
gradient at point p, respectively. We note that this equation models
ΠΠΠ2’s changes in the global Eulerian reference frame, including not
only the change in distribution, but also its rotation. However, our
local frames RRR already compute rotations, so we simply extract the
rightmost portion of this equation:

∂Π̃ΠΠ2
∂t

= l(D̃DDpΠ̃ΠΠ2 + Π̃ΠΠ2D̃DDp−2D̃DDp : Π̃ΠΠ4), (9)

where D̃DDp and Π̃ΠΠ2 are defined in the local frame.
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Figure 8: Granular materials aligning with the flow: a block of
particles is dropped on a slope (top). The particles are initially
horizontal and oriented in the direction of the slope (middle) or the
orthogonal direction (bottom). The simulations on the left update
their local frame (Section 6.4), while the right do not.

This equation enables us to keep
track of the distribution of grain orien-
tations associated with each MPM parti-
cle. If the orientations are uniformly dis-
tributed (inset right), the three eigenval-

ues of Π̃ΠΠ2 equal 1
3 , and we prescribe isotropic behavior at this po-

sition by setting E1 = E2 = E3, ν12 = ν23 = ν13, a1 = a2 = a3,
and recomputing sheer moduli ν from these new parameters. On
the other hand, if all the grains are oriented in the same direction
(inset left), the eigenvalues of Π̃ΠΠ2 are (0,0,1), with the last eigen-
vector pointing in the same direction as the grains. Here, we pre-
scribe maximally anisotropic behavior, given by E , ν , and a in
the main direction of orientation and E⊥, ν⊥, a⊥ in the orthogonal
direction.

In most cases, Π̃ΠΠ2 will describe behavior in between these two
extremes, so we use its eigenvalues λ to linearly interpolate be-
tween {Eiso,νiso,aiso} and {E⊥,ν⊥,a⊥} when λ < 1/3, and inter-
polate between {Eiso,νiso,aiso} and {E ,ν ,a } when λ≥ 1/3.

An important note is that the eigenvectors of Π̃ΠΠ2 function as the
axes of a local material frame, with the largest eigenvector corre-
sponding to the z-axis. Updating Π̃ΠΠ2 with Equation 9 can change
the eigenvectors and thus change the material frame. We label this
change in frame ∆RRR and use it to update our RRR matrix after each
re-orientation.

7. Visualization

The materials simulated in our examples consist of large numbers
of small oriented fibers, plates, or grains (Figure 9). Since MPM
discretizes a continuous material into smaller control volumes, the
MPM particles alone are not sampled finely enough to provide a
rich visualization of the material. As a post-process after simula-
tion, we choose to populate the material with many “sub-particles”

Figure 9: Varying the shape of the material anisotropy between 2D
discs and 1D fibers lets us animate materials consisting of large
numbers of oriented cards (top), rods (middle), and a layered ma-
terial (bottom). The particles are initially horizontal (left) or tilted
(right)

(≈ 10× more than the number of MPM particles), each visualized
as an oriented rigid body. In a post-process, we update the posi-
tion of each sub-particle by advecting it through the velocity field,
and we update its orientation using the shape-matching algorithm
described in Section 6.3.

During this post-process, sub-particles may escape the influence
of the MPM simulation (when the interpolated density at that point
falls below a user-defined threshold of 0.1%-1% of the material
density). We treat these escaped sub-particles as ballistic rigid bod-
ies, instead of interpolating their motion from the MPM simulation.
This ballistic motion is especially useful for fracture simulations
which tend to shatter into small fragments (Figure 1). The velocity
can get unstable on the grid nodes with very low density, this may
cause spurious velocities for particles switching from MPM to a
ballistic motion. To avoid this we set the velocity of a node to zero
when its density is below a threshold.

To account for changing anisotropy (as described in Section 6.4),
we also update the local frame of each sub-particle. We do this
by interpolating the change in frame ∆RRR to each sub-particle and
applying the rotation adjustment. For a smoother visual effect, we
prefer to first interpolate ∆RRR from the MPM particles to the grid,
and then interpolate from the grid to the sub-particles (rather than
interpolating from particles to sub-particles directly).

Note that this subparticles visualization is only a starting point. It
works well-enough for large simulations seen from rather far away.
But further investigations would be needed for a more complex vi-
sualization scheme that would be required for closer range. Indeed
at close range, individual interactions between grains –resulting in
motions and changes of orientation more complex than MPM is
capable to handle– become more visible. Also MPM artifacts –
notably floating particles that follow the general motion without
seeming in contact with anything– becomes more evident. Solving
those visualization problems is a great area for future work.
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8. Results

Our supplementary video shows several simulations created with
our technique. Our implementation uses an orthotropic material,
with anisotropy expressed as an independent scaling along three
spatial axes. We approximate fibrous materials or elongated grains
(rice, bricks, etc.) by amplifying one axis much more than the other
two. We approximate layered materials or flattened grains (coins,
cards, etc.) by shrinking one axis much more than the other two.
We simulate nearly isotropic materials by using a more uniform
scaling. The different types of anisotropy can be seen in Figure 9.

Our method can take any isotropic code and re-use it for
anisotropic materials. We illustrate this benefit by using a multitude
of different material models throughout our examples. For stress
computation, we used isotropic co-rotated linear elasticity, a hyper-
elastic model [SSC∗13], and a granular elasticity model [KGP∗16].
For plasticity, we used the isotropic snow model from Stomakhin
et. al. [SSC∗13], the Drucker-Prager model proposed by Klar et.
al. [KGP∗16], and a shear-clamping biological tissue model from
Ionescu et. al. [IGB∗]. (See Table 2.)

We also modify the orientation of the anisotropy for different vi-
sual effects, as shown in Figure 10. One convenient side-effect of
MPM is that it approximates fracture behavior when particles be-
come too sparsely sampled. We use this feature to animate fractured
fibrous materials in Figures 1 and 3.

Compared to an existing isotropic MPM implementation, our
method adds the calculation, application, and update of a two
fourth-order tensors per particle, and an additional frame rotation
per particle. The performance overhead of our method per time step
amounts to 26% on average (See Table 1). The memory overhead is
two additional tensors and an additional rotation matrix per parti-
cle. However, if we can approximate the stress as linear for the cal-
culation ofAE –so the tangent elasticity C is constant through time,
and if we do not allow the frames to change via mixing effects, then
we only need to store global maps for the entire simulation, instead
of storing maps per particle.

Note that multiplying 4th-order matrices is rather costly. If one
already knows what constitutive law needs to be used, it may be
more efficient to directly implement it. However this method be-
comes an interesting tool when it comes to experimenting and ex-
ploring different anisotropic constitutive laws.

The plastic projection step may induce a non-physical volume
gain. Some articles, as [TGK∗17], propose solutions to correct this
artifact but we did not implement it in our solver yet.

Table 1: Performance of our method: time in ms for each time step
of isotropic MPM (tiso), MPM with our anisotropic extension (tani),
and for handling sub-particles/visualization (tviz). Number of MPM
particles (NMPM) and sub-particles (Nsub)

Figure tiso tani tviz NMPM Nsub
Figure 10 83 97 136 10k 100k
Figure 1 83 102 137 10k 100k
Figure 8 242 325 270 50k 200k
Figure 2 127 164 270 50k 200k

8.1. Discussion and Outlook

Our method is the first technique in computer animation to simulate
anisotropic elastoplastic materials by re-using isotropic models. We
have shown how the method is capable of animating a wide range of
materials by swapping different isotropic elasticity models, differ-
ent plasticity models, different angles of anisotropy, and different
anisotropy dimensions (1D fibers vs 2D discs). Our method also
supports spatially varying anisotropy parameters and frame fields.

Although the strategy presented in Section 6.2 is simple and
practical for the purpose of computer animation, it makes sev-
eral assumption which limit the degrees of freedom. Automati-
cally finding correct parameters for general anisotropy –even for
orthotropy– is a very complicated task, and out of the scope of this
paper. Our primary goal here is to provide artists with a small set of
easily tunable control knobs for navigating this complicated design
space.

Our current implementation uses forward Euler time integration,
which is not ideal for very stiff materials. We would like to investi-
gate implicit integration in the future.

Anisotropic simulators tend to have worse numerical condition-
ing than isotropic ones, because the ratio between eigenvalues is
necessarily exaggerated when we scale the material stiffness along
one axis more than another [She02]. However, we do not consider
this a limitation of our method, because all methods for simulating
anisotropic materials will have this same difficulty.

We have only begun to explore methods for visualizing our
anisotropic material simulations. We believe our particle-based vi-
sualization is useful for animating fibrous and composite mate-
rials, but there is room for improvement. Large piles of objects
could benefit from two-way coupling with a rigid body simulator
(similar to [YSC∗18]), in order to convincingly animate individ-
ual grains that escape from the continuum. Also, although standard
techniques should work fine for extracting a surface from our sim-
ulations, we may wish to investigate techniques with anisotropic
bias [YT13].

Our model assumes a local linear map between isotropic space
and fictitious isotropic space. We could presumably support non-
linear maps by using our algorithm within a Newton solver (which
linearizes the non-linear problem each iteration), but we have not
explored this yet.

Objects in a pile (particularly objects with a complex shape) can
present very complex behavior: making clumping together, inter-
locking, jamming etc... Representing the material as a continuum
may prevent the emergence of some of these phenomena. Effi-
ciently modeling such intricate behaviors is a difficult problem and
a very interesting one to look at in the future.
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Figure 10: A column collapsing: varying the direction of anisotropy leads to direction-dependent angles of repose.

Table 2: Parameters for the figures in this paper. Ei is the Young’s modulus (Pa) for each direction, νi j the Poisson ratio for each symmetry
plane.

Figure Elasticity E1/E2/E3 ν12/ν23/ν13 Plasticity Plastic Anisotropy x/y/z dt (s)
Figure 2 Hyperelastic 5e5/5e5/5e4 0.4/0.4/0.1 [KGP∗16] 0.8/0.8/1.4 0.00025
Figure 1 Linear 1e5/1e5/5e4 0.1/0.1/0.4 [IGB∗] 0.8/0.8/1.4 0.0002
Figure 8 Hyperelastic 5e5/5e5/5e4 0.4/0.4/0.1 [KGP∗16] 0.8/0.8/1.4 0.001
Figure 9 (left) Hyperelastic 5e4/5e4/1e5 0.2/0.2/0 [KGP∗16] 1.1/1.1/0.8 0.001
Figure 9 (center) Hyperelastic 5e5/5e5/5e5 0.0/0.0/0.4 [KGP∗16] 0.8/0.8/1.4 0.001
Figure 9 (right) Hyperelastic 1e4/1e4/1e4 0.2/0.2/0.1 [SSC∗13] 1.1/1.1/0.8 0.00025
Figure 10 (left) Hyperelastic 1e5/1e5/1e5 0.4/0.4/0.4 [KGP∗16] 1/1/1 0.0002
Figure 10 (middle-left) Hyperelastic 1e5/1e5/1e5 0.4/0.4/0.4 [KGP∗16] 1/1/0.75 0.0002
Figure 10 (middle) Hyperelastic 1e5/1e5/1e5 0.4/0.4/0.4 [KGP∗16] 1/1/0.5 0.0002
Figure 10 (middle-right) Hyperelastic 1e5/1e5/1e5 0.4/0.4/0.4 [KGP∗16] 1/1/1.5 0.0002
Figure 10 (right) Hyperelastic 5e4/5e4/5e4 0.4/0.4/0.4 [KGP∗16] 1/1/2 0.0002
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